Index

Page numbers followed by f refer to figures

Absolute valuation, 11–12
Analytical approximation:
of jump-diffusion, 410–416
of smile for geometric Brownian motion
 stochastic volatility with zero
 correlation, 363–368
of transaction costs, 123–124
Anderson, Leif, 409
Andreasen, Jesper, 409
Apple Inc., 20
Approximate static hedge, 42–44
Arbitrage opportunity, 14
Arbitrage pricing theory, 33–34
Arithmetic Brownian motion, method of
 images for, 208–209
Arrow-Debreu securities, 176, 332–334. See
 also State-contingent securities
Asian financial crisis of 1997, 150
Asian options, 297
Assumptions, of Black-Scholes-Merton
 model, 85
At-the-money (ATM) options:
 deltas of, 141–142
 hedging error in, 111–114
 Monte Carlo simulations of, 106–110
Avoidable investment risks, 25–26
Axiomatic approach, to financial
 engineering, 6, 8
Barrier options:
 approximate static hedge for, 42–44
 in local volatility models, 292–296
 replicating portfolio for, 220–221
 weak static replication of, 206–219
Barrier option parity, 223–224
Best stock-only hedge, 379–381
Binomial derivation, of Dupire's equation,
 270–275
Binomial diffusion-only model, 388f
Binomial jump model, 389f, 390
Binomial local volatility models, 250–257
Binomial model, 227–246
 of barrier options, 295n.1
 of call option value, 46
 convexity in, 49–50
 Dupire's equation derived from, 270–275
 extending Black-Scholes-Merton model
 with, 237–246
 for option valuation, 232–237
 stochastic stock price and volatility in,
 333–334
 for stock evolution, 227–232
Binomial Poisson process, 391
Binomial trees:
 with Cox-Ross-Rubinstein convention,
 242–243
 difficulties with, 262–263
 for future returns of stocks, 21–22
 for lookback options, 299–300
 of riskless security, 23–24
Bjerg, Ole, 21n.2
Black, Fischer, 16
Black-Scholes-Merton (BSM) equation,
 85–89
Black-Scholes-Merton (BSM) formula, and
 implied distributions, 175
Black-Scholes-Merton (BSM) model, 2–3
 derivatives of, 419–420
 in dynamic replication, 46, 47, 203
 extending, with binomial model, 237–246
 extension of, with stochastic volatility
 models, 320, 325, 344–350
 and hedged options, 94
 hedge ratios under, 379
 implied volatility in, 80
 impracticality of, 204
Black-Scholes-Merton (BSM) model
(Continued)
as inconsistent with volatility smiles,
163
local volatility as extension of, 303–304
stochastic volatility models in, 321–325
transaction costs in, 117, 125, 127
Black-Scholes-Merton (BSM) partial
differential equation, 304
and binomial model, 235–237
in stochastic volatility models, 349
Black-Scholes-Merton (BSM) risk-neutral
probability density, 197–200
Black-Scholes partial differential equation
(PDE), 208
Bonds:
long zero coupon, 39f
riskless, see Riskless bonds
short-term government, 154n.1
Bounds:
no-arbitrage, See No-arbitrage bounds
on profit and loss when hedging at realized
volatility, 99–100
Boundary payoffs, in weak static replication,
205
Breeden-Litzenberger formula:
and Dupire’s equation, 265
in implied distribution, 180–183, 184f,
185–186
BSM, see Black-Scholes-Merton
Butterfly spread:
in Breeden-Litzenberger formula, 181–182
in derivation of Dupire’s equation,
273–275
payoff and value of, 156–157
Calendar spread:
in derivation of Dupire’s equation,
271–273
and Dupire’s equation, 267–268
Calibration:
for jumps, 387–391
of local volatility models, 165
of quadrinomial tree, 350
and trinomial jump-diffusion, 398–401
Call option payoff functions, 33
Call option value, 46
Call price, 45–46
Call spread, 155–156
Capital asset pricing model (CAPM), 32
CBOE (Chicago Board Options Exchange),
82
CEV (constant elasticity of variance) model,
166–167
Chain rule:
hedge ratio from, 169
in stochastic volatility models, 342
Chicago Board Options Exchange (CBOE),
82
Collars, 38–40
Compensated process, 400–401
Compensation, for jumps, 387–391
Constant elasticity of variance (CEV) model,
166–167
Convexity:
and dynamic replication, 49–50
as function of volatility, 322
gains from, 52
payout with positive, 48f
as quality of options, 45–46
Correlated stocks, 31–34
Costs, types of, 117. See also Transaction
costs
Cox, John, 166
Cox-Ross-Rubinstein (CRR) convention:
in binomial local volatility models,
252–253
in binomial models, 229–231
local vs. implied volatility in, 258–259
and time-dependent deterministic
volatility, 242–243
Credit default swaps, 64
Crepéy, Stéphane, 307, 308, 317
Currency crisis of 1998, 2
Delta (Δ):
and convexity, 49–50
defined, 46
Heaviside and Dirac delta functions,
190–191
of hedge ratios, 291
implied volatility as function of,
137–138
of lookback calls, 297, 300–301
sticky delta rule, 311–315
and strike, 141–143
and volatility smile, 140–143
Delta-hedged portfolios:
as bet on variance, 64
defined, 47
Index

