INDEX

accumulator, 10
 capacity, 106
 length, 105
shortened, 48
 table, 267
size, 106
truncation, 97
 with dither, 102
 noise from, 97
 with seed, 101
 simulating, 100
 with small frequency offset, 101
adapting a model, 118
ADPLL, 145
ADPLL synthesizer, 145, 151
 alternate architecture, 164
 concept, 151
DCO, 153
dead zone, 160
fractional spurs, 157
improving resolution, 155
mathematical representation, 152
model, 168
modulation response, 159
noise level, comparative, 155
 phase noise, 154, 155
 critical source, 154
 PSD due to finite resolution, 155
 quantization noise cancellation
 in, 159
 reference noise, 161, 165
 resolution, noise due to, 154
 simulation of, 159
 synchronization, 154
 TDC, 155
 calibration, 167
 improved resolutions, 157
 linearity, 157
aliasing in spectrums, 256
all-digital frequency synthesis, 145
.. See also ADPLL synthesizer
alpha, 110
alseed, 114
Andreani, 230
anomalous spurs, 109, 258
Appendix E.xls, 180
architectures, other than MASH-11..., 81
Arora, 72, 74, 261, 264, 270, 275
average frequency, 145
Axis Properties, 107

Balsara, xvi
Banerjee, 13, 48, 57, 58
Banerjee noise model, 58
basic-reference noise, 56
Bizjak, 121
block sets, required Simulink®, 259
Bode plot. See also loop response
damped loop, 212
primary loop, 208
with sampling, 136, 189
Boon, 94
Borkowski, 84, 267
Bracewell, 228
Brennan, 72

calibration of TDC, 167
cancellation
fractional, 171
of quantization noise, 92
... See also quantization, noise,
canceling
techniques, noise, 15
carry, 11
Cassia, 26, 177, 195, 274
center frequencies, 133
change in divide number, 3
charge pump
balance, 116
dead zone, 80
with PFD, 28, 231
closedt58.m, 210, 211
closedt58delay.m, 211
closedt58over.m, 213
CMOS technology, 2, 145
combining loops for synthesis, 123
Conley, xvi
constant sampling rate, effect of, 25
convolution, 179
of PSDs, 179, 227
coupling of reference frequencies, 132
CPandI.mdl, 111
CPandIplus.mdl, 114
CPandITrunc.mdl, 117
Crawford, xvi, 80, 82, 89, 121, 269, 271
crossover distortion. See dead zone
crs, 106
cT58at.m, 16
cT58dat.m, 210
cT58lin.m, 210
current unbalance in charge pump, 261
model, 116
noise due to, 66, 261
data acquisition in model, 116
Davenport, 264
DCO, 151, 153
De Muer, xvi, 80, 122, 269, 271
dead zone, 165
ADPLL synthesizer, 160
charge pump, 80
defects in ΣΔ synthesizers, 55
summary, 80
delays in PFD, model, 116
density of spurs, 254
DFT, 249
Digiphase synthesizer, 151
digital Fourier transform, 249
digitally-controlled oscillator, 151
diophantine synthesizer, 123
center frequencies, 133
frequency range, 125
mixing spurs, 130
multiple loops, 126
signal mixing, 129
spurs, 129
tuning algorithm, 128
example, 127
script, 126, 128
two loop, 124
discrete sidebands, 74. See also spur(s)
from crossover distortion, 80
at nF_{ref} offset, 75
due to combined effects, 77
due to delays, 77
due to leakage current, 77
due to $\Sigma\Delta$, 76
with resampling, 78
significance of levels, 78
at offsets related to f_{react}, 74, 241
in ADPLL synthesizers, 157
from current mismatch, 74
other, 75
discrete spurs, 254
displaying
FPSD, 256
L, 256
PPSD, 256
distortion, crossover. See dead zone
dither, 39, 65
Dither.mdl, 111
DitherTrunc.mdl, 118
divide number, change in, 3
downloading files, 265
dphase, 116
duration
 segment, 249
 sequence, 249

EFeedback.mdl, 118
EFM1, 24
Egan, 1, 129, 132, 170, 183, 226, 228, 230, 274
enabled spectrum analyzer, 107
endnotes, 269
equivalent input noise, 71
 with ΣΔ, 73
 without ΣΔ, 72
error-feedback modulator, 24, 82
errort58.m, 209
errort58delay.m, 209
errort58over.m, 213
Excel spreadsheet. See spreadsheet
excess PPSD, 28, 177
extreme bandwidths, operaton at, 135

