Index

α-actinin, 215, 221
AA see ascorbic acid
7-AAD, 314–15, 318
Acid Tyrodes, 43
acidic fibroblast growth factor (aFGF), 188, 189
Activin A, 82, 179–80
aFGF see acidic fibroblast growth factor
AFP see alphafetoprotein
AFT024 stromal cells, 289, 290, 294, 296
aggregation
 cardiomyocytes, 224
 embryoid bodies, 151
 in vivo characterization, 124–5, 128–30,
 133–6, 138–9, 145–6
alanyl-glutamine, 25–6
alizarin red, 253, 258, 263, 267
alkaline phosphatase, 253, 257–9, 263, 267,
 268–9
all trans-retinoic acid (RA)
 pancreatic cells, 199–200, 205
 spinal motor neurons, 349, 353–4, 355
allel-specific expression of imprinted genes,
 116–17, 118–19
alphafetoprotein (AFP), 171–2
ALS see amyotrophic lateral sclerosis
Alzheimer’s disease, 327–8
Angelman syndrome, 108
angiogenesis assays, 231–2, 244
antibiotics
 cell culture practice, 9
 gene targeting, 357, 361
 osteogenic cells, 268
 pancreatic cells, 195
 resistance, 195, 357, 361
 standard culture, 61
antibodies
 extraembryonic cell types, 171
 hematopoietic cells, 275
 pancreatic cells, 196–9
 phenotypic analysis, 94–6, 102
 spinal motor neurons, 351
ART see assisted reproductive technology
 artificial scaffolds, 151
 ascorbic acid (AA), 252, 256
 aseptic technique, 6–8
 assisted reproductive technology (ART), 151,
 153
Avertin, 301, 307, 320
β-catenins, 206
β-cells see pancreatic cells
β-glycerophosphate (β-GP), 255, 267
β-mercaptoethanol
 myeloid cells, 302, 308
 standard culture, 61, 62
bacterial artificial chromosomes (BACs)
 cell death, 386
 electroproportion, 384, 385–6
 expansion, 385
 gene reporters, 377–87
 gene targeting, 363
 materials, reagents and equipment, 378–9
 preparation, 379–80
 protocols, 378, 379–85
 recombination procedure, 381–2
 recombineering, 377–87
 selection, 384–5, 386
 template vectors, 380–1
 troubleshooting, 385–7
 verification, 382–3, 385, 386–7
bacterial contamination, 7, 17
BASF medium, 341, 343–5, 346
basic fibroblast growth factor (bFGF)
 chemically defined media, 82, 89
 dopaminergic neurons, 343–4, 345
 endothelial cells, 230, 238, 240
hepatic cells, 188, 189
in vitro differentiation, 151
in vivo characterization, 131, 134, 145–6
myeloid cells, 300, 309, 310
phenotypic analysis, 94
spinal motor neurons, 350
standard culture, 53, 67
BCT-GA medium, 341, 344, 346
BDNF see brain-derived neurotrophic factor
BEating embryoid bodies, 214–15
Beckwith–Wiedeman syndrome, 108
Bf-1, 349
bFGF see basic fibroblast growth factor
biosafety cabinets, 4, 9–10
Biotechnology and Biological Sciences Research Council, 12
BIT medium, 306, 313, 315–16
blastocysts
cryopreserved embryos, 26, 28–9, 31–3
derivation of cell lines, 36–7, 42–6
in vivo characterization, 123–5, 128, 129–33, 136–8, 146
blood vessel differentiation, 232
BMP see bone morphogenetic protein
bone marrow
hematopoietic cells, 279, 281, 284
myeloid cells, 300, 320–3
osteogenic cells, 249–50
bone morphogenetic protein (BMP)
cardiomyocytes, 214, 216
chemically defined media, 81–2
myeloid cells, 309, 311–12
bone nodules, 262–6, 267–8
bone sialoprotein (BSP), 265
brain-derived neurotrophic factor (BDNF), 350, 354
bright field photomicrography, 64
BSP see bone sialoprotein
buprenorphine, 301, 321
C-peptide, 199, 207–9
cadherins
endothelial cells, 230–1, 240
myeloid cells, 312, 313
cAMP see cyclic adenosine monophosphate
cardiomyocytes
cell death, 227
culture media, 217, 218, 221–2
cut-and-paste passaging, 215, 219–21
differentiation, 213–28
electrophysiology, 225
embryoid bodies, 214–15, 217, 222–5
END2 co-culture, 215–17, 218–20, 221–2, 227
endoderm cells, 214–15
forced aggregation, 223
immunostaining, 225
materials, reagents and equipment, 217–19
Mitomycin-C, 217–23, 226
protocols, 214–17, 218–25
real-time polymerase chain reaction, 217
troubleshooting, 225–7
trypsinization, 218–21, 226
Cbfa1 see core binding factor alpha1
CD8 T cells, 289
CD33 cells, 316–17, 322
CD34 cells
endothelial cells, 230–1, 240
lymphocytes, 287, 292–3, 295
myeloid cells, 299
CD34pos cells, 279, 281–2, 284
CD38neg cells, 279, 281
CD45 cells
lymphocytes, 287, 292–4
myeloid cells, 299, 322
CD45neg PFV cells