hedging error in, 110–111
profit and loss with, 101
Demeterfi, Kresimir, 80
Derivatives:
as non-independent securities, 35
relative valuation for, 12
Derman, Emanuel, 268
Diffusion, jumps plus, 395–398
Diffusion speed, in implied volatility, 285
Digital European call options, 171–173
Dilution, as risk management strategy, 27
Dirac, Paul, 6
Dirac delta functions:
in static replication, 190–191
in stochastic volatility models, 328
Discrete hedging, 105–116
and accurate replication, 115–116
example of, 114–115
hedging error in, 110–114
Monte Carlo simulation for, 105–110
Discrete random variables, 252n.2
Diversification:
for jump risk, 397
limitations of, 32
as risk management strategy, 31
Dividends, random, 396
Dividend yield:
stock with continuous known, 240–242
zero, in Black-Scholes-Merton model, 237–238
Dominant index paths, 299–300
Down-and-out barrier options, 293f
with nonzero riskless rate, 211–212
static hedge for, 212–214
with zero riskless rate and zero dividend
yield, 207–211
Drift:
in jump-diffusion models, 398–399
in jump modeling, 389
in stochastic volatility models, 349–350, 364–365
Dupire's equation, 265–277
binomial derivation of, 270–275
formal proof of, 275–277
for local volatility models, 265–270
Dynamic hedging, 64, 204
Dynamic replication, 44–52, 53f
and convexity, 49–50
defined, 16
for hedging options, 52, 53f
implied vs. realized volatility in, 50–51
notation for implied variables, 51–52
simplified explanation of, 44–49
Efficient market hypothesis (EMH), 17–18
Einstein, Albert, 417
Enterprise value, 165–166
Equities:
and enterprise value, 165–166
volatility smile in individual, 148–149
Equity indexes:
emergence of smile in, 4–5
jumps in, 383
local volatility model for, 307–308
volatility smile in, 144–148, 375
Error(s):
in discrete hedging, 110–114
in replication, 81–82, 219
Euclid, 6
Euler's equation, 355
European down-and-out call, 42–44
European options:
Merton inequalities for, 154–158
sticky delta rule for, 313
value of, 37–38
volatility sensitivity of, 57–58
European up-and-in puts with barrier equal
to strike, 206–207
Exact static replication, 37–42
Exotic options:
in local volatility models, 292–301
replicating, 187–190
replicating, with vanilla options, 192–194,
195f–196f, 197
valuing, with smile models, 171–173
Fama, Eugene, 18
Financial engineering, 7–8
challenges of, 417
mathematical finance vs., 5–6
role of, in financial crisis of 2007-2008,
1–2
Financial models, 1–12
Black-Scholes-Merton model, 2–3
and implied volatility smile, 3–5
inherent problems of, 417
purpose of, 8–12
in replication valuation, 15
and theory, 5–8
Financial theory, 5–8
Fisk-Stratonovich integral, 424, 427
Foreign exchange (FX) options:
 jumps in, 383
 volatility smile in, 149–150
 Formal proof, of Dupire’s equation, 275–277
 Forward approach, to stochastic integration, 425–426
 Forward integrals, 427–429
 Forward Itô integrals, 92–93
 Forward numerical integration, 423–424
 Forward rates, 260–261
 Frequentist probabilities, 19–20
 Future expectations, and current values, 51
 Future volatility:
 in Black-Scholes-Merton formula, 131
 hedged option strategies as bet on, 89
 FX options, see Foreign exchange (FX) options

