CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Conventions and Units</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 References</td>
<td>4</td>
</tr>
<tr>
<td>2 Mathematical Background</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Convenient Matrix Algebra</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Many-Electron Basis Functions</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Probability Basics</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Density Functions for Particles</td>
<td>16</td>
</tr>
<tr>
<td>2.6 Wave Functions and Density Functions</td>
<td>17</td>
</tr>
<tr>
<td>2.7 Density Matrices</td>
<td>18</td>
</tr>
<tr>
<td>2.8 References</td>
<td>22</td>
</tr>
<tr>
<td>3 Molecular Orbital Theory</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Atomic Orbitals</td>
<td>24</td>
</tr>
<tr>
<td>3.1.1 The Hydrogen Atom</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2 The Helium Atom</td>
<td>26</td>
</tr>
<tr>
<td>3.1.3 Many Electron Atoms</td>
<td>28</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.2</td>
<td>Molecular Orbitals</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Born–Oppenheimer Approximation</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The LCAO Method</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The Helium Dimer</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Lithium and Beryllium Dimers</td>
</tr>
<tr>
<td>3.2.5</td>
<td>The B to Ne Dimers</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Heteronuclear Diatomic Molecules</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Polyatomic Molecules</td>
</tr>
<tr>
<td>3.3</td>
<td>Further Reading</td>
</tr>
</tbody>
</table>

4 Hartree–Fock Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Hartree–Fock Theory</td>
<td>44</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Approximating the Wave Function</td>
<td>44</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The Hartree–Fock Equations</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Restrictions on The Hartree–Fock Wave Function</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Spin Properties of Hartree–Fock Wave Functions</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>The Roothaan–Hall Equations</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Practical Issues</td>
<td>55</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Dissociation of Hydrogen Molecule</td>
<td>55</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Hartree-Fock Solution</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Further Reading</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>References</td>
<td>58</td>
</tr>
</tbody>
</table>

5 Relativistic Effects

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Relativistic Effects on Chemistry</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Relativistic Quantum Chemistry</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>The Douglas–Kroll–Hess Transformation</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>Further Reading</td>
<td>66</td>
</tr>
<tr>
<td>5.5</td>
<td>References</td>
<td>66</td>
</tr>
</tbody>
</table>

6 Basis Sets

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>General Concepts</td>
<td>69</td>
</tr>
<tr>
<td>6.2</td>
<td>Slater Type Orbitals, STOs</td>
<td>70</td>
</tr>
<tr>
<td>6.3</td>
<td>Gaussian Type Orbitals, GTOs</td>
<td>71</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Shell Structure Organization</td>
<td>71</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Cartesian and Real Spherical Harmonics Angular Momentum Functions</td>
<td>72</td>
</tr>
<tr>
<td>6.4</td>
<td>Constructing Basis Sets</td>
<td>72</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Obtaining Exponents</td>
<td>73</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Contraction Schemes</td>
<td>73</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Convergence in the Basis Set Size</td>
<td>77</td>
</tr>
<tr>
<td>6.5</td>
<td>Selection of Basis Sets</td>
<td>79</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Effect of the Hamiltonian</td>
<td>79</td>
</tr>
</tbody>
</table>
6.5.2 Core Correlation, 80
6.5.3 Other Issues, 81
6.6 References, 81

7 Second Quantization and Multiconfigurational Wave Functions 85
7.1 Second Quantization, 85
7.2 Second Quantization Operators, 86
7.3 Spin and Spin-Free Formalisms, 89
7.4 Further Reading, 90
7.5 References, 91

8 Electron Correlation 93
8.1 Dynamical and Nondynamical Correlation, 93
8.2 The Interelectron Cusp, 94
8.3 Broken Bonds. $(\sigma)^2 \rightarrow (\sigma^*)^2$, 97
8.4 Multiple Bonds, Aromatic Rings, 99
8.5 Other Correlation Issues, 100
8.6 Further Reading, 102
8.7 References, 102

9 Multiconfigurational SCF Theory 103
9.1 Multiconfigurational SCF Theory, 103
9.1.1 The H_2 Molecule, 104
9.1.2 Multiple Bonds, 107
9.1.3 Molecules with Competing Valence Structures, 108
9.1.4 Transition States on Energy Surfaces, 109
9.1.5 Other Cases of Near-Degeneracy Effects, 110
9.1.6 Static and Dynamic Correlation, 111
9.2 Determination of the MCSCF Wave Function, 114
9.2.1 Exponential Operators and Orbital Transformations, 115
9.2.2 Slater Determinants and Spin-Adapted State Functions, 117
9.2.3 The MCSCF Gradient and Hessian, 119
9.3 Complete and Restricted Active Spaces, the CASSCF and RASSCF Methods, 121
9.3.1 State Average MCSCF, 125
9.3.2 Novel MCSCF Methods, 125
9.4 Choosing the Active Space, 126
9.4.1 Atoms and Atomic Ions, 126
9.4.2 Molecules Built from Main Group Atoms, 128
9.5 References, 130
10 The RAS State-Interaction Method 131
 10.1 The Biorthogonal Transformation, 131
 10.2 Common One-Electron Properties, 133
 10.3 Wigner–Eckart Coefficients for Spin–Orbit Interaction, 134
 10.4 Unconventional Usage of RASSI, 135
 10.5 Further Reading, 136
 10.6 References, 136

11 The Multireference CI Method 137
 11.1 Single-Reference CI. Nonextensivity, 137
 11.2 Multireference CI, 139
 11.3 Further Reading, 140
 11.4 References, 140

12 Multiconfigurational Reference Perturbation Theory 143
 12.1 CASPT2 theory, 143
 12.1.1 Introduction, 143
 12.1.2 Quasi-Degenerate Rayleigh–Schrödinger Perturbation Theory, 144
 12.1.3 The First-Order Interacting Space, 145
 12.1.4 Multiconfigurational Root States, 146
 12.1.5 The CASPT2 Equations, 148
 12.1.6 IPEA, RASPT2, and MS-CASPT2, 154
 12.2 References, 155

13 CASPT2/CASSCF Applications 157
 13.1 Orbital Representations, 158
 13.1.1 Starting Orbitals: Atomic Orbitals, 162
 13.1.2 Starting Orbitals: Molecular Orbitals, 164
 13.2 Specific Applications, 167
 13.2.1 Ground State Reactions, 167
 13.2.2 Excited States–Vertical Excitation Energies, 171
 13.2.3 Photochemistry and Photophysics, 184
 13.2.4 Transition Metal Chemistry, 194
 13.2.5 Spin-Orbit Chemistry, 202
 13.2.6 Lanthanide Chemistry, 207
 13.2.7 Actinide Chemistry, 209
 13.2.8 RASSCF/RASPT2 Applications, 212
 13.3 References, 216

Summary and Conclusion 219

Index 221