Contents

About the Author xix
Preface xxi
Acknowledgments xxv

1 Electrostatic Discharge 1
1.1 Electricity and Electrostatic Discharge 1
 1.1.1 Electricity and Electrostatics 1
 1.1.2 Electrostatic Discharge 2
 1.1.3 Key ESD Patents, Inventions, and Innovations 4
 1.1.4 Table of ESD Defect Mechanisms 8
1.2 Fundamental Concepts of ESD Design 11
 1.2.1 Concepts of ESD Design 12
 1.2.2 Device Response to External Events 13
 1.2.3 Alternate Current Loops 14
 1.2.4 Switches 14
 1.2.5 Decoupling of Current Paths 15
 1.2.6 Decoupling of Feedback Loops 15
 1.2.7 Decoupling of Power Rails 15
 1.2.8 Local and Global Distribution 15
 1.2.9 Usage of Parasitic Elements 16
 1.2.10 Buffering 16
 1.2.11 Ballasting 16
 1.2.12 Unused Section of a Semiconductor Device, Circuit, or Chip Function 17
 1.2.13 Impedance Matching between Floating and Nonfloating Networks 17
 1.2.14 Unconnected Structures 17
 1.2.15 Utilization of Dummy Structures and Dummy Circuits 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.16</td>
<td>Nonscalable Source Events</td>
<td>17</td>
</tr>
<tr>
<td>1.2.17</td>
<td>Area Efficiency</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>ESD, EOS, EMI, Electromagnetic Compatibility, and Latchup</td>
<td>18</td>
</tr>
<tr>
<td>1.3.1</td>
<td>ESD</td>
<td>18</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Electrical Overstress</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Electromagnetic Interference</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Electromagnetic Compatibility</td>
<td>19</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Latchup</td>
<td>19</td>
</tr>
<tr>
<td>1.4</td>
<td>ESD Models</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Human Body Model</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Machine Model</td>
<td>21</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Cassette Model (Small Charge Model)</td>
<td>24</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Charged Device Model</td>
<td>24</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Transmission Line Pulse</td>
<td>25</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Very Fast Transmission Line Pulse</td>
<td>26</td>
</tr>
<tr>
<td>1.5</td>
<td>ESD and System-Level Test Models</td>
<td>28</td>
</tr>
<tr>
<td>1.5.1</td>
<td>IEC 61000-4-2</td>
<td>29</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Human Metal Model</td>
<td>29</td>
</tr>
<tr>
<td>1.5.3</td>
<td>IEC 61000-4-5</td>
<td>30</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Charged Board Model</td>
<td>31</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Cable Discharge Event</td>
<td>32</td>
</tr>
<tr>
<td>1.5.5.1</td>
<td>CDE and Scaling</td>
<td>36</td>
</tr>
<tr>
<td>1.5.5.2</td>
<td>CDE—Cable Measurement Equipment</td>
<td>37</td>
</tr>
<tr>
<td>1.5.5.3</td>
<td>Cable Configuration—Test Configuration</td>
<td>38</td>
</tr>
<tr>
<td>1.5.5.4</td>
<td>Cable Configuration—Floating Cable</td>
<td>38</td>
</tr>
<tr>
<td>1.5.5.5</td>
<td>Cable Configuration—Held Cable</td>
<td>38</td>
</tr>
<tr>
<td>1.5.5.6</td>
<td>CDE—Peak Current versus Charged Voltage</td>
<td>39</td>
</tr>
<tr>
<td>1.5.5.7</td>
<td>CDE—Plateau Current versus Charged Voltage</td>
<td>39</td>
</tr>
<tr>
<td>1.6</td>
<td>Time Constants</td>
<td>39</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Characteristic Times</td>
<td>39</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Electrostatic and Magnetostatic Time Constants</td>
<td>39</td>
</tr>
<tr>
<td>1.6.2.1</td>
<td>Charge Relaxation Time</td>
<td>39</td>
</tr>
<tr>
<td>1.6.2.2</td>
<td>Magnetic Diffusion Time</td>
<td>40</td>
</tr>
<tr>
<td>1.6.2.3</td>
<td>Electromagnetic Wave Transit Time</td>
<td>40</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Thermal Time Constants</td>
<td>42</td>
</tr>
<tr>
<td>1.6.3.1</td>
<td>Heat Capacity</td>
<td>42</td>
</tr>
<tr>
<td>1.6.3.2</td>
<td>Thermal Diffusion</td>
<td>42</td>
</tr>
<tr>
<td>1.6.3.3</td>
<td>Heat Transport Equation</td>
<td>42</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Thermal Physics Time Constants</td>
<td>43</td>
</tr>
<tr>
<td>1.6.4.1</td>
<td>Adiabatic, Thermal Diffusion Timescale, and Steady State</td>
<td>44</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Semiconductor Device Time Constants</td>
<td>45</td>
</tr>
<tr>
<td>1.6.5.1</td>
<td>Depletion Region Transit Time</td>
<td>45</td>
</tr>
<tr>
<td>1.6.5.2</td>
<td>Silicon Diode Storage Delay Time</td>
<td>45</td>
</tr>
<tr>
<td>1.6.5.3</td>
<td>Bipolar Base Transit Time</td>
<td>46</td>
</tr>
<tr>
<td>1.6.5.4</td>
<td>Bipolar Turn-on Transient Time</td>
<td>46</td>
</tr>
<tr>
<td>1.6.5.5</td>
<td>Bipolar Turn-off Transient Time</td>
<td>46</td>
</tr>
</tbody>
</table>
1.6.5.6 Bipolar Emitter Transition Capacitance Charging Time 46
1.6.5.7 Bipolar Collector Capacitance Charging Time 47
1.6.5.8 SCR Time Response 47
1.6.5.9 MOSFET Transit Time 47
1.6.5.10 MOSFET Drain Charging Time 48
1.6.5.11 MOSFET Gate Charging Time 48
1.6.5.12 MOSFET Parasitic Bipolar Response Time 48