Gains, from convexity, 52. See also Profit and loss (P&L)
Gamma (Γ), 46
Gatheral, Jim, 316
Generalized payoffs, 40–42
Geometric Brownian motion (GBM):
 assumed, in Black-Scholes-Merton model, 133
 for interest rates, 151
 method of images for, 209–211
 in stochastic volatility models, 331, 332, 342
 stochastic volatility with zero correlation, 362–368
 stock prices not following, 3
 in valuation of variance, 76
 valuing down-and-out barrier option under, with nonzero riskless rate, 211–212
 valuing down-and-out barrier option under, with zero riskless rate and zero dividend yield, 207–211
 Government bonds, 154n.1
Graphing, of volatility smile, 136–139
Hagan, Patrick S., 337
Harmonic average, 282–286
Heath-Jarrow-Morton model, 164
Heaviside functions, 190–191
Hedged option strategies, 85–103
 as bet on future volatility, 89
 and Black-Scholes-Merton equation, 85–89
 with implied volatility, 101–103
 profit and loss of, 89–90, 91, 92–93
 with realized volatility, 94–100
 Hedged portfolios:
 jump risk in, 397
 local volatility model for variance in, 306–308
 in stochastic volatility models, 334, 346
 with stock only, 379–381
 Hedge ratio(s):
 under Black-Scholes-Merton model, 379
 from chain rule, 169
 in local volatility models, 289–292, 379
 rehedging triggered by changes in, 122, 123f
 selection of, 151–152, 169–170
 in stochastic volatility models, 345, 379
Hedging. See also Discrete hedging
dynamic, 64, 204
 dynamic replication for, 52, 53f
 error in, 110–114
 frequency of, 99
 as risk management strategy, 31–34
 selection of volatility for, 203–204
 and transaction costs, 118
 of vanilla options, with smile models, 169–171
 Hedging volatility, 105–110
Heston, Steven, 331
Heston model, 331, 369n.1
High-volatility down markets, 308
Hillel, 13
Hoggard, T., 125, 126
Housing market bubbles, 2
Hull, John, 325, 351, 352, 363
Hull-White stochastic volatility model, 325
 Human behavior, 20–21, 417
 Hysteresis, 19
 Implied distribution, 175–183, 184f, 185–186
 Breeden-Litzenberger formula in, 180–183, 184f, 185–186
 and state-contingent securities, 175–180
 Implied variables, 51–52
 Implied variance, 279–280
Implied volatility:
 in Black-Scholes-Merton model, 80
 constraints on, 158–159
 and equity indexes, 146, 148
 and hedged options, 94
 hedged option strategies with, 101–103
 in jump-diffusion models, 414
 local vs., 257–262, 278–286
 realized vs., 50–51, 115–116
 in smile models, 164
 up-and-out barrier calls with no, 295–296
 and volatility smile, 131–133
Implied volatility function, 164–165
Implied volatility smile, 3–5
Incremental profit and loss, 95–96
Index options, and local volatility, 306–308
Indicator function, 190
Individual equities, and the smile, 148–149
Inequalities:
 Merton, for European option prices, 154–158
 for smile slope of no-arbitrage bounds, 158–160
Instantaneous variance, 364, 380
Instantaneous volatility, 364
Integration by parts, 427–429
Interest rates:
 modeling of, 164
 Vasiček interest rate model, 334
 volatility smile of, 151
Intuition, and financial models, 11
Irrational exuberance, 311
Itô integrals, backward, 92–93, 421–429
Itô’s lemma:
 changes in option values with, 347
 hedged options, 86
 instantaneous variance in, 364
 for profit and loss, 97–98
 in stochastic volatility models, 345
 variance swaps, 74
Jarrow-Rudd convention, 231–232, 271
JPMorgan Chase & Co., 7