F.N references, 183
fast Fourier transform, 249
FBall.m, 83
FBmodTest.mdl, 119
feedback modulator, 82
feedforward modulator, 85
FeedForward.mdl, 119, 121
FFT, 249
fi, 105
files, downloading, 265
Filiol, 36, 270
flying adder synthesizer, 145, 146
circuits, 163
frequencies generated, 147
fundamental period, 149
 glitches, 163
 jitter, 149
 spurs generated, 149
 suppression of, 150
folding of spectrum, 257
fraction, effect on spectrum, 34
fractional
cancellation, 171
spurs, 157
 in ADPLL synthesizer, 157
 swallows, 93
 in ΣΔ synthesizer, 96
 spurs with, 96
fractional-N
 first order, 9
 higher order, 24
 second order, 17
 synthesizer, 3
 third order, 24
Franklin, 135
fref, 105
frequency
 average, 145
 conversion in SA, 255
 reason for, 110
 range, diophantine synthesizer, 125
 synthesizer. See synthesizer
Frequency Synthesis by Phase Lock, 1
FS2, references to, 183
Gardner, 141, 191
Gardner’s stability limits, 191
getting files, 265
glitch in phase switching, 94, 163
glossary, xix
Gsmpl, 141
Bode plot, 136
generating plots, 189
 sampling effects, observing
 with, 136
 saving results, 187
 using, 185
HandK.mdl, 49, 110, 113
HandKsimple.mdl, 48, 49
hardware reduction, 97
higher-order fractional-N, 24
Hill, 98
HK-MASH, 44, 53
Hosseini, xvi, 17, 43, 44, 46, 84, 267
Hsu, 157, 158, 159, 273
ICs, frequency synthesizers in, 145
image in spectrum, 258
initial condition. See seed
input noise, equivalent, 56
INDEX

jitter
 in calibration, 167
 equivalent input, 72
 flying adder, 149
 reference, 165

Kennedy, xvi, 17, 43, 44, 46, 84, 97, 98, 100, 267

King, 17, 269

Kozak, 24, 36, 82, 220, 269, 270

\(k_p \), 180

Kroupa, 269

L, displaying, 256

Lacaita, xvi, 276

LC oscillator, 56, 58, 153

leakage
 current and spurs, 242
 spurs, 247

Lee, K., 96

Lee, M., 157, 273

Lee, S., 271

length
 sequence, 267
 shortened accumulator, 267

Liu, 13

log plots of PPSD, 116

long sequence, 51

‘Look under mask’, 107

loop response, 207
 damped loop, 213
 primary loop, 207

loop2tune.m, 126

loopxtune.m, 128

\(L_{out\,excess} \), 28

lower prime accumulator lengths, 48

\(L_p \), 6

\(L_{eq} \), 6

LSB dither, 39

Lyons, 249

Mair, 163

Margarit, 230

MASH
 HK, 44
 modulator, 217
 scripts for analysis, 223
 spectral width, 221
 table of characteristics, 223
 variances, 221

- \(n1n2n3 \), 91

PPSD, 24, 215

SP, 51

MASH-1111, 24

mashall.m, 120, 223

mashall3.m, 27

mashone.m, 120, 223

MATLAB®
 scripts, 103
 search path, 103

maximum sequence length, 43, 51
 simplified circuit, 48
 with more reduced base, 48