1.6.6 Circuit Time Constants 49
1.6.6.1 Pad Capacitance 49
1.6.6.2 Half-Pass TGs 49
1.6.6.3 N-Channel Half-Pass Transistor Charging Time Constant 49
1.6.6.4 Half-pass Transistor TG Discharge Time Constant 49
1.6.6.5 P-Channel Half-Pass Transistor Charging Time Constant 49
1.6.6.6 Inverter Propagation Delay Time Constants 50
1.6.6.7 High-to-Low and Low-to-High Transition Time 50
1.6.6.8 Inverter Propagation Delay Time 51
1.6.6.9 Series N-channel MOSFETs Discharge Delay Time 51
1.6.6.10 Series P-channel MOSFETs Charge Delay Time 51

1.6.7 Chip-Level Time Constants 52
1.6.7.1 Peripheral I/O Power Bus Time Constant 52
1.6.7.2 Core Chip Time Constant 53
1.6.7.3 Substrate Time Constants 53
1.6.7.4 Package Time Constants 54

1.6.8 ESD Time Constants 54
1.6.8.1 ESD Events 55
1.6.8.2 HBM Characteristic Time 55
1.6.8.3 MM Characteristic Time 56
1.6.8.4 CDM Characteristic Time 57
1.6.8.5 Charged Cable Model Characteristic Time 57
1.6.8.6 CDE Model 57
1.6.8.7 CCM Characteristic Time 58
1.6.8.8 TLP Model Characteristic Time 58
1.6.8.9 VF-TLP Model Characteristic Time 59

1.7 Capacitance, Resistance, and Inductance and ESD 59
1.7.1 The Role of Capacitance 59
1.7.2 The Role of Resistance 60
1.7.3 The Role of Inductance 61

1.8 Rules of Thumb and ESD 62
1.8.1 ESD Design: An “ESD Ohm’s Law”—A Simple ESD Rule-of-Thumb Design Approach 62

1.9 ESD Scaling 63
1.10 Lumped versus Distributed Analysis and ESD 65
1.10.1 Current and Voltage Distributions 65
1.10.2 Lumped versus Distributed Systems 66
1.10.3 Distributed Systems—Ladder Network Analysis 67
1.10.4 RLC Distributed Systems 69
2 Design Synthesis