JPY (Japanese yen), 149, 150f
Jump(s), 383–384
 accounting for, in jump-diffusion models, 168
 calibration and compensation for, 387–391
 plus diffusion, 395–398
 Poisson distribution of, 391–393
 as random dividends, 396
 skew arising from, 384–387
 and variance swaps, 81–82
 in volatility, due to market behavior, 326–327
Jump-diffusion models, 168, 383–416
 calibration and compensation for jumps, 387–391
 call valuation in, 401–404
 jumps, 383–384
 jumps plus diffusion, 395–398
 mixing formula in, 404–408
 Poisson distribution of jumps, 391–393
 pure jump risk-neutral option pricing, 393–394
 qualitative description of jump-diffusion smile, 408–410
 skew arising from jumps, 384–387
 with small probability of large single jump, 410–415
 trinomial jump-diffusion and calibration, 398–401
Jump-diffusion smile, 408–410, 414–415
 Kamal, Michael, 316
 Kani, Iraj, 268
 Keynes, John Maynard, 6, 20–21
 Krugman, Paul, 2
 Laws, theorems vs., 6
 Law of one price, 14–15
 and investment risk, 24–25
 and Sharpe ratio, 29
 Law of quantitative finance, 13–15
 Leland, Hayne E., 127
 Leverage, in portfolio management, 29
 Leverage effect, 165–166
 Limitations:
 of diversification, 32
 of replication, 16–17
 Linear average approximation, 261
 Lo, Andrew, 13
 Local variance, 279–280
 Local volatility:
 extension of, with stochastic volatility models, 320
 implied vs., 257–262, 278–286
 Local volatility function, 164–165
Local volatility models, 164–167, 249–308
 advantages of, 303–304
 barrier options in, 292–296
 binomial, 250–257
 binomial derivation of Dupire’s equation, 270–275
 binomial tree difficulties, 262–263
 disadvantages of, 304–306
 Dupire’s equation for, 265–270
 extension of, with stochastic volatility models, 337–344
 formal proof of Dupire’s equation, 275–277
 hedge ratios in, 289–292, 379
 index options in, 306–308
 local vs. implied volatility, 257–262, 278–286
 lookback call options in, 297–301
 modeling stock with variable volatility, 249–250
 and volatility change patterns, 314–315
Log contracts:
 in Black-Scholes-Merton world, 70–71
 and realized future variance, 71–82
 with vanilla options, 67–71
Log payoffs, 67–71
Long call, 39f
Long call, short stock, 39f
Long call, short stock, long zero coupon bond, 39f
Long expirations:
 jumps effects on, 384f, 385–386
 and mean-reverting volatility, 371
Lookback call options, 297–301
Loss, from time decay, 52. See also Profit and loss (P&L)
Markets, anomalies in, 7–8
Market behavior, 20–21, 417
Market-neutral stocks, 32–34
Mathematical finance, 5–6
Mean reversion, 325–330
Mean-reverting volatility, 369–375
Merton, Robert, 16, 168, 395
Merton inequalities, for European option prices, 154–158
Merton’s jump-diffusion model, 395–398, 414
Method of images:
 for arithmetic Brownian motion, 208–209
 for geometric Brownian motion, 209–211
Mexican peso (MXN), 150f
Mixing theorem:
 in jump-diffusion models, 404–408, 411
 and path variance, 364
 in stochastic volatility models, 352–354
Moneyness:
 and relative strike prices, 136–137
 sticky, 311–313, 315
 and zero correlation smile, 353–356
Monte Carlo simulation:
 for discrete hedging, 105–110
 of jump-diffusion model, 402, 403f
 of lookback options, 300
 for profit and loss estimation of hedged options, 92
 of rebalancing strategies, 121–122
 with rehedging trigger, 122, 123f