endothelial cells, 240, 242
hematopoietic cells, 274, 279, 280–1
myeloid cells, 299–300, 311, 312–16, 318, 320–1, 323–4
CD56 cells, 288, 293–5
CD133pos cells, 282, 284
cell banks, 12–16
cell culture practice, 8–10
cell lines
authenticity, 18–20
bacterial contamination, 17
cross-contamination, 11, 12, 18–19
fungal contamination, 17
mycoplasma, 17–18
myeloid cells, 300
passage numbers, 20–1
protocol for selection, 21–2
purity, 16–18
selection criteria, 16–21
sourcing, 11–24
stability, 20–1
stem cell banks, 12–16
viral contamination, 18
see also derivation of cell lines
cell scraping, 64–5, 78
cell surface markers, 94–8
chemically defined media, 81–90
adapting human ES cells, 85–6
BMP-like activity, 81–2
differentiation, 82–3, 89
dispase passaging, 86–7
fibroblast feeder cells, 88–9
freeze/thaw protocols, 87–8, 90
growth rates, 89–90
materials, reagents and equipment, 83
Matrigel, 82, 84–6
morphology, 89–90
preparation of solutions and media, 84–5
troubleshooting, 88–90
chimera analysis, 142
chromosomal aneuploidy, 107, 111, 113
citrate, 26
cleaning regimes, 7–8, 9
cleavage stage embryos, 26–7, 28–9, 33
closed straw programmable control rate freezing, 73–5, 76
colecmid, 111
collagen, 266
collagenase
cardiomyocytes, 223
endothelial cells, 238
epigentic analysis, 110
extraembryonic cell types, 175
gene targeting, 362
hematopoietic cells, 275, 277
in vivo characterization, 134
myeloid cells, 301, 307–8, 310
pancreatic cells, 202
standard culture, 69
core binding factor alpha1 (Cbfa1), 266
cross-contamination
 genetic analysis, 111
 sourcing cell lines, 11, 12, 18–19
cryopreserved embryos
 blastocysts, 26, 28–9, 31–3
cleavage stage embryos, 26–7, 28–9, 33
 contamination, 30
 development, 31, 32–3
 embryo grading, 29–30
 materials, reagents and equipment, 25–6
 post-thaw culture, 29
 pre-thaw preparation, 27
 procedure, 27–8
 rehydration, 28
 survival rates, 30–2
 thawing protocol, 25–34
 troubleshooting, 30–3
cut-and-paste passaging, 215, 219–21
cutting pipettes, 63, 78
cyclic adenosine monophosphate (cAMP), 350, 354
cytochrome oxidase sequencing, 21
cytopenic analysis, 111, 118
cytopsin, 319–20
derivation of cell lines, 35–51
 blastocysts, 36–7, 42–6
colony morphology, 46–8
development and proliferation, 50
gamma irradiation, 42
growing explants, 46–8
immunosurgery, 42–5, 49
inner cell mass, 35–7, 42–8, 49–50
materials, reagents and equipment, 37–9
mechanical disaggregation, 48, 49–50
mitomycin C treatment, 41–2
mitotically-inactivated feeder cells, 41–2
mouse embryonic fibroblasts, 39–42
protocols, 39–48
seeding feeder layers, 42
trophectoderm bubbling, 45, 46, 49
troubleshooting, 49–50
trypsinization, 48–9
dexamethasone
 hepatic cells, 188, 189
 osteogenic cells, 252, 254–5
differentiation
 cardiomyocytes, 213–28
chemically defined culture conditions, 82–3, 89
directed, 229–365
dopaminergic neurons, 337–47
endoderm cells, 179–86, 203–5
endothelial cells, 229–48
extraembryonic cell types, 169–77
forebrain neurons, 327–36
hematopoietic cells, 273–85, 290–1, 312
hepatic cells, 187–94
hepatocytes, 179
in vitro, 149–67, 229–30, 328–30
in vivo characterization, 133
lymphocytes, 287–97
myeloid cells, 299–325
natural killer cells, 288–9, 291, 293–5
osteogenic cells, 249–71
pancreatic cells, 195–211
pancreatic endocrine cells, 179
phenotypic analysis, 95, 97
spinal motor neurons, 349–55
standard culture, 77–8
TEM imaging, 151–6, 160–6
terminal, 207–8
see also embryoid bodies
directed differentiation see differentiation
disaggregation, 48, 49–50
dispase
chemically defined media, 86–7
in vivo characterization, 134
spinal motor neurons, 350
DNA methylation patterns, 107–8, 114, 116–17
dopaminergic neurons
cell death, 346
culture media, 340–1
differentiation, 337–47
future directions, 345
induction, 341–3, 345
materials, reagents and equipment, 338–40
monitoring, 343, 345
MS5 stromal cells, 341–3
patterning, 343–4
protocols, 337–8, 340–5
rosette structures, 343, 345–6
troubleshooting, 345–6
double-dipping, 10
Down’s syndrome, 329
DSMZ collection, 12

EBs see embryoid bodies
EC see embryonal carcinoma
ECM see extracellular matrix