2.1 Synthesis and Architecture of a Semiconductor Chip for ESD Protection 94
2.2 Electrical and Spatial Connectivity
 2.2.1 Electrical Connectivity 95
 2.2.2 Thermal Connectivity 95
 2.2.3 Spatial Connectivity 96
2.3 ESD, Latchup, and Noise
 2.3.1 Noise 97
 2.3.2 Latchup 98
2.4 Interface Circuits and ESD Elements 98
2.5 ESD Power Clamp Networks
 2.5.1 Placement of ESD Power Clamps 101
2.6 ESD Rail-to-Rail Networks
 2.6.1 Placement of ESD Rail-to-Rail Networks 107
 2.6.2 Peripheral and Array I/O 107
2.7 Guard Rings 109
2.8 Pads, Floating Pads, and No-connect Pads 111
2.9 Structures under Bond Pads 112
2.10 Mixed Signal Architecture: CMOS
 2.10.1 Digital and Analog CMOS Architecture 114
 2.10.2 Digital and Analog Floor Plan: Placement of Analog Circuits 114
2.11 MS Architecture: Digital, Analog, and RF Architecture 116
2.12 Digital-to-Analog Interdomain Signal Line Failures
 2.12.1 Digital-to-Analog Core Spatial Isolation 120
 2.12.2 Digital-to-Analog Core Ground Coupling 120
 2.12.3 Digital-to-Analog Core Resistive Ground Coupling 120
2.12.4 Digital-to-Analog Core Diode Ground Coupling 120
2.12.5 Domain-to-Domain Signal Line ESD Networks 122
2.12.6 Domain-to-Domain Third-Party Coupling Networks 122
2.12.7 Domain-to-Domain Cross-Domain ESD Power Clamp 123
2.13 Summary and Closing Comments 124
Problems 124
References 125

3 MOSFET ESD Design 129
3.1 Basic ESD Design Concepts 129
3.2 ESD MOSFET Design: Channel Length 136
 3.2.1 Channel Length and Linewidth Control 136
 3.2.2 ACLV Control 138
 3.2.3 MOSFET ESD Design Practices 142
3.3 N-Channel MOSFET Design: Channel Width 143
3.4 ESD MOSFET Design: Contacts 144
 3.4.1 Gate-to-Contact Spacing 144
 3.4.1.1 Off-Axis Current Distribution 148
 3.4.1.2 Self-Heating Equienergy Contours 148
 3.4.2 Contact-to-Contact Space 149
 3.4.3 ESD Design: End Contact 152
 3.4.4 ESD MOSFET Design: Contacts to Isolation Edge 153
3.5 ESD MOSFET Design: Metal Distribution 153
 3.5.1 MOSFET Metal Bus Design and Current Distribution 153
 3.5.2 MOSFET Ladder Network Model 154
 3.5.3 MOSFET Wiring: Parallel Current Distribution 158
 3.5.4 MOSFET Wiring: Antiparallel Current Distribution 162
3.6 ESD MOSFET Design: Silicide Masking 165
 3.6.1 ESD MOSFET Design: Silicide Mask Design 165
 3.6.2 ESD MOSFET Design: Silicide Mask Design over Source and Drain 166
 3.6.3 ESD MOSFET Design: Silicide Mask Design over Gate 167
3.7 ESD MOSFET Design: Series Cascode Configurations 170
 3.7.1 MOSFET ESD Design: Series Cascode MOSFET 170
 3.7.2 Integrated Cascoded MOSFETs 171
3.8 ESD MOSFET Design: Multifinger MOSFET Design—Integration of Coupling and Ballasting Techniques 174
 3.8.1 Grounded-Gate Resistor-Ballasted MOSFET 174
 3.8.2 Soft Substrate Grounded-Gate Resistor-Ballasted MOSFET 176
 3.8.3 Gate-Coupled Domino Resistor-Ballasted MOSFET 177
 3.8.4 MOSFET Source-Initiated Gate-Bootstrapped Resistor-Ballasted Multifinger MOSFET with MOSFET 179
 3.8.5 MOSFET Source-Initiated Gate-Bootstrapped Resistor-Ballasted Multifinger MOSFET with Diode 180
3.9 ESD MOSFET Design: Enclosed Drain Design Practice 181
3.10 ESD MOSFET Interconnect Ballasting Design 182
3.11 ESD MOSFET Design: Source and Drain Segmentation 184
3.12 MOSFET Design for Analog Applications 185
4 ESD Design: Diode Design 191