 for two-state stochastic path volatility, 363
 of zero-correlation mean-reverting models, 372, 373f
Multimodal probability density function, 409
MXN (Mexican peso), 150f
Negative yields, of short-term bonds, 154n.1
No-arbitrage bounds, 153–161
 inequalities for smile slope, 158–160
 Merton inequalities for European option prices, 154–158
Non-volatile up markets, 308
Nonzero correlation, 375–376, 377f–378f
Nonzero riskless rate:
 in Black-Scholes-Merton model, 238–240
 valuing down-and-out barrier option under geometric Brownian motion with, 211–212
 Normal distributions, 22, 23
 Notation, for implied variables, 51–52
 Notional variance, 61
 Notional vega, of volatility swaps, 61
OAS (option-adjusted spread), 10
Optimization, in rebalancing strategies, 122
Options. See also specific types
 binomial model for valuation of, 232–237
 convexity as quality of, 45–46
 digital European call, 171–173
 index, 306–308
lookback call, 297–301
volatility sensitivity of, 57–60
Option-adjusted spread (OAS), 10
Ornstein-Uhlenbeck processes, 325–328, 331
Out-of-the-money options:
deltas of, 141, 142
local and implied volatilities in, 262
payoffs of, 148
Parameter(s):
 implied volatility as, 50
 of volatility smile, 131–136
Partial differential equation (PDE), 395–398
Partial differential equation (PDE) model, 125–128
Path-dependent options:
dynamic hedging for, 204
 lookback options as, 297–301
Path variance, 364
Path volatility(-ies), 356–360
two-state stochastic, 360–362
volatility vs., 370
Payoffs:
of barrier options, 293–294
 in butterfly spread, 273–274
 in calendar spread, 271–273
 of a collar, 40
 of down-and-out barrier options, 212–213
generalized, 40–42
quadratic, 192–193
in quadrinomial trees, 350
 and value, of butterfly spread, 156–157
 of vanilla call option, 45
 of variance swaps, 63
 of volatility swaps, 63
PDE (partial differential equation), 395–398
PDE (partial differential equation) model, 125–128
PDF (probability density function), 179, 194
P/E (price-earnings) ratio, 10
P&L, see Profit and loss (P&L)
Poisson distribution of jumps, 391–393
Portfolios:
delta-hedged, 47
 hedged, see Hedged portfolios
rebalancing of, 71–73
 replicating, see Replicating portfolios
 stock-only hedge, 381
volatility sensitivity of call options, 65–67
Price(s):
of calls, 45–46
of European options, 154–158
implied, 9–10
of stock, see Stock price(s)
of strike, see Strike price
of underliers, 70
value vs., 8
volatility and option, 4, 127
Profit and loss (P&L):
effects of discrete hedging on, 106–110
effects of rebalancing on, 121–122
of hedged option strategies, 89–90, 91, 92–93
and hedging error, 113
from implied vs. realized volatility, 53/
incremental, 95–96
local volatility model for variance of,
306–308
with positive convexity, 48/
selection of proper hedge ratio for, 170
selection of volatility for hedging,
203–204
in stochastic volatility models, 321–322
in stock-only hedge portfolios, 381
when hedging with implied volatility,
101–103
when hedging with realized volatility,
94–100
Pseudo-probability:
in implied distributions, 177
in options valuation, 234–235
Pseudo-probability function, 183
Pure jump risk-neutral option pricing,
393–394
Put-call parity:
and no-arbitrage bounds, 155
static replication, 37–38, 39/
in static replication, 188
Quadratic payoff, 192–193
Quadrinomial tree, 350
Quantifiable uncertainty, 19
INDEX