ectoderm differentiation, 97
EDX see energy dispersive X-ray analysis
eGFP see enhanced green fluorescent protein
electrophoresis, 225
electroporation
bacterial artificial chromosomes, 384
gene reporters, 384, 385–6
gene targeting, 360–1, 363–4
embryo aggregation 151
embryo grading, 29–30
embryoid bodies (EBs)
artificial scaffolds, 151
cardiomyocytes, 214–15, 217, 222–5
endoderm cells, 179–80, 183–4, 185
endothelial cells, 230, 237–42, 245
extraembryonic cell types, 169–70, 174, 175–6
forced aggregation, 151
forebrain neurons, 328–30, 332–3
hematopoietic cells, 273, 274, 277–81
hepatic cells, 187–8, 191–2, 193
in vitro differentiation, 149–67, 169–70, 174
in vivo characterization, 123
lymphocytes, 287
materials, reagents and equipment, 156–8
myeloid cells, 299–300, 306, 310–16, 323
osteogenic cells, 250–1, 267–8
pancreatic cells, 201–2
protocols, 153–6
rotator flasks, 150
spinal motor neurons, 354
spinner EBs, 150, 159–60
suspension culture method, 158–9
TEM imaging, 151–6, 160–6
embryonal carcinoma (EC) cells, 215
END2 cells, 215–17, 218–20, 221–2, 227
endocrine progenitors, 206
endoderm cells
cardiomyocytes, 214–15
cell culture, 181–3
differentiation, 97, 179–86, 203–5
embryoid bodies, 179–80, 183–4, 185
extraembryonic cell types, 169–72, 173
fixation, embedding and sectioning, 183–4
immunostaining, 180, 184
induction, 182–4, 185
materials, reagents and equipment, 180–1
monolayer cultures, 182–5
pancreatic cells, 203–5
protocols, 180, 181–4
SOX17, 180, 184, 185
endothelial cells
characterization, 231–2
differentiation, 229–48
embryoid bodies, 230, 237–42, 245
hES cell propagation and passaging, 241
immunostaining, 244
in vitro angiogenesis assays, 231–2, 244
in vivo blood vessel differentiation, 232
isolation and selection, 231, 246
markers, 231
materials, reagents and equipment, 234–6
protocols, 233–4
real-time polymerase chain reaction, 244
therapeutic implications, 232–3
troubleshooting, 244–6
endothelial cells (*continued*)
 two dimensional model, 230, 236, 242–4, 245–6
endothelial nitric oxide synthase (eNOS), 231
energy dispersive X-ray analysis (EDX), 262, 263
enhanced green fluorescent protein (eGFP) reporter gene, 188, 190–2
eNOS see endothelial nitric oxide synthase
enzymatic disaggregation, 78
enzymatic passaging
 in vivo characterization, 132–6
 standard culture, 65–6
epigentic analysis, 107–8
 allele-specific expression of imprinted genes, 116–17, 118–19
 DNA methylation patterns, 107–8, 114, 116–17
 DNA or RNA isolation, 114
 genomic imprinting, 112, 114
 IGF2 locus, 114–17
 imprinting errors, 107–8
 materials, reagents and equipment, 110–11
 protocols, 112–17
 RT-PCR amplification, 110, 114–15, 117, 118–19
 single nucleotide polymorphisms, 114, 116–17, 118
 troubleshooting, 118–19
EPO see erythropoietin
erthropoietin (EPO), 303, 309
ethidium bromide, 108, 109, 111
ExGen, 500 190–1
extracellular matrix (ECM), 231
extraembryonic cell types
 antibodies, 171
 culture media, 170, 175–6
 differentiation, 169–77
 embryoid bodies, 169–70, 174, 175–6
 endoderm cells, 169–72, 173
 growth factors, 173–5
 human ES cell monolayer cultures, 174
 immunostaining, 175, 176
 materials, reagents and equipment, 173
 PCR analysis, 169–70, 175
 protocols, 173–5
 trophoderm cells, 169–71, 173–4
 troubleshooting, 175–6
FACS see fluorescence activated cell sorting
FBS see fetal bovine serum
FCS see fetal calf serum
feeder-free cultures, 94, 220
fetal bovine serum (FBS)
 cell media, 57, 61, 67
 osteogenic cells, 252, 254
fetal calf serum (FCS)
 cardiomyocytes, 222, 225, 227
 pancreatic cells, 202
FGF see fibroblast growth factors
fibroblast feeder cells
 cell scraping, 64–5, 78
 chemically defined media, 88–9
 closed straw programmable control rate freezing, 73–5, 76
 enzymatic passaging, 65–6
 freeze/thaw protocols, 57–60, 66–70, 73–6
 growth rates, 76–7
 human ES cells, 53, 55, 61–8, 71–7
 human fibroblasts, 54, 57–8, 66–7
 microdissection, 63–4, 78
 mitotically-inactivated, 41–2, 60–1, 77
 mouse embryonic fibroblasts, 54, 57–8, 66, 76–7
 open straw vitrification, 71–3, 75–6
 phenotypic analysis, 94