4.1 ESD Diode Design: ESD Basics 191
 4.1.1 Basic ESD Design Concepts 191
 4.1.2 ESD Diode Design: ESD Diode Operation 193

4.2 ESD Diode Anode Design 194
 4.2.1 P+ Diffusion Anode Width Effect 195
 4.2.2 P+ Anode Contacts 195
 4.2.3 P+ Anode Silicide to Edge Design 195
 4.2.4 P+ Anode to N+ Cathode Isolation Spacing 198
 4.2.5 P+ Anode Diode End Effects 198
 4.2.6 Circular and Octagonal ESD Diode Design 200

4.3 ESD Diode Design: Interconnect Wiring 202
 4.3.1 Parallel Wiring Design 203
 4.3.2 Antiparallel Wiring Design 203
 4.3.3 Quantized Tapered Parallel and Antiparallel Wiring 203
 4.3.4 Continuous Tapered Antiparallel and Parallel Wiring 203
 4.3.5 Perpendicular (and Broadside) Wiring with Center-Fed Design 205
 4.3.6 Perpendicular (and Broadside) with Uniform Metal Width 206
 4.3.7 Perpendicular (and Broadside) Wiring with T-Shaped Extensions 207
 4.3.8 Metal Design for Structures under Bond Pads 208

4.4 ESD Design: Polysilicon-Bound Diode Designs 210
 4.4.1 ESD Design Issues with Polysilicon-Bound Diode Structures 212

4.5 N-Well Diode Design 213
 4.5.1 N-Well Diode Wiring Design 213
 4.5.2 N-Well Contact Density 214
 4.5.3 N-Well ESD Design, Guard Rings, and Adjacent Structures 214

4.6 N+/P Substrate Diode Design 216

4.7 ESD Design: Diode String Design 217
 4.7.1 ESD Design: Diode String Design—Architecture 223
 4.7.2 Diode String Elements in Multiple I/O Environments 223
 4.7.3 Integration of Signal Pads 224
 4.7.4 ESD Design: Diode String Design—Darlington Amplification 227
 4.7.5 ESD Design: Diode String Design—Area Scaling 229

4.8 Triple-Well ESD Diode Design 231

4.9 Summary and Closing Comments 234
 Problems 234
 References 236

5 ESD Design: Passive Resistors 239

5.1 N-Well Resistors 239
 5.1.1 N-Well ESD Design Issues 239
 5.1.2 N-Well Resistors ESD Design Issues: Integration with MOSFETs 243
5.1.3 N-Well Resistor Ballasting Design

5.2 N-Diffusion Resistor Design
 5.2.1 N-Diffusion Resistors for ESD Protection
 5.2.2 N-Diffusion Resistors Ballasting Design

5.3 P-Diffusion Resistor Design
 5.3.1 P-Diffusion Resistors for ESD Protection

5.4 BR
 5.4.1 BR Design
 5.4.2 BR as an ESD Diode Element
 5.4.3 BR as an ESD HBM and CDM Element
 5.4.4 BR Ballasting
 5.4.5 BR Design Integration and ESD
 5.4.6 BR: Current Robbing and Balancing ESD and Resistor Parasitics
 5.4.7 BR-to-BR ESD Failure Mechanisms
 5.4.8 BR Gate Connection and Failure Mechanisms

5.5 Summary and Closing Comments
Problems
References

6 Passives for Digital, Analog, and RF Applications

6.1 Analog Design Layout Revisited
 6.1.1 Analog Design: Local Matching
 6.1.2 Analog Design: Global Matching
 6.1.3 Symmetry
 6.1.4 Layout Design Symmetry
 6.1.5 Thermal Symmetry