Random dividends, jumps as, 396
Realized future variance, 71–82
Realized variance, 64
Realized volatility:
 and equity indexes, 146, 148
 hedged option strategies with, 94–100
 hedging vs., 105–110
 implied vs., 50–51, 94, 115–116
Rebalancing, of portfolios, 71–73
Recalibration, for local volatility models, 305
Rehedging, triggered by changes in hedge ratio, 122, 123f
Relative strike price, 136
Relative valuation, 11, 12
Replicating portfolios:
 construction of, 17
 selecting appropriate securities for, 41
 with state-contingent securities, 177
Replication, 13–35
 accurate, and discrete hedging, 115–116
 and avoidable investment risks, 25–26
 and derivatives, 35
 dynamic, see Dynamic replication and efficient market hypothesis, 17–18
 errors in, 81–82
 examples of, 27–34
 with a finite number of options, 77–80
 and law of quantitative finance, 13–15
 limits of, 16–17
 reliability of, 203
 riskless bonds, 23–24
 static, see Static replication and stock risks, 21–23
 strong, 204
 styles of, 15–16
 uncertainty, risk, and return in, 18–20
 valuation with, 15
 of variance swaps, 64–67
 of variance when volatility is stochastic, 74–75
 of volatility swaps, 62–63
Return(s):
 binomial trees for future, 21–22
 relationship between risk and, 26
 in replication, 18–20
Riemann integrals, 421
Risk(ies):
 relationship between returns and, 26
 in replication, 18–20
 replication and stock, 21–23
 of underliers, modeling, 17–18
Riskless bonds:
 and correlated stocks, 31–34
 replication with, 23–24
 and uncorrelated stocks, 27–31
Riskless security(ies), 23–24
Risk management, 5
Risk-neutral option pricing, 393–394
Risk-neutral probability, 177, 179–180
Risk-neutral valuation, 332–334
Ross, Stephen, 2, 33, 166
Rule of two, 261–262, 280–282
SABR (stochastic alpha, beta, rho) model, 337–344
Scenarios, identifying all possible, 15
Scholes, Myron, 16
Science, financial engineering as, 6–7
Security(ies):
 pricing, with financial models, 9–10
 ranking, with financial models, 10
 riskless, 23–24
 state-contingent, see State-contingent securities
Sentiment, market influenced by, 21
Sharpe, William, 28
Sharpe-Lintner-Mossin capital asset pricing model, 33–34
Sharpe ratio:
 in dilution, 28–29
 in diversification, 31
 in hedged options, 87
 in stochastic volatility models, 347–350
Shocks:
 effect of, 146–147
 in equity indexes, 148
 to individual equities, 148, 149
Short expirations:
 implied volatility in, 282–286
 jump-diffusion smile with, 414–415
 jumps effects on, 384f, 385–386
 and mean-reverting volatility, 370–371
Short-term government bonds, 154n.1
Short-term skew, 305–306
Skew:
 arising from jumps, 384–387
 and delta, 138
 in equity indexes, 144
 estimation of effects of, 191–194,
 195f–196f, 197
Index