 standard culture, 53, 54–5, 56–70, 71–8
 subculturing, 58–9, 62–3
fibroblast growth factors (FGF)
 hepatic cells, 188, 189
 pancreatic cells, 188, 189, 205, 208
 see also basic fibroblast growth factor
fibronectin, 69
FISH see fluorescence *in situ* hybridization
Flk1, 318
flow cytometry
 myeloid cells, 316–18
 phenotypic analysis, 94–6, 99, 102
fluorescence activated cell sorting (FACS)
 endothelial cells, 233, 237, 239–40, 242
 hepatic cells, 188, 192–3
 myeloid cells, 308, 311, 313–16, 321–2
 pancreatic cells, 196, 197, 202
 phenotypic analysis, 94, 99–101, 102
 RNA interference, 369–71
 spinal motor neurons, 355
fluorescence *in situ* hybridization (FISH)
 chromosomal abnormalities, 111, 113
 gene reporters, 378, 387
 in vivo characterization, 142
fluorochrome conjugated mAbs, 316–18
forced aggregation
 cardiomyocytes, 224
 embryoid bodies, 151
forebrain neurons
 culture media, 330
 differentiation, 327–36
 embryoid bodies, 328–30, 332–3
 immunofluorescence, 333, 334
 in vitro differentiation methods, 328–30
 materials, reagents and equipment, 330–1
 PA6 stromal cells, 328, 331–4
 protocols, 330
 RT-PCR analysis, 333–4
 troubleshooting, 334–5
Fourier transform infrared (FTIR)
 spectroscopy, 254, 262, 263, 266
FoxA2 cells, 203
freezing
 chemically defined media, 87–8, 90
 fibroblast feeder cells, 57–60, 66–70, 73–5
Freshney’s Culture of Animal Cells: A Multimedia Guide, 8
FTIR see Fourier transform infrared
fungal contamination, 7, 17
G-CSF see granulo-colony stimulating factor
gamma irradiation
 derivation of cell lines, 42
 in vivo characterization, 127
 standard culture, 60–1
ganciclovir, 361
Gata, 171–2
GATA cells, 230
gene reporters
 bacteria preparation, 379–80
 bacterial artificial chromosomes, 377–87
 cell death, 386
 electroporation, 384, 385–6
 expansion of recombined BACs, 385
 materials, reagents and equipment, 378–9
 protocols, 378
 recombination procedure, 381–2
 selection of recombined BACs, 384–5
 template vectors, 380–1
 troubleshooting, 385–7
 verification of recombined BACs, 382–3, 385
 gene targeting, 357–65
 antibiotic resistance, 357, 361
cell death, 364
characterization of targeted cells, 363
clone expansion, 361–2
electroporation, 360–1, 363–4
knock outs/ins, 357
materials, reagents and equipment, 358–9
polymerase chain reaction, 359–60, 362, 363–4
protocols, 358, 359–63
 targeting vectors, 359–60, 363
troubleshooting, 363–4
genetic analysis, 107–9
dissociation, 118
growth rates and morphology, 118
imprinting errors, 107–8
materials, reagents and equipment, 108–9
protocols, 111–12
statistical analysis, 117–18
 troubleshooting, 117–18
genomic imprinting, 112, 114
Giemsa staining, 319–20
global gene expression analysis, 97–8
glucose, 26
glucose stimulated insulin secretion (GSIS), 207–8
Glycophorin A, 317–18
GM-CSF see granulo-macrophage colony stimulating factor
granulo-colony stimulating factor (G-CSF), 303
granulo-macrophage colony stimulating factor (GM-CSF), 303, 309
green fluorescent protein (GFP)
 gene reporters, 377
 RNA interference, 370
growth factors
 chemically defined media, 82
 endothelial cells, 230–1, 232–3, 240
 epigenetic analysis, 114–17
 extraembryonic cell types, 173–5
 myeloid cells, 300, 309–10, 318
 pancreatic cells, 198, 199, 207
 see also basic fibroblast growth factor; fibroblast growth factors
GSIS see glucose stimulated insulin secretion
hanging-drop suspension culture, 159
HB9-expressing motor neurons, 349
hematopoietic cells
 CD45⁺ PFV cells, 274, 279, 280–1
hematopoietic cells (continued)
culture media, 275–7
differentiation, 273–85, 290–1, 312
embryoid bodies, 273, 274, 277–81
in vivo repopulation, 273, 283–4
materials, reagents and equipment, 275–7
OP9 cells, 282–3, 295
progenitor cells, 273, 279, 287–9, 291–3, 295
protocols, 274–5, 277–83
S17 cells, 274, 281–2, 291–2, 295
summary of methods, 278–9
troubleshooting, 283–4
see also lymphocytes; myeloid cells
heparin, 350
hepatic cells
differentiation, 187–94
embryoid bodies, 187–8, 191–2, 193
enhanced green fluorescent protein reporter gene, 188, 190–2
FACS sorting, 192
isolation, 192