Meninger, 15, 269

Mf, 105

Miller, xvi, 34, 215, 220, 275

mismatch. See current unbalance
 mixing for diophantine synthesizer, 129

model
 ADPLL Synthesizer, 168

Simulink. See Simulink® model
 workspace, 105

Model Explorer, 105

modulation index, 5

modulation response, ADPLL
 synthesizer, 159

modulator
 error-feedback, 82
 feedforward, 85

MASH
 details, 171
 - \(n1n2n3 \), 91
 truncated, model, 117

Montres, 230

Nint, 105

noise, 67
 in ADPLL synthesizer, 154

analysis
 nominal parameters for, 59
 summary of, 63
 basic-reference, 56
 cancellation, 28
 with PFD, 13
 techniques, 15
 from crossover distortion, 80
 current unbalance, 261
 dither, 65
equivalent input, 56, 71
 in ADPLL synthesizer, 155
 with $\Sigma \Delta$, 73
 without $\Sigma \Delta$, 72
levels for 4 configurations, 67
models, 55
parameter dependence, 57
quantization, 216, 233. See quantization
noise
reference, 56
sampled, 225
SD ($\Sigma \Delta$) quantization, 57
shaping, 28
from simple charge pump, 69
synthesizer output, 57
and system performance, 71
unbalanced charged pump, 66
VCO, 55
nominal parameters for noise analysis, 59
numbering (appendices, equations, etc.), 2
Nyquist Plot, 192
 with Gsmpl, 192
offset
 of pulses in PFD, 77
quantizer, 89
Offset Reference, 123
opent58.m, 208
opent58over.m, 212
oscillator(s), 58, 105
crystal, 166
digitally-controlled, 151
LC. See LC oscillator
pulling, 154
reference, 2, 58, 105, 165, 166
ring. See ring oscillator
spectrums, 55, 229
other architectures
$\Sigma \Delta$, 81
stability of, 81
output
PPSD, 211
 shape, 211
 spectrum, 7
overlap, 107
overlaps, spectral, 256

Pamarti, 42, 43, 75, 84, 93, 269, 271
parameter dependence of noise sources, 57
Park, C-H, 96
PD. See phase, detector
period
 segment, 249
 sequence, 249
periodicity of spectrum, 249
PFD
delays, model, 116
noise cancellation with, 13
pulse offset in, 77
phase
detector, 231
 charge pump and integrator, 13
 simulating, 111
PFD. See PFD
reverse sample and hold, 25
 simulating, 111
sample and hold, 231
 simulating, 103
noise, 7
 .. See also noise
representing, 5
 at synthesizer output, 7
switching, 94
 at divider output, 96
phase-continuous switching, 9
phase-locked synthesizer, 2
PPSD
 excess, 177
 ‘from sequence’, spectrum
 analyzer, 110
log plots, 116
MASH, 215
quantization, 233
PSD(s)
 convolution of, 227
 squared, 228
pulling, oscillator, 154
pulse offset and spurs, 242, 244
quantization noise, 233
canceling, 11, 92
 in ADPLL synthesizer, 159
 with delay modulator, 13
 with phase modulator, 13
MASH, 216
PPSD, 233
quantizer offset, 89
QuantN Calculator.xls, 29
Schreier, 15
script, MATLAB®, 103
closedt58.m, 210, 211
closedt58delay.m, 211
closedt58over.m, 213
closedt58at.m, 16
closedt58dat.m, 210
closedt58lin.m, 210
erort58.m, 209
erort58delay.m, 209
erort58over.m, 213
FBall.m, 83, 119
FBone.m, 119
FFall.m, 119
FFone.m, 119
FBone.m, 119
loop2tune.m, 126
loopxtune.m, 128
mashall_.m, 120, 223
mashall3.m, 27
mashone.m, 120, 223
opent58.m, 208
opent58over.m, 212
sinlin58.m, 212
sinlog58.m, 212
speccomp.m, 117
specplot.m, 117
SynCP.m, 121
SynCP1012.m, 121
SD (ΣΔ)
modulation spurs, 243, 244, 247
quantization noise, 57
sequence, 110
spectrum analyzer, 110
synthesizers
. . See also Fractional-N
sampling effects in, 141
second-order fractional-N, 17
seed, 105, 114
seed, effect on spectrum, 36
segment, 249
duration, 249
length, 249
sen, 105
sequence
duration, 249
length, 11, 19, 22, 31, 84, 249, 267
length, maximum. See maximum sequence
length
long, 51
spectral representation, 252
sequencing, phase, 94
shortened accumulators, 48, 267
Shu, xvi, 269, 271
sidebands, discrete. See discrete sidebands
Signal Processing Toolbox, scripts requiring, 259
simple charge pump, 69
SimplePD.mdl, 114
simulation, simulating, 1, 100, 103
ADPLL synthesizer, 159
charge-pump unbalance, 116
CP and integrator, 111
data acquisition in, 116
dither, 111
error-feedback modulator, 118
feedforward modulator, 119
H and K modulator, 113
MASH modulator, 105
other methods of, 121
PFD delays, 116
reverse sample-and-hold PD, 111
sample-and-hold PD, 103
simple charge pump, 114
synthesizer loop, 105
truncation, 100, 117
Simulink model, 103
accelerated mode, 108
adapting, 118
CPandI.mdl, 111
CPandIplus.mdl, 114
CPandITrunc.mdl, 117
data acquisition, 116
delays, 116
Dither.mdl, 111
DitherTrunc.mdl, 118
EFeedback.mdl, 118
execution time, 108
FBmodTest.mdl, 119
FeedForward.mdl, 119, 121
FFmodTest.mdl, 120
HandK.mdl, 49, 110, 113
HandKsimple.mdl, 48, 49, 114
MASH modulator, 105
normal mode, 108
SandH.mdl, 103
SandHreverse.mdl, 111
scope, 107
SimplePD.mdl, 114
spectrum analyzer, 107
SPmash.mdl, 118
synchronization, 111
SynStepSH_.mdl, 121
synthesizer loop, 105
Simulink simulations, 1
Single-Quantizer ΣΔ Modulators, 24
sinlin58.m, 212
sinlog58.m, 212
Smith, 123
Song, 51
Sotiriadis, 123, 124, 125, 126, 128, 148, 149, 273
specomp.m, 117
specplot.m, 117
spectral
folding, 257
overlaps, 256
spectrum
accuracy of, 250
aliasing in, 256
analysis, 249
approximate, 251
folding, 257
image in, 258
interpreting, 21
oscillator, 229
output, 7
periodicity, 249
quantization noise, 16
influence of N, 17
spectrum analyzer, 253
controls, 255
enabled, 107
frequency conversion, 255
‘PPSD from sequence’, 110
reason for frequency conversion, 110
SD (ΣΔ) sequence, 110
synthesizer output, 109
tuning voltage, 109
TV narrow, 109
TV wide, 109
VCO converted, 108
Spectrum Scope, 107
S_x, 5
$S_{x, out}$, 24
SP-MASH, 51, 118
SPmash.mdl, 118
spreadsheet
Appendix E.xls, 180
QuantN Calculator.xls, 29
responses.xls, 67
SpectrumAnalyzers.xls, 107

