Contents

Preface to the First Edition XV
Preface to the Second Edition XVII
Acknowledgments XIX
Prologue XXI

1 Introduction 1
1.1 What Is Luminescence? 1
1.2 A Brief History of Fluorescence and Phosphorescence 2
 1.2.1 Early Observations 3
 1.2.2 On the Distinction between Fluorescence and Phosphorescence: Decay Time Measurements 10
 1.2.3 The Perrin–Jablonski Diagram 12
 1.2.4 Fluorescence Polarization 14
 1.2.5 Resonance Energy Transfer 16
 1.2.6 Early Applications of Fluorescence 17
1.3 Photoluminescence of Organic and Inorganic Species: Fluorescence or Phosphorescence? 19
1.4 Various De-Excitation Processes of Excited Molecules 20
1.5 Fluorescent Probes, Indicators, Labels, and Tracers 21

General Bibliography: Monographs and Books 25

Part I Principles 31

2 Absorption of Ultraviolet, Visible, and Near-Infrared Radiation 33
 2.1 Electronic Transitions 33
 2.2 Transition Probabilities: The Beer–Lambert Law, Oscillator Strength 39
 2.3 Selection Rules 46
 2.4 The Franck–Condon Principle 47
Contents

2.5 Multiphoton Absorption and Harmonic Generation 49

Bibliography 51

3 Characteristics of Fluorescence Emission 53
3.1 Radiative and Nonradiative Transitions between Electronic States 53
 3.1.1 Internal Conversion 56
 3.1.2 Fluorescence 56
 3.1.3 Intersystem Crossing and Subsequent Processes 57
 3.1.3.1 Intersystem Crossing 58
 3.1.3.2 Phosphorescence versus Nonradiative De-Excitation 60
 3.1.3.3 Delayed Fluorescence 60
 3.1.3.4 Triplet–Triplet Transitions 61
 3.2 Lifetimes and Quantum Yields 61
 3.2.1 Excited-State Lifetimes 61
 3.2.2 Quantum Yields 64
 3.2.3 Effect of Temperature 66
 3.3 Emission and Excitation Spectra 67
 3.3.1 Steady-State Fluorescence Intensity 67
 3.3.2 Emission Spectra 68
 3.3.3 Excitation Spectra 71
 3.3.4 Stokes Shift 72

Bibliography 74

4 Structural Effects on Fluorescence Emission 75
4.1 Effects of the Molecular Structure of Organic Molecules on Their Fluorescence 75
 4.1.1 Extent of the π-Electron System: Nature of the Lowest-Lying Transition 75
 4.1.2 Substituted Aromatic Hydrocarbons 77
 4.1.2.1 Internal Heavy Atom Effect 77
 4.1.2.2 Electron-Donating Substituents: –OH, –OR, –NH₂, –NHR, –NR₂ 78
 4.1.2.3 Electron-Withdrawing Substituents: Carbonyl and Nitro Compounds 78
 4.1.2.4 Sulphonates 79
 4.1.3 Heterocyclic Compounds 80
 4.1.3.1 Compounds with Heteronitrogen Atoms 80
 4.1.3.2 Coumarins 81
 4.1.3.3 Xanthenic Dyes 82
 4.1.3.4 Oxazines 84
 4.1.3.5 Cyanines 85
 4.1.3.6 BODIPY Fluorophores 86
 4.1.4 Compounds Undergoing Photoinduced ICT and Internal Rotation 87
4.2 Fluorescence of Conjugated Polymers (CPs) 92
4.3 Luminescence of Carbon Nanostructures: Fullerenes, Nanotubes, and Carbon Dots 93
4.4 Luminescence of Metal Compounds, Metal Complexes, and Metal Clusters 96
4.5 Luminescence of Semiconductor Nanocrystals (Quantum Dots and Quantum Rods) 103