materials, reagents and equipment, 188–90
mitotically-inactivated feeder cells, 188–90
protocols, 190–3
transfection, 190–1, 193
troubleshooting, 193
hepatocyte growth factor (HGF), 188, 189
hepatocytes, 179
HGF see hepatocyte growth factor
HLA molecular typing, 21
homologous recombination, 357–65
antibiotic resistance, 357, 361
cloning, 364
characterization of targeted cells, 363
clone expansion, 361–2
electroportation, 360–1, 363–4
knock outs/ins, 357
materials, reagents and equipment, 358–9
polymerase chain reaction, 359–60, 362, 363–4
protocols, 358, 359–63
RNA interference, 367
targeting vectors, 359–60, 363
troubleshooting, 363–4
hox genes, 349
human fibroblasts (HFs), 54, 57–8, 66–7
Huntington’s disease, 329

Hybrid embryo culture, 140

IBMT see intra bone marrow transplantation
ICM see inner cell mass
IGF see insulin-like growth factor
IMDM see Iscove’s modified Dulbecco’s medium

immunocytochemistry
endothelial cells, 180, 184
ependymal cells, 244
extraembryonic cell types, 175, 176
pancreatic cells, 201, 202

immunohistochemistry
osteogenic cells, 253, 259–60
phenotypic analysis, 95–6, 99, 101, 102

immunostaining
cardiomyocytes, 216, 225
endothelial cells, 180, 184
endothelial cells, 244
ependymal cells, 244
extraembryonic cell types, 175, 176
pancreatic cells, 201, 202

immunosurgery, 42–5, 49

in vitro angiogenesis assays, 231–2, 244
in vitro culture of hybrid embryos, 140–5
in vitro differentiation see differentiation; embryoid bodies
in vitro fertilization (IVF), imprinting errors, 108
in vivo blood vessel differentiation, 232
in vivo characterization, 123–47
aggregation, 124–5, 128–30, 133–6, 138–9, 145–6
analytical procedures, 142
blastocyst injection, 123–5, 128, 129–33, 136–8, 146
differentiation, 133
embryoid bodies, 123
engraftment of human ES cells, 143–4
enzymatic passaging, 132–6
harvesting human ES cells, 134–5
husbandry precautions, 142
in vitro culture of hybrid embryos, 140–5
kidney capsule implantation, 126, 143, 144–5
materials, reagents and equipment, 126–8
microdissection, 131–2
outgrowth protocols, 139–45
pre-compacting morulae, 124–5, 128–30, 133–6, 138–9, 145–6
protocols, 124–5, 128–45
pseudo-pregnant foster mothers, 124, 128–9
superovulation, 124–5
surgical procedures, 140–2
teratomas, 123–4, 126, 142–3, 146
timed matings, 124–5, 129
transfer protocols, 139, 140–2
troubleshooting, 145–6
in vivo repopulation, 273, 283–4
incubators, 5
induced differentiation see differentiation
injury response, 329
inner cell mass (ICM)
derivation of cell lines, 35–7, 42–8, 49–50
in vivo characterization, 123
insulin
hepatic cells, 188, 189
pancreatic cells, 195–7, 199, 203, 207–8
insulin-like growth factor (IGF), 114–17
insulin-secreting pancreatic β-cells see pancreatic cells
interleukins, 303, 309
International stem cell banks, 13
intra bone marrow transplantation (IBMT), 300, 320–3
intracellular antigens, 102
ischemic damage, 213
Iscove’s modified Dulbecco’s medium (IMDM), 302, 306, 320
isoenzyme analysis, 21
Karnofsky’s fixative, 260–1
karyology, 21
karyotype analysis see genetic analysis
kidney capsule surgery, 126, 143, 144–5
killer-cell Ig-like receptors (KIRs), 294
knock outs/ins, 357
knockdown validation, 369, 371, 372–3
KnockOut Serum Replacement (KO-SR)
cell media, 61, 67, 81
myeloid cells, 307
pancreatic cells, 200, 202
phenotypic analysis, 94
KO-DMEM, 306–8, 310
KO-SR see KnockOut Serum Replacement
laboratory organization, 3–10
aseptic technique, 6–7
cell culture practice, 8–10
cleaning regimes, 7–8, 9
equipment, 4–6, 9–10
good practice, 6–7
layout, 3
LAK see lymphokine-activated killer
laminar flow cabinets, 5
laminin
extraembryonic cell types, 171–2
spinal motor neurons, 350, 352–3
lead acetate, 162, 165
leukemia inhibitory factor (LIF), 230, 238
light microscopy (LM), 152
liver see hepatic cells
LM see light microscopy
lymphocytes
cell culture, 290
differentiation, 287–97
embryoid bodies, 287
hematopoietic cells, 287–9, 291–3
materials, reagents and equipment, 290–1
natural killer cells, 288–9, 291, 293–5
OP9 cells, 295
protocols, 289, 291–5
S17 cells, 291–2, 295