spur(s). See also discrete sidebands
anomalous, 109, 258
chart or plot, 129
density, 254
discrete, 254
from phase sequencing, 96
suppression of, 96
in flying adder. See flying adder synthesizer
leakage, 247
leakage current, 242
pulse offset, 242, 244
reference, 241
reference-frequency coupling, 132
ΣΔ modulation, 243, 244, 247
suppression of, 150
spurious reduction techniques, 39
SQDSM, 24
squared PSDs, 228
stability of other architectures, 81
Staszewski, xvi, 153, 154, 155, 157, 159,
164, 166, 167, 273
Steyaert, xvi
summary of MASH spectrums, 36
superposition of responses, 235
suppression of spurs, 150
swallow, 116
swallows, fractional. See fractional swallows
Syllaios, 160, 170
symbol list, xix
SynCP.m, 121
SynCP1012.m, 121
SynStepSH_.mdl, 121
synthesizer, 2
ADPLL, 145. See ADPLL synthesizer
change in divide number, 3
Digiphase, 151
diophantine. See diophantine synthesizer
flying adder. See flying adder synthesizer
fractional-N, 3, 9
.. See also Fractional-N
multiple loop, 123
Offset Reference, 123
output
noise, 57

spectrum analyzer, 109
SD (ΣΔ), 9, 11
defects in, 55
system performance and noise
levels, 57, 71

TDC, 155. See ADPLL synthesizer, TDC
Temporiti, 157, 273
Tiebout, 230
time-to-digital converter, 155
Tokairin, 157, 158
toolboxes, required MATLAB, 259
transfer function
damped loop, 213
error, 208
forward, 209
open loop, 207
with sampling, 193
truncated accumulator, 97, 117
tuning voltage, 109

spectral analyzers, 109
TVnarrow spectrum analyzer, 109
TVwide spectrum analyzer, 109
unbalance. See current unbalance
units, 5

Vamvakos, 159
van der Tang, 230
Vancorenland, 230
variance, modulator output, 221
varying sampling rate, effect, 25
VCO noise, 55

web site, 265
Weltin-Wu, 159
Wiley web site, 265
window function, 253

Xiu, 146, 150, 151, 163, 164
Xu, 154, 273

Yang, 157
Ye, 97, 98, 100
ypsd, 117

Zannoth, 230
Z-Communications, 230
zero-order hold, approximation, 136