in interest rate volatility, 151
in jump-diffusion models, 415
local volatility model's inability to match, 305–306
of lookback options, 299–300
and moneyness, 311
and nonzero correlation, 375
of options with no implied volatility, 296
and stochastic volatility models, 355
term structure with no, 242–246
in up-and-out call, 295
in valuation of exotic options, 172–173
variance in options with no, 279–280
in volatility change patterns, 309–310
and volatility smile, 135–136
Slope:
of smile, inequalities for, 158–160
and strike, 144–145
of term structure, 145–146
in volatility change patterns, 309–310
Smile models, 163–173
hedging vanilla options with, 169–171
jump-diffusion models, 168. See also Jump-diffusion models
local volatility models, 164–167. See also Local volatility models
stochastic volatility models, 167–168. See also Stochastic volatility models
valuing exotic options with, 171–173
S&P 500, and implied distribution, 183, 184
Spread:
bid-ask, 117
butterfly, see Butterfly spread
calendar, see Calendar spread
call, 155–156
option-adjusted, 10
Standard integration, 421–424
Standard options. See also Vanilla options
Dupire's equation for, 268
static replication using, 187–190
valuing, with jump-diffusion model, 401–404
State-contingent securities. See also Arrow-Debreu securities
and implied distribution, 175–180
in options valuation, 232–234
in stochastic volatility models, 332–334
Static hedge, 212–214
Static replication, 37–44, 187–200
Black-Scholes-Merton risk-neutral probability density, 197–200
of a collar, 38–40
defined, 15–16
estimation of skew effects with, 191–194, 195f–196f, 197
for European down-and-out call, 42–44
generalized payoffs, 40–42
Heaviside and Dirac delta functions, 190–191
put-call parity, 37–38, 39f
strong, 204
using standard options, 187–190
weak, see Weak static replication
Statistic, realized volatility as, 50
Stickiness, in the real world, 316–317
Sticky delta rule, 311–315
Sticky local volatility, 314–315
Sticky moneyness, 311–313, 315
Sticky strike rule, 310–311, 315
Stochastic, volatility as, 74–75
Stochastic calculus, 275–277
Stochastic differential equation, 325
Stochastic integration, 424–429
Stochastic stock evolution, 163
Stochastic volatility, 362–368
Stochastic volatility models, 167–168, 319–382
adding mean reversion to, 325–330
approaches to, 320–321
best stock-only hedge in, 379–381
in Black-Scholes-Merton model, 321–325
characteristic solution to, 351–352
extending Black-Scholes-Merton model to, 344–350
extending local volatility models to, 337–344
geometric Brownian motion stochastic volatility with zero correlation, 362–368
hedge ratios in, 379
mean-reverting volatility with zero correlation, 369–375
nonzero correlation in, 375–376, 377f–378f
and risk-neutral valuation, 332–334
survey of, 331–332
two-state stochastic path volatility, 360–362
and volatility change patterns, 317
Stochastic volatility models (Continued)
zero correlation smile and moneyness, 353–356
zero correlation smile as symmetric, 356–360
Stock(s):
with continuous known dividend yield, 240–242
jumps in, 387–391
modeling, with variable volatility, 249–250
replication and behavior of, 20–21
riskless bonds and uncorrelated, 27–31
risks of, 21–23
Stock evolution:
attempting to model stochastic, 163
in binomial local volatility modeling, 250–252
in binomial model, 227–232
in local volatility models, 165
volatility in, 7–8
Stock market crash of 1987:
unlikelihood of, 7
volatility charts before and after, 3–5
and volatility smile, 144
Stock-only hedge, 379–381
Stock price(s):
behavior of, in actual markets, 3
in Black-Scholes-Merton formula, 353
in equity indexes, 148
and harmonic average, 282–286
jumps in, 383
in local volatility models, 165
Strike:
and barrier, 206–207, 217, 292–295
in Black-Scholes-Merton formula, 353
and delta, 141–143
and harmonic average, 282–286
Merton inequalities as function of, 154–158
and slope, 144–145, 158
sticky strike rule, 310–311
Strike price:
and implied volatility, 132
relative, 136
Strong replication, 204
Strong static replication, 204
Swaption volatility smile, 151
Taylor series expansion:
of the call price, 45–46
in Jarrow-Rudd convention, 232
in jump-diffusion models, 401, 412
in jump modeling, 390
for path volatilities, 357, 365, 366
in stochastic volatility models, 338, 342
for variance swaps, 73
Term structure:
with no skew, 242–246
slope of, 145–146
and volatility smile, 133–134
Theta (Θ), 46
Time decay, loss from, 52
Time-dependent deterministic volatility, 242–246
Time to expiration:
in equity index implied volatility, 148
and implied volatility, 134
and moneyness, 137
and replicating portfolios, 81
short, and implied volatility behavior, 282–286
Time to maturity, 138–139
Trading consequences, of volatility smile, 151–152
Trading desks, relative valuation used by, 12
Transaction costs, 117–129
analytical approximation of, 123–124
effects of, 117–120
partial differential equation model of, 125–128
rebalancing, at regular intervals, 120–122
rehedging triggered by changes in hedge ratio, 122, 123f/
Trinomial jump-diffusion, 398–401
Two-state stochastic path volatility, 360–362
Unavoidable investment risks, 34
Uncertainty, in replication, 18–20
Uncorrelated stocks, 27–31
Underliers:
in local volatility model, 317
modeling risk of, 17–18
removing sensitivity to price of, 70
U.S. dollar (USD), 149–150
Unquantifiable uncertainty, 19
Up-and-out barrier calls:
in local volatility models, 292–296
weak static replication of, 214–219
USD (U.S. dollar), 149–150
USD/JPY smile, 149, 150f/
USD/MXN smile, 150f
Utility functions, 17