lymphokine-activated killer (LAK) cells, 288
master cell banks, 13, 20–1
Matrigel, 308
cardiomyocytes, 221–4, 226
chemically defined media, 82, 85–6
endothelial cells, 231–2
in vivo characterization, 131, 133
myeloid cells, 308
pancreatic cells, 200–1
phenotypic analysis, 94
standard culture, 68–9, 71
storage, 226
mechanical disaggregation
derivation of cell lines, 48, 49–50
standard culture, 78
MEFs see mouse embryonic fibroblasts
mesenchymal stem cells, 250, 251
mesoderm differentiation, 97
microdissection
in vivo characterization, 131–2
standard culture, 63–4, 78
microscopes, phase contrast, 5–6
Mitomycin-C
cardiomyocytes, 218–23, 226
derivation of cell lines, 41–2
Mitomycin-C (continued)
in vivo characterization, 127, 134
standard culture, 58, 60
mitotically-inactivated feeder cells
derivation of cell lines, 41–2
hepatic cells, 188–90
pancreatic cells, 201–2
standard culture, 60–1, 77
MOI see multiplicity of infection
monothioglycerol, 308
morula aggregation, 124–5, 128–30, 133–6, 138–9, 145–6
mouse embryonic fibroblasts (MEFs)
cardiomyocytes, 218–23, 225–6
derivation of cell lines, 39–42
endothelial cells, 234–8, 240–5
gene targeting, 361–2
growth rates, 76–7
hepatic cells, 190–1
in vivo differentiation, 151
in vitro differentiation, 131, 134–5
myeloid cells, 300, 307, 323
pancreatic cells, 201–2
spinal motor neurons, 353
standard culture, 54, 57–8, 66, 76–7
storage, 226
MS5 stromal cells, 328, 333, 341–3
multilocus DNA fingerprinting, 21
multiplex PCR DNA profiling, 21
multiplicity of infection (MOI), 368, 372
murine see mouse
mycoplasma
aseptic technique, 8
sourcing cell lines, 17–18
myeloid cells
CD45neg PVF cells, 299–300, 311, 312–16, 318, 320–1, 323–4
cell lines, 300
characterization, 316–23
culture media, 301–4, 306–7
differentiation, 299–325
embryoid bodies, 299–300, 306, 310–16, 323
FACS sorting, 308, 311, 313–16, 321–2
flow cytometry, 316–18
growth factors, 300, 309–10
intra bone marrow transplantation, 300, 320–3
materials, reagents and equipment, 300–10
morphological characterization, 318–20
PECAM-1, 299, 312–16
polymerase chain reaction, 322–3
protocols, 300, 310–23
southern blotting, 322–3
troubleshooting, 323–4
National Institute for Biological Standards and Control, 12
natural killer (NK) cells
differentiation, 288–9, 291, 293–5
hematopoietic cells, 281, 284
nestin-positive progenitors, 195
neuroepithelial cells, 351–2, 355
neurons
dopaminergic, 337–47
forebrain, 327–36
spinal motor neurons, 349–55
neurospheres (NS), 151, 153
Ngn3 cells, 196, 197, 199
nicotinamide, 207
NIH registry, 12
NK see natural killer
NOD/SCID mice
hematopoietic cells, 276–9, 281–2, 284
myeloid cells, 320
noggin, 82
non-essential amino acids, 26
non-sense oligonucleotides, 370–1
notch inhibition, 206
NS see neurospheres
Oct4 cells, 196, 197
Oct4/Nanog positive cells, 171–2
OP9 cells, 282–3, 295
open straw vitrification, 71–3, 75–6
osmium tetroxide, 160–1
osteocalcin, 253, 259, 263, 264–5
osteogenic cells
alizarin red, 253, 258, 263, 267
alkaline phosphatase, 253, 257–9, 263, 267, 268–9
analysis, 262–6
antibiotics, 268
bone nodules, 262–6, 267–8
bone sialoprotein, 265
cell culture, 252–3, 254–6, 266–7
collagen, 266
core binding factor alpha1, 266
differentiation, 249–71
embryoid bodies, 250–1, 267–8
energy dispersive X-ray analysis, 262, 263
Fourier transform infrared spectroscopy, 262, 263, 266
immunocytochemistry, 263, 269
immunohistochemistry, 253, 259–60
materials, reagents and equipment, 252–4
mesenchymal stem cells, 250, 251
osteocalcin, 253, 259, 263, 264–5
osteogenic markers, 264–6
osteonectin, 265
osteopontin, 265
progenitor cells, 250–1, 267
protocols, 252, 254–62
scanning electron microscopy, 253–4, 260–2, 263, 268
tetracycline, 253, 258–9, 263, 267
troubleshooting, 266–9
von Kossa staining, 253, 257–8, 267, 268–9
osteopontin, 265
Otx2, 349
outgrowth protocols, 139–45

PA6 stromal cells, 328, 331–4
pancreatic cells
 all trans-retinoic acid, 199–200, 205
 antibodies, 196–9
 β-catenins, 206
 C-peptide, 199, 207–9
 cell death, 208
 culture media, 202
differentiation, 179, 195–211
 embryoid bodies, 201–2