6.2 Common Centroid Design
 6.2.1 Common Centroid Arrays
 6.2.2 One-Axis Common Centroid Design
 6.2.3 Two-Axis Common Centroid Design

6.3 Interdigitation Design

6.4 Common Centroid and Interdigitation Design

6.5 Passive Element Design

6.6 Resistor Element Design
 6.6.1 Resistor Element Design: Dogbone Layout
 6.6.2 Resistor Design: Analog Interdigitated Layout
 6.6.3 Dummy Resistor Layout
 6.6.4 Thermoelectric Cancellation Layout
 6.6.5 Electrostatic Shield
 6.6.6 Interdigitated Resistors and ESD Parasitics

6.7 Capacitor Element Design

6.8 Inductor Element Design

6.9 Summary and Closing Comments
Problems
References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Off-Chip Drivers and ESD</td>
<td>288</td>
</tr>
<tr>
<td>7.1 Off-chip Drivers</td>
<td>288</td>
</tr>
<tr>
<td>7.1.1 OCD I/O Standards and ESD</td>
<td>289</td>
</tr>
<tr>
<td>7.1.2 OCD ESD Design Basics</td>
<td>290</td>
</tr>
<tr>
<td>7.1.3 OCD: CMOS Asymmetric Pull-Up/Pull-Down</td>
<td>291</td>
</tr>
<tr>
<td>7.1.4 OCD: CMOS Symmetric Pull-Up/Pull-Down</td>
<td>292</td>
</tr>
<tr>
<td>7.1.5 OCD: Gunning Transceiver Logic</td>
<td>294</td>
</tr>
<tr>
<td>7.1.6 OCD: High-Speed Transceiver Logic</td>
<td>295</td>
</tr>
<tr>
<td>7.1.7 OCD: Stub Series-Terminated Logic</td>
<td>296</td>
</tr>
<tr>
<td>7.2 OCDs: MVI</td>
<td>297</td>
</tr>
<tr>
<td>7.3 OCDs: Self-Bias Well OCD Networks</td>
<td>297</td>
</tr>
<tr>
<td>7.3.1 Self-Bias Well OCD Networks</td>
<td>297</td>
</tr>
<tr>
<td>7.3.2 ESD Protection Networks for Self-Bias Well OCD Networks</td>
<td>300</td>
</tr>
<tr>
<td>7.4 Programmable Impedance OCD Network</td>
<td>302</td>
</tr>
<tr>
<td>7.4.1 OCD: PIMP OCD Networks</td>
<td>302</td>
</tr>
<tr>
<td>7.4.2 ESD Input Protection Networks for PIMP OCDs</td>
<td>305</td>
</tr>
<tr>
<td>7.5 OCDs: Universal OCDs</td>
<td>305</td>
</tr>
<tr>
<td>7.6 OCDs: Gate-Array OCD Design</td>
<td>306</td>
</tr>
<tr>
<td>7.6.1 Gate-Array OCD ESD Design Practices</td>
<td>306</td>
</tr>
<tr>
<td>7.6.2 Gate-Array OCD Design—Usage of Unused Elements</td>
<td>306</td>
</tr>
<tr>
<td>7.6.3 Gate-Array OCD Design—Impedance Matching of Unused Elements</td>
<td>307</td>
</tr>
<tr>
<td>7.6.4 OCD ESD Design—Power Rails Over Multifinger MOSFETs</td>
<td>308</td>
</tr>
<tr>
<td>7.7 OCDs: Gate-Modulated Networks</td>
<td>309</td>
</tr>
<tr>
<td>7.7.1 OCD: Gate-Modulated MOSFET ESD Network</td>
<td>309</td>
</tr>
<tr>
<td>7.7.2 OCD Simplified Gate-Modulated Network</td>
<td>310</td>
</tr>
<tr>
<td>7.8 OCDs ESD Design: Integration of Coupling and Ballasting Techniques</td>
<td>311</td>
</tr>
<tr>
<td>7.8.1 Ballasting and Coupling</td>
<td>311</td>
</tr>
<tr>
<td>7.8.2 MOSFET Source-Initiated Gate-Bootstrapped Resistor-Ballasted</td>
<td>311</td>
</tr>
<tr>
<td>Multifinger MOSFET with Diode</td>
<td></td>
</tr>
<tr>
<td>7.8.3 MOSFET Source-Initiated Gate-Bootstrapped Resistor-Ballasted</td>
<td>312</td>
</tr>
<tr>
<td>Multifinger MOSFET with an MOSFET</td>
<td></td>
</tr>
<tr>
<td>7.8.4 Gate-Coupled Domino Resistor-Ballasted MOSFET</td>
<td>314</td>
</tr>
<tr>
<td>7.9 Substrate-Modulated Resistor-Ballasted MOSFET</td>
<td>315</td>
</tr>
<tr>
<td>7.10 Summary and Closing Comments</td>
<td>317</td>
</tr>
<tr>
<td>Problems</td>
<td>318</td>
</tr>
<tr>
<td>References</td>
<td>319</td>
</tr>
<tr>
<td>8 Receiver Circuits</td>
<td>322</td>
</tr>
<tr>
<td>8.1 Receivers and ESD</td>
<td>322</td>
</tr>
<tr>
<td>8.1.1 Receivers and Receiver Delay Time</td>
<td>323</td>
</tr>
<tr>
<td>8.1.2 ESD Loading Effect on Receiver Performance</td>
<td>323</td>
</tr>
<tr>
<td>8.2 Receivers and ESD</td>
<td>324</td>
</tr>
<tr>
<td>8.2.1 Receivers and HBM</td>
<td>324</td>
</tr>
<tr>
<td>8.2.2 Receivers and CDM</td>
<td>325</td>
</tr>
<tr>
<td>8.3 Receivers and Receiver Evolution</td>
<td>327</td>
</tr>
<tr>
<td>8.3.1 Receiver Circuits with Half-Pass TG</td>
<td>327</td>
</tr>
</tbody>
</table>
9.12 Comparison of Bulk to SOI ESD Results 393
9.13 SOI ESD Design with Aluminum Interconnects 394
9.14 SOI ESD Design with Copper Interconnects 395
9.15 SOI ESD Design with Gate Circuitry 397
9.16 SOI FinFET Structure 399
9.17 Summary and Closing Comments 403