Bibliography 105

5 Environmental Effects on Fluorescence Emission 109
5.1 Homogeneous and Inhomogeneous Band Broadening—Red-Edge Effects 109
5.2 General Considerations on Solvent Effects 110
5.3 Solvent Relaxation Subsequent to Photoinduced Charge Transfer (PCT) 112
5.4 Theory of Solvatochromic Shifts 117
5.5 Effects of Specific Interactions 119
 5.5.1 Effects of Hydrogen Bonding on Absorption and Fluorescence Spectra 119
 5.5.2 Examples of Effects of Specific Interactions 120
 5.5.3 Polarity-Induced Inversion of n–π* and π–π* States 123
5.6 Empirical Scales of Solvent Polarity 124
 5.6.1 Scales Based on Solvatochromic Shifts 124
 5.6.1.1 Single-Parameter Approach 124
 5.6.1.2 Multiparameter Approach 126
 5.6.2 Scale Based on Polarity-Induced Changes in Vibronic Bands (Py Scale) 129
5.7 Viscosity Effects 129
 5.7.1 What is Viscosity? Significance at a Microscopic Level 129
 5.7.2 Viscosity Effect on the Fluorescence of Molecules Undergoing Internal Rotations 132
5.8 Fluorescence in Solid Matrices at Low Temperature 135
 5.8.1 Shpol’skii Spectroscopy 136
 5.8.2 Matrix Isolation Spectroscopy 137
 5.8.3 Site-Selection Spectroscopy 137
5.9 Fluorescence in Gas Phase: Supersonic Jets 137

Bibliography 138

6 Effects of Intermolecular Photophysical Processes on Fluorescence Emission 141
6.1 Introduction 141
6.2 Overview of the Intermolecular De-Excitation Processes of Excited Molecules Leading to Fluorescence Quenching 143
 6.2.1 Phenomenological Approach 143
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2 Dynamic Quenching</td>
<td>146</td>
</tr>
<tr>
<td>6.2.2.1 Stern–Volmer Kinetics</td>
<td>146</td>
</tr>
<tr>
<td>6.2.2.2 Transient Effects</td>
<td>148</td>
</tr>
<tr>
<td>6.2.3 Static Quenching</td>
<td>152</td>
</tr>
<tr>
<td>6.2.3.1 Sphere of Effective Quenching</td>
<td>152</td>
</tr>
<tr>
<td>6.2.3.2 Formation of a Ground-State Nonfluorescent Complex</td>
<td>153</td>
</tr>
<tr>
<td>6.2.4 Simultaneous Dynamic and Static Quenching</td>
<td>154</td>
</tr>
<tr>
<td>6.2.5 Quenching of Heterogeneously Emitting Systems</td>
<td>158</td>
</tr>
<tr>
<td>6.3 Photoinduced Electron Transfer</td>
<td>159</td>
</tr>
<tr>
<td>6.4 Formation of Excimers and Exciplexes</td>
<td>162</td>
</tr>
<tr>
<td>6.4.1 Excimers</td>
<td>163</td>
</tr>
<tr>
<td>6.4.2 Exciplexes</td>
<td>167</td>
</tr>
<tr>
<td>6.5 Photoinduced Proton Transfer</td>
<td>168</td>
</tr>
<tr>
<td>6.5.1 General Equations for Deprotonation in the Excited State</td>
<td>170</td>
</tr>
<tr>
<td>6.5.2 Determination of the Excited-State pK*</td>
<td>172</td>
</tr>
<tr>
<td>6.5.2.1 Prediction by Means of the Förster Cycle</td>
<td>172</td>
</tr>
<tr>
<td>6.5.2.2 Steady-State Measurements</td>
<td>173</td>
</tr>
<tr>
<td>6.5.2.3 Time-Resolved Experiments</td>
<td>174</td>
</tr>
<tr>
<td>6.5.3 pH Dependence of Absorption and Emission Spectra</td>
<td>174</td>
</tr>
<tr>
<td>6.5.4 Equations for Bases Undergoing Protonation in the Excited State</td>
<td>178</td>
</tr>
<tr>
<td>Bibliography</td>
<td>179</td>
</tr>
</tbody>
</table>