 endocrine progenitors, 179, 206
 endoderm cells, 203–5
 FACS sorting, 196, 197, 202
 glucose, 207–9
growth factors, 198, 199, 207
 immunofluorescence, 196
 immunostaining, 201, 202
 materials, reagents and equipment, 196–200
 mitotically-inactivated feeder cells, 201–2
 monolayer cultures, 201–2
 nicotinamide, 207
 notch inhibition, 206
Pdx1 progenitor cells, 196–7, 199–200, 203–6, 208
 protocols, 196, 200–8
real-time polymerase chain reaction, 196, 201, 202–4
sonic hedgehog inhibitors, 205
terminal differentiation, 207–8
troubleshooting, 208–9
Parkinson’s disease, 327, 337
passage numbers, 20–1
Passaging human ES cells
 Mechanical (cut and paste), 62, 215
 Enzymatic (cell scrapping), 215
 Bulk passaging
 with collagenase, 222
 with dispase, 219
 with trypsin/EDTA, 41, 220,
Pax6, 349
PCR see polymerase chain reaction
Pdx1 cells, 196–7, 199–200, 203–6, 208
PECAM
 endothelial cells, 230–1, 237, 239–40, 242, 245–6
 myeloid cells, 299, 312–16
phases contrast microscopes, 5–6
phenotypic analysis, 93–106
 antibodies, 94–6, 102
 cell surface markers, 94–8
differentiation, 95, 97
 FACS sorting, 94, 99–101, 102
 flow cytometry, 94–6, 99, 102
 immunohistochemistry, 95–6, 99, 101, 102
 materials, reagents and equipment, 99
 RT-PCR, 96–8, 99
troubleshooting, 102
photomicrography, 64
plasmid DNA isolation, 116
pluripotency, 93, 98, 124, 389–91
polymerase chain reaction (PCR)
 extraembryonic cell types, 169–70, 175
 gene reporters, 378, 382–3, 386–7
gene targeting, 359–60, 362, 363–4
myeloid cells, 322–3
 quantitative, 371, 378, 382–3, 386
 reverse-transcription, 110, 114–15, 117, 118–19
RNA interference, 371
see also real-time polymerase chain reaction
post-thaw culture, 29
Prader–Willi syndrome, 108
pre-compacting morulae, 129–30, 133–6, 138–9
pre-thaw preparation, 27
progenitor cells
 hematopoietic cells, 273, 279, 287–9, 291–3, 295
 osteogenic cells, 250–1, 267
 spinal motor neurons, 351, 352–4, 355
PS-NCAM, 333
pseudo-pregnant foster mothers, 124, 128–9
PUREGENE DNA Purification Kit, 110, 114
Q-band, 111
QPCR see quantitative polymerase chain reaction
QRT-PCR see real-time quantitative PCR
quantitative polymerase chain reaction (qPCR), 378, 382–3, 386
RA see all trans-retinoic acid
Rag-2-hu model, 284
real-time polymerase chain reaction (RT-PCR)
 cardiomyocytes, 217
 endothelial cells, 244
 forebrain neurons, 333–4
 gene reporters, 387
 pancreatic cells, 196, 201, 202–4
 phenotypic analysis, 96–8, 99
real-time quantitative PCR (QRT-PCR), 371
recombination template vectors, 380–1
recombineered BACs, 377–87
rehydration of cryopreserved embryos, 28
retinoic acid see all trans-retinoic acid
reverse-transcription polymerase chain reaction (RT-PCR), 110, 114–15, 117, 118–19
Reynold’s lead acetate, 162, 165
RNA interference, 367–75
 FACS sorting, 369–71
 homologous recombination, 367
 knockdown validation, 369, 371, 372–3
 materials, reagents and equipment, 368
 polymerase chain reaction, 371
 protocols, 368–72
 troubleshooting, 372–3
 web resources, 375
rosette structures
 dopaminergic neurons, 343, 345–6
 neuroepithelial cells, 351–2, 355
rotator flasks, 150
RT-PCR see real-time polymerase chain reaction; reverse-transcription polymerase chain reaction
S17 cells, 274, 281–2, 291–2, 295
SAMS see self-assembly monolayers
scanning electron microscopy (SEM)
 embryo bodies, 153
 osteogenic cells, 253–4, 260–2, 263, 268
SCF, 309
SCID see severe combined immunodeficient
 secreted protein acidic and rich in cysteine (SPARC), 265
 self-assembly monolayers (SAMS), 151
 sense oligonucleotides, 370–1
severe combined immunodeficient (SCID) mice
 hematopoietic cells, 277–9, 284
 in vivo characterization, 124, 142–4, 146
SFCM see stromal feeder cell medium
SHH see sonic hedgehog
short hairpin RNAs (shRNAs), 368–70
single nucleotide polymorphisms (SNPs), 114, 116–17, 118
small interfering RNAs (siRNAs), 368–70
smooth muscle cells (SMCs), 245
sodium cacodylate, 261
sonic hedgehog (SHH) inhibitors, 205
 spinal motor neurons, 349, 353–4, 355
sourcing cell lines, 11–24
 authenticity, 18–20
 bacterial contamination, 17