Problems 403
References 405

10 ESD Circuits: BiCMOS 408
10.1 Bipolar ESD Input Circuits 408
10.2 Diode-Configured Bipolar ESD Input Circuits 412
10.3 Bipolar ESD Input Circuits: Voltage-Triggered Elements 413
 10.3.1 Voltage Triggered Bipolar ESD Input Circuits Classifications 413
 10.3.2 Bipolar ESD Input: Resistor Grounded-Base ESD Input 414
 10.3.3 Bipolar ESD Input Circuits: Zener Breakdown Voltage Triggered 418
 10.3.4 Bipolar ESD: BV_{CEO} Voltage-Triggered ESD Input 423
 10.3.5 Bipolar ESD Input Circuits: Ultralow-Voltage
 Forward-Biased Voltage Trigger 430
 10.3.6 ESD Bipolar Input Circuits: Future Networks and Scaling 433
 10.3.7 Bipolar ESD Input Device Scaling 436
10.4 BiCMOS Mixed Signal Designs 437
10.5 Summary and Closing Comments 437

Problems 437
References 438

11 ESD Power Clamps 442
11.1 ESD Power Clamp Design Practices 442
 11.1.1 Classification of ESD Power Clamps 444
 11.1.2 Design Synthesis of ESD Power Clamp: Key Design Parameters 446
11.2 Design Synthesis of ESD Power Clamps Trigger Networks 446
 11.2.1 Transient Response Frequency Trigger Element and the ESD
 Frequency Window 446
 11.2.2 The ESD Power Clamp Frequency Design Window 447
 11.2.3 Design Synthesis of ESD Power Clamp: Voltage-Triggered ESD
 Trigger Elements 447
11.3 Design Synthesis of ESD Power Clamp: The ESD Power Clamp
 Shunting Element 449
 11.3.1 ESD Power Clamp Trigger Condition versus Shunt Failure 450
 11.3.2 ESD Clamp Element: Width Scaling 450
 11.3.3 ESD Clamp Element: On-Resistance 451
 11.3.4 ESD Clamp Element: Safe Operating Area 451
11.4 ESD Power Clamp Issues 452
 11.4.1 ESD Power Clamp Issues: Power-Up and Power-Down 452
 11.4.2 ESD Power Clamp Issues: False Triggering 452
 11.4.3 ESD Power Clamp Issues: Precharging 452