7 Fluorescence Polarization: Emission Anisotropy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Polarized Light and Photoselection of Absorbing Molecules</td>
<td>181</td>
</tr>
<tr>
<td>7.2 Characterization of the Polarization State of Fluorescence (Polarization Ratio and Emission Anisotropy)</td>
<td>184</td>
</tr>
<tr>
<td>7.2.1 Excitation by Polarized Light</td>
<td>184</td>
</tr>
<tr>
<td>7.2.1.1 Vertically Polarized Excitation</td>
<td>184</td>
</tr>
<tr>
<td>7.2.1.2 Horizontally Polarized Excitation</td>
<td>186</td>
</tr>
<tr>
<td>7.2.2 Excitation by Natural Light</td>
<td>187</td>
</tr>
<tr>
<td>7.3 Instantaneous and Steady-State Anisotropy</td>
<td>187</td>
</tr>
<tr>
<td>7.3.1 Instantaneous Anisotropy</td>
<td>187</td>
</tr>
<tr>
<td>7.3.2 Steady-State Anisotropy</td>
<td>188</td>
</tr>
<tr>
<td>7.4 Additivity Law of Anisotropy</td>
<td>188</td>
</tr>
<tr>
<td>7.5 Relation between Emission Anisotropy and Angular Distribution of the Emission Transition Moments</td>
<td>190</td>
</tr>
<tr>
<td>7.6 Case of Motionless Molecules with Random Orientation</td>
<td>191</td>
</tr>
<tr>
<td>7.6.1 Parallel Absorption and Emission Transition Moments</td>
<td>191</td>
</tr>
<tr>
<td>7.6.2 Nonparallel Absorption and Emission Transition Moments</td>
<td>192</td>
</tr>
<tr>
<td>7.6.3 Multiphoton Excitation</td>
<td>196</td>
</tr>
<tr>
<td>7.7 Effect of Rotational Motion</td>
<td>199</td>
</tr>
<tr>
<td>7.7.1 Free Rotations</td>
<td>200</td>
</tr>
<tr>
<td>7.7.1.1 General Equations</td>
<td>200</td>
</tr>
</tbody>
</table>
8 **Excitation Energy Transfer** 213
8.1 Introduction 213
8.2 Distinction between Radiative and Nonradiative Transfer 218
8.3 Radiative Energy Transfer 219
8.4 Nonradiative Energy Transfer 221
 8.4.1 Interactions Involved in Nonradiative Energy Transfer 221
 8.4.2 The Three Main Classes of Coupling 224
 8.4.3 Förster’s Formulation of Long-Range Dipole–Dipole Transfer (Very Weak Coupling) 226
 8.4.4 Dexter’s Formulation of Exchange Energy Transfer (Very Weak Coupling) 233
 8.4.5 Selection Rules 233
8.5 Determination of Distances at a Supramolecular Level Using FRET 235
 8.5.1 Single Distance between the Donor and the Acceptor 235
 8.5.2 Distributions of Distances in Donor–Acceptor Pairs 239
 8.5.3 Single Molecule Studies 242
 8.5.4 On the Validity of Förster’s Theory for the Estimation of Distances 242
8.6 FRET in Ensembles of Donors and Acceptors 243
 8.6.1 FRET in Three Dimensions: Effect of Viscosity 243
 8.6.2 Effects of Dimensionality on FRET 247
 8.6.3 Effects of Restricted Geometries on FRET 250
8.7 FRET between Like Molecules: Excitation Energy Migration in Assemblies of Chromophores 250
 8.7.1 FRET within a Pair of Like Chromophores 251
 8.7.2 FRET in Assemblies of Like Chromophores 251
 8.7.3 Lack of Energy Transfer upon Excitation at the Red Edge of the Absorption Spectrum (Weber’s Red-Edge Effect) 252
8.8 Overview of Qualitative and Quantitative Applications of FRET 252
Bibliography 258

Part II Techniques 263

9 **Steady-State Spectrofluorometry** 265
9.1 Operating Principles of a Spectrofluorometer 265
9.2 Correction of Excitation Spectra 268
9.3 Correction of Emission Spectra 268
9.4 Measurement of Fluorescence Quantum Yields 269
9.5 Possible Artifacts in Spectrofluorometry 271
 9.5.1 Inner Filter Effects 271
 9.5.1.1 Excitation Inner Filter Effect 271
 9.5.1.2 Emission Inner Filter Effect (Self-Absorption) 272
 9.5.1.3 Inner Filter Effects due to the Presence of Other Substances 274
 9.5.2 Autofluorescence 274
 9.5.3 Polarization Effects 275
 9.5.4 Effect of Oxygen 275
 9.5.5 Photobleaching Effect 276
9.6 Measurement of Steady-State Emission Anisotropy:
 Polarization Spectra 277
 9.6.1 Principles of Measurement 277
 9.6.2 Possible Artifacts 279
 9.6.3 Tests Prior to Fluorescence Polarization Measurements 279
Appendix 9.A Elimination of Polarization Effects in the Measurement of Fluorescence Intensity 281
Bibliography 283