Valuation:
absolute, 11–12
of calls, in jump-diffusion models, 401–404
of down-and-out barrier options, with nonzero riskless rate, 211–212
of down-and-out barrier options with zero riskless rate and zero dividend yield, 207–211
of exotic options, with smile models, 171–173
of options, with binomial model, 232–237 relative, 11, 12
with replication, 15
risk-neutral, 332–334
of standard options, 401–404
of the variance, 75–77

Value(s):
of call option, 46
enterprise, 165–166
of European options, 37–38
and payoff, of butterfly spread, 156–157
price vs., 8

Vanilla European options:
Dupire's equation for, 268
rebalancing of hedged, 120–122
vega of, 113

Vanilla options. See also Standard options
as bet on volatility, 70
correct hedge ratio for, 290–292
delta of, 137
hedging, with smile models, 169–171
payoff at expiration of, 45
producing log payoffs, 67–71
replicating exotic options with, 192–194, 195f–196f, 197
and variance swaps, 65

Vanna, 324–325

Vanna-volga model, 164

Variables:
discrete random, 232n.2
implied, notation for, 51–52
selection of, 138–139

Variable volatility, 249–250

Variance:
fixed, 64
implied, 279–280
instantaneous, 364, 380
in jump modeling, 389
local, 279–280
notional, 61
in options with no skew, 279–280
path, 364
realized, 64
realized future, 71–82
Variance sensitivity, 65–67
Variance swaps, 57–82
defined, 61
ersors in replication, 81–82
log contracts and realized future variance, 71–82
replication of volatility swaps, 62–63
replication with a finite number of options, 77–80
valuation of the variance, 75–77
vanilla options producing log payoffs, 67–71
VIX volatility index, 82
and volatility, 60–62
volatility sensitivity of options, 57–60
when volatility is stochastic, 74–75

Vasiček interest rate model, 334

Vega:
of European option, 58, 59f
in stochastic volatility models, 343
of vanilla European options, 113

Velocity, 286

VIX volatility index, 82
VOD (Vodafone), 148, 149f
Vodafone (VOD), 148, 149f

Volatility:
instantaneous, 364
and option price, 4, 127
of path volatility, 364–365
path volatility vs., 370
selection of, for hedging, 203–204
stochastic, 362–368
as stochastic, 74–75
stochastic differential equation for, 325
and variance swaps, 60–62

Volatility change patterns, 309–317
and local volatility model, 314–315
rules for, 315
slope and skew in, 309–310
stickiness in the real world, 316–317

VIX volatility index, 82
Volatility change patterns (Continued)	
Volatility paths, 355	
Volatility points, 135	
Volatility sensitivity, of options, 57–60	
Volatility smile, 131–152	
and delta, 140–143	
in equity indexes, 144–148	
in foreign exchange options, 149–150	
graphing of, 136–139	
in individual equities, 148–149	
of interest rates, 151	
jump-diffusion smile, 408–410, 414–415	
parameters of, 131–136	
trading consequences of, 151–152	
in zero-correlation mean-reverting models, 372–375	
Volatility surface(s):	
in equity indexes, 148	
finding, with Dupire's equation, 268	
resulting from jumps, 385–386	
and volatility smile, 134–135	
Volatility swaps:	
defined, 60–61	
replication of, 62–63	
Volcker, Paul, 1–2	
Volga, 322–323, 343	
Weak static replication, 203–224	
accuracy of, 219	
and barrier option parity, 223–224	
of barrier options, 206–214	
generalized approach to, 220–223	
of up-and-out calls, 214–219	
Whalley, A. E., 125, 126	
White, Alan, 325, 351, 352, 363	
Wilmott, Paul, 8, 125, 126	
Yields:	
and forward rates, 260–261	
negative, of short-term government bonds, 154n.1	
Yield curves, 134–135	
Yield to maturity:	
as bond metric, 10	
time to maturity vs., 138–139	
Zero correlation:	
mean-reverting volatility with, 369–375	
stochastic volatility with, 362–368	
Zero correlation smile:	
and moneyness, 353–356	
as symmetric, 356–360	
Zero dividend yield:	
in Black-Scholes-Merton model, 237–238	
valuing down-and-out barrier option under geometric Brownian motion with zero riskless rate and, 207–211	
Zero-interest-rate policy (ZIRP), 154n.1	
Zero riskless rate:	
in Black-Scholes-Merton model, 237–238	
valuing down-and-out barrier option under geometric Brownian motion with zero dividend yield and, 207–211	
ZIRP (zero-interest-rate policy), 154n.1	