cross-contamination, 11, 12, 18–19
 fungal contamination, 17
 mycoplasma, 17–18
 passage numbers, 20–1
 protocol, 21–2
 selection criteria, 16–21
 stability, 20–1
 stem cell banks, 12–16
 viral contamination, 18
southern blotting, 322–3
Sox17 cells
 endoderm cells, 180, 184, 185
 pancreatic cells, 196, 197, 203–4
SPARC see secreted protein acidic and rich in cysteine
spinal motor neurons
 antibodies, 351
differentiation, 349–55
embryoid bodies, 354
FACS sorting, 355
materials, reagents and equipment, 350–1
neuroepithelial cells, 351–2, 355
progenitor cells, 351, 352–4, 355
protocols, 351–4
rosette formation, 351–2, 355
troubleshooting, 354–5
spinner embryoid bodies (EBs), 150, 159–60
spontaneous differentiation see differentiation; embryoid bodies
standard culture, 53–79
adapting to chemically defined media, 85–6
cell scraping, 64–5, 78
closed straw programmable control rate freezing, 73–5, 76
enzymatic passaging, 65–6
extended protocols, 54, 66–76
feeder-free cultures, 70–1
fibroblast feeder cells, 53, 54–5, 56–70, 71–8
freeze/thaw protocols, 57–60, 66–70, 73–6
gamma irradiation, 60–1
growth rates, 76–7
human ES cells, 53, 55, 61–8, 70–7
human fibroblasts, 54, 57–8, 66–7
materials, reagents and equipment, 54–6
microdissection, 63–4, 78
mitomycin-C, 54, 57–8
mouse embryonic fibroblasts, 54, 57–8, 66, 76–7
open straw vitrification, 71–3, 75–6
routine protocols, 54, 56–66
specialized equipment, 56
subculturing, 58–9, 62–3
troubleshooting, 76–8
stem cell banks, 12–16
stromal feeder cell medium (SFCM), 341–2
Subcloning/Passaging/Splitting/
Disaggregation — all mean same thing, see passaging
subculturing fibroblast feeder cells, 58–9, 62–3
superovulation, 124–5
surface markers see cell surface markers
suspension culture method, 158–9
taurine, 26
TEM see transmission electron microscopy
template vectors, 380–1
Teratoma injections, 142–144
Subcutaneous, 143–144
Intraperitoneal, 143–144
Intramuscular, 143–144
Kidney capsule, 144
teratomas, 123–4, 126, 142–3, 146
tetracycline, 253, 258–9, 263, 267
TGFβ see transforming growth factor
TH+ see tyrosine hydroxylase positive
thawing chemically defined media, 88, 90
thawing cryopreserved embryos, 25–34
blastocysts, 26–9, 31–3
cleavage stage embryos, 26–7, 28–9, 33 contamination, 30
development, 31, 32–3
embryo grading, 29–30
materials, reagents and equipment, 25–6
post-thaw culture, 29
pre-thaw preparation, 27
procedure, 27–8
rehydration, 28
survival rates, 30–2
troubleshooting, 30–3
thawing fibroblast feeder cells, 57, 60, 75–6
TIL see tumor-infiltrating lymphocytes
tissue banks, 13
tissue culture incubators, 5
toluidine blue, 161
transfer protocols, 139, 140–2
transforming growth factor (TGFβ), 82
transmission electron microscopy (TEM)
developing and printing, 155–6
examination technique, 154–5, 166
fixation, 153, 160–1, 162–3
in vitro differentiation, 151–6, 160–6
processing and embedding, 154, 161, 163
sectioning, 154, 161–2, 164–5
staining, 154, 161–2, 165
trisomies, 107, 111, 113
trophectoderm
bubbling, 45, 46, 49
cells, 169–71, 173–4
differentiation, 97
trypsinization
cardiomyocytes, 218–21, 226
derivation of cell lines, 48–9
embryoid bodies, 149, 159–60
trypsinization (continued)
 endothelial cells, 238–9
 forebrain neurons, 331–2, 335
 hematopoietic cells, 277
 Tuj-1, 329, 331, 334
tumor-infiltrating lymphocytes (TIL), 288–9
tyrosine hydroxylase positive (TH+)
 neurons, 346
UK Stem Cell Bank, 12, 16
ultraviolet (UV) denaturation, 3
uranyl acetate, 161, 165
UV see ultraviolet
vacuum systems, 4–5
vascular endothelial growth factor (VEGF)
 endothelial cells, 230–1, 232–3, 240
 myeloid cells, 318
VE-cadherin
 endothelial cells, 230–1, 240
myeloid cells, 312, 313
VEGF see vascular endothelial growth factor
vertical colony expansion, 77–8
viral contamination, 18
volatile organic compounds (VOCs), 33
von Kossa staining, 253, 257–8, 263, 267, 268–9
von Willebrand factor (vWF), 231, 239–40
Western blotting
 cardiomyocytes, 222
 gene reporters, 387
WiCell, 12
Wnt3a, 82
working cell banks, 13, 20–1
zona pellucida, removal from human embryos, 43, 138–9
 removal from murine embryos, 138