10 Time-Resolved Fluorescence Techniques 285
10.1 Basic Equations of Pulse and Phase-Modulation Fluorimetry 286
 10.1.1 Pulse Fluorimetry 286
 10.1.2 Phase-Modulation Fluorimetry 286
 10.1.3 Relationship between Harmonic Response and δ-Pulse Response 287
 10.1.4 General Relations for Single Exponential and MultiExponential Decays 290
10.2 Pulse Fluorimetry 292
 10.2.1 Light Sources 292
 10.2.2 Single-Photon Timing Technique (10 ps–500 μs) 292
 10.2.3 Streak Camera (1 ps–10 ns) 294
 10.2.4 Fluorescence Upconversion (0.1–500 ps) 295
 10.2.5 Optical Kerr-Gating (0.1–500 ps) 297
10.3 Phase-Modulation Fluorimetry 298
 10.3.1 Introduction 298
 10.3.2 Phase Fluorimeters Using a Continuous Light Source and an Electro-Optic Modulator 300
 10.3.3 Phase Fluorimeters Using the Harmonic Content of a Pulsed Laser 302
10.4 Artifacts in Time-Resolved Fluorimetry 302
 10.4.1 Inner Filter Effects 302
 10.4.2 Dependence of the Instrument Response on Wavelength–Color Effect 304
10.4.3 Polarization Effects 304
10.4.4 Effects of Light Scattering 304

10.5 Data Analysis 305
10.5.1 Pulse Fluorimetry 305
10.5.2 Phase-Modulation Fluorimetry 306
10.5.3 Judging the Quality of the Fit 306
10.5.4 Global Analysis 307
10.5.5 Fluorescence Decays with Underlying Distributions of Decay Times 308

10.6 Lifetime Standards 312

10.7 Time-Resolved Polarization Measurements 314
10.7.1 General Equations for Time-Dependent Anisotropy and Polarized Components 314
10.7.2 Pulse Fluorimetry 315
10.7.3 Phase-Modulation Fluorimetry 317
10.7.4 Reference Compounds for Time-Resolved Fluorescence Anisotropy Measurements 318

10.8 Time-Resolved Fluorescence Spectra 318

10.9 Lifetime-Based Decomposition of Spectra 318

10.10 Comparison between Single-Photon Timing Fluorimetry and Phase-Modulation Fluorimetry 322

Bibliography 323

11 Fluorescence Microscopy 327
11.1 Wide-Field (Conventional), Confocal, and Two-Photon Fluorescence Microscopies 328
11.1.1 Wide-Field (Conventional) Fluorescence Microscopy 328
11.1.2 Confocal Fluorescence Microscopy 329
11.1.3 Two-Photon Excitation Fluorescence Microscopy 331
11.1.4 Fluorescence Polarization Measurements in Microscopy 333

11.2 Super-Resolution (Subdiffraction) Techniques 333
11.2.1 Scanning Near-Field Optical Microscopy (SNOM) 333
11.2.2 Far-Field Techniques 337

11.3 Fluorescence Lifetime Imaging Microscopy (FLIM) 340
11.3.1 Time-Domain FLIM 341
11.3.2 Frequency-Domain FLIM 342

11.4 Applications 342

Bibliography 346

12 Fluorescence Correlation Spectroscopy and Single-Molecule Fluorescence Spectroscopy 349
12.1 Fluorescence Correlation Spectroscopy (FCS) 349
12.1.1 Conceptual Basis and Instrumentation 350
12.1.2 Determination of Translational Diffusion Coefficients 355
12.1.3 Chemical Kinetic Studies 356
12.1.4 Determination of Rotational Diffusion Coefficients 359
12.1.5 Cross-Correlation Methods 360
12.2 Single-Molecule Fluorescence Spectroscopy 360
12.2.1 General Remarks 360
12.2.2 Single-Molecule Detection in Flowing Solutions 361
12.2.3 Single-Molecule Detection Using Fluorescence Microscopy Techniques 363
12.2.4 Single-Molecule and Single-Particle Photophysics 367
12.2.5 Applications and Usefulness of Single-Molecule Fluorescence 371

Bibliography 372

Part III Applications 377

13 Evaluation of Local Physical Parameters by Means of Fluorescent Probes 379
13.1 Fluorescent Probes for Polarity 379
13.1.1 Examples of Photoinduced Charge Transfer (PCT) Probes for Polarity 380
13.1.2 Pyrene and Its Derivatives 384
13.2 Estimation of “Microviscosity,” Fluidity, and Molecular Mobility 384
13.2.1 Various Methods 385
13.2.2 Use of Molecular Rotors 386
13.2.3 Methods Based on Intermolecular Quenching or Intermolecular Excimer Formation 389
13.2.4 Methods Based on Intramolecular Excimer Formation 390
13.2.5 Fluorescence Polarization Method 393
13.2.5.1 Choice of Probes 393
13.2.5.2 Homogeneous Isotropic Media 393
13.2.5.3 Ordered Systems 395
13.2.5.4 Practical Aspects 395
13.2.6 Concluding Remarks 397
13.3 Temperature 398
13.4 Pressure 402