Problems 452
References 453
11.4.4 ESD Power Clamp Issues: Postcharging 453
11.5 ESD Power Clamp Design
11.5.1 Native Power Supply RC-Triggered MOSFET ESD Power Clamp 453
11.5.2 Nonnative Power Supply RC-Triggered MOSFET ESD Power Clamp 454
11.5.3 ESD Power Clamp Networks with Improved Inverter Stage Feedback 454
11.5.4 ESD Power Clamp Design Synthesis: Forward-Bias-Triggered ESD Power Clamps 456
11.5.5 ESD Power Clamp Design Synthesis: IEC 61000-4-2 Responsive ESD Power Clamps 457
11.5.6 ESD Power Clamp Design Synthesis: Precharging and PostchargingInsensitive ESD Power Clamps 457
11.6 Master/Slave ESD Power Clamp Systems 458
11.7 Series-Stacked RC-Triggered ESD Power Clamps 460
11.8 ESD Power Clamps: Triple-Well Series Diodes as Core Clamps 460
11.9 Summary and Closing Comments
Problems 464
References 465

12 Bipolar ESD Power Clamps 468
12.1 Bipolar ESD Power Clamps 468
12.2 Bipolar Voltage-Triggered ESD Power Clamps 468
 12.2.1 Bipolar ESD Power Clamp: Zener Breakdown Voltage Triggered 469
 12.2.2 Bipolar ESD Power Clamp: BV_{CEO} Voltage-Triggered ESD Power Clamp 470
12.3 ESD Power Clamp Design Synthesis: Bipolar ESD Power Clamps 473
12.4 Mixed Voltage Interface Forward-Bias Voltage and BV_{CEO} Breakdown Synthesized Bipolar ESD Power Clamps 476
12.5 Ultralow-Voltage Forward-Biased Voltage-Trigger BiCMOS ESD Power Clamp 480
12.6 Bipolar ESD Power Clamps with Frequency Trigger Elements: Capacitance Triggered 485
12.7 Summary and Closing Comments
Problems 486
References 487

13 Silicon-Controlled Rectifier Power Clamps 489
13.1 ESD Silicon-Controlled Rectifier Circuits 489
 13.1.1 Unidirectional SCR 489
 13.1.2 Bidirectional SCR ESD Power Clamps 489
 13.1.3 Medium-Level SCR ESD Power Clamps 490
 13.1.4 Low Voltage Triggered SCR ESD Power Clamps 490
13.2 Lateral Diffused MOS Circuits 492
 13.2.1 LOCOS-Defined LDMOS 492
 13.2.2 Shallow Trench Isolation-Defined LDMOS 493
 13.2.3 STI-Defined Isolated LDMOS 494
13.3 DeMOS Circuits 496
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.1 DeNMOS</td>
<td>497</td>
</tr>
<tr>
<td>13.3.2 DeNMOS-SCR Transistor</td>
<td>497</td>
</tr>
<tr>
<td>13.4 Ultrahigh-Voltage LDMOS (UHV-LDMOS) Circuits</td>
<td>497</td>
</tr>
<tr>
<td>13.4.1 UHV-LDMOS</td>
<td>497</td>
</tr>
<tr>
<td>13.4.2 UHV-LDMOS-SCR</td>
<td>497</td>
</tr>
<tr>
<td>13.5 Summary and Closing Comments</td>
<td>501</td>
</tr>
<tr>
<td>Problems</td>
<td>501</td>
</tr>
<tr>
<td>References</td>
<td>501</td>
</tr>
</tbody>
</table>

Glossary of Terms 504

Standards 509

Index 512