Index

Note: Page numbers in *italics* denote tables, where located outside page ranges.

- \(\text{AA}_3 \text{B}_4 \text{O}_{12} \)-related phases: 48–51
 - charge states: 50
 - charge transfer: 51
 - physical properties: 50
- \(\text{ABX}_3 \) perovskite phases: 1–2
- \(\text{ABX}_3 \) perovskite structure: 1–40
 - variants: 11–12
- \(\text{ABX}_3 \)-related structures: 42–78
- anion-deficient phases containing \(\text{BaO}_2 \) (\(c' \)) layers: 112–117
- anion-deficient phases containing square pyramids: 69–74
- cobaltite-related phases: 73–74
- \(\text{LnBaCo}_2 \text{O}_{5.5} \) phases: 73–74
- manganites: 69–71
- \(\text{Sr}_2 \text{Mn}_2 \text{O}_5 \): 69–71
- \(\text{SrFeO}_{2.5} \) and related phases: 71–73
- anion-deficient phases containing tetrahedra: 57–68
- brownmillerite microstructures: 62–63
- brownmillerite-related phases: 66–68
- brownmillerites: 57–62
- B-site doped brownmillerite phases: 64–65
- B-site doping and oxygen pressure: 65
- A-site doped brownmillerite phases: 65–66
 - temperature variation and disorder: 63–64
- anion-deficient phases with \(\text{BaOX} \)
 - layers: 117–119
- anion substituted perovskites: 51–54
- nitrides/oxy-nitrides: 51–53
- oxyfluorides: 53–54
- antiferroelectrics: 196–199
- antiferromagnetic perovskites: 222–232
 - cubic perovskite-related structures: 222–229
 - hexagonal perovskites: 229–232
 - antiperovskite (inverse) perovskite structure: 3
- antiperovskites: 34–36
- \(\text{BiNb}_4 \), 2H–\(\text{BaNiO}_3 \): 36
- cubic and related structures: 34–36
- \(\text{SbNb}_4 \), 2H–\(\text{BaNiO}_3 \): 36
- aristotype perovskite structure: 4–6
- Arrhenius equation
 - diffusion: 156–157
 - ionic conductivity: 159
- A-site-deficient perovskite structures: 54–57
 - niobates: 55–57
 - perovskite tungsten bronzes: 55
 - \(\text{ReO}_3 \), \(\text{WO}_3 \) and related structures: 54–55
 - tantalates: 55–57
 - titanates: 55–57
- A-site ordering: 33–34, 48
- Aurivillius phases
 - modular structures: 134–136
 - multiferroic perovskites: 244–246
Ba₆Mn₅O₁₆ 120–121
BaNiO₃-related phases containing trigonal prisms 81–92
commensurate structures 81–89
incommensurate modulated composite structures 91
intermediate polyhedra (ip) 91
modulated structures 89–92
BaNiO₃ structure 79–81
BaTiO₃

cation displacement 12–16
ferroelectric/piezoelectric perovskites 182–185
B-cation displacement 11–12
BaTiO₃ 12–16
symmetry relationships 30