Bibliography 404

14 Chemical Sensing via Fluorescence 409
14.1 Introduction 409
14.2 Various Approaches of Fluorescence Sensing 410
14.3 Fluorescent pH Indicators 412
14.3.1 Principles 412
14.3.2 The Main Fluorescent pH Indicators 417
14.3.2.1 Coumarins 417
14.3.2.2 Pyranine 417
14.3.2.3 Fluorescein and Its Derivatives 419
14.3.2.4 SNARF and SNAFL 419
14.3.2.5 pH Indicators Based on Photoinduced Electron Transfer (PET) 420

14.4 Design Principles of Fluorescent Molecular Sensors Based on Ion or Molecule Recognition 420
14.4.1 General Aspects 420
14.4.2 Recognition Units and Topology 422
14.4.3 Photophysical Signal Transduction 424
14.4.3.1 Photoinduced Electron Transfer (PET) 424
14.4.3.2 Photoinduced Charge Transfer (PCT) 425
14.4.3.3 Excimer Formation or Disappearance 427
14.4.3.4 Förster Resonance Energy Transfer (FRET) 427

14.5 Fluorescent Molecular Sensors of Metal Ions 427
14.5.1 General Aspects 427
14.5.2 Fluorescent PET Cation Sensors 430
14.5.3 Fluorescent PCT Cation Sensors 430
14.5.4 Excimer-Based Cation Sensors 430
14.5.5 Cation Sensors Based on FRET 430
14.5.6 Hydroxyquinoline-Based Cation Sensors 432
14.5.7 Concluding Remarks on Cation Sensors 435

14.6 Fluorescent Molecular Sensors of Anions 436
14.6.1 Anion Sensors Based on Collisional Quenching 437
14.6.2 Anion Sensors Based on Fluorescence Changes upon Anion Binding 437
14.6.2.1 Urea and Thiourea Groups 438
14.6.2.2 Pyrrole Groups 439
14.6.2.3 Polyazaalkanes 440
14.6.2.4 Imidazolium Groups 443
14.6.2.5 Anion Binding by Metal Ion Complexes 443
14.6.3 Anion Sensors Based on the Displacement of a Competitive Fluorescent Anionic Molecule 444

14.7 Fluorescent Molecular Sensors of Neutral Molecules 445
14.7.1 Cyclodextrin-Based Fluorescent Sensors 446
14.7.2 Boronic Acid-Based Fluorescent Sensors 449
14.7.3 Porphyrin-Based Fluorescent Sensors 452

14.8 Fluorescence Sensing of Gases 453
14.8.1 Oxygen 453
14.8.2 Carbon Dioxide 456
14.8.3 Nitric Oxide 456
14.8.4 Explosives 456

14.9 Sensing Devices 458
14.10 Remote Sensing by Fluorescence LIDAR 460
14.10.1 Vegetation Monitoring 461
14.10.2 Marine Monitoring 462
14.10.3 Historic Monuments 462
Appendix 14.A. Spectrophotometric and Spectrofluorometric pH Titrations 462
Single-Wavelength Measurements 462
Dual-Wavelength Measurements 463
Appendix 14.B. Determination of the Stoichiometry and Stability Constant of Metal Complexes from Spectrophotometric or Spectrofluorometric Titrations 465
Definition of the Equilibrium Constants 465
Preliminary Remarks on Titrations by Spectrophotometry and Spectrofluorometry 467
Formation of a 1:1 Complex (Single-Wavelength Measurements) 467
Formation of a 1:1 Complex (Dual-Wavelength Measurements) 469
Formation of Successive Complexes ML and M₂L 470
Cooperativity 471
Determination of the Stoichiometry of a Complex by the Method of Continuous Variations (Job's Method) 471
Bibliography 473

15 Autofluorescence and Fluorescence Labeling in Biology and Medicine 479
15.1 Introduction 479
15.2 Natural (Intrinsic) Chromophores and Fluorophores 480
 15.2.1 Amino Acids and Derivatives 481
 15.2.2 Coenzymes 488
 15.2.3 Chlorophylls 490
15.3 Fluorescent Proteins (FPs) 491
15.4 Fluorescent Small Molecules 493
15.5 Quantum Dots and Other Luminescent Nanoparticles 497
15.6 Conclusion 501
Bibliography 502

16 Miscellaneous Applications 507
16.1 Fluorescent Whitening Agents 507
16.2 Fluorescent Nondestructive Testing 508
16.3 Food Science 511
16.4 Forensics 513
16.5 Counterfeit Detection 514
16.6 Fluorescence in Art 515
Bibliography 518

Appendix: Characteristics of Fluorescent Organic Compounds 521
Epilogue 551
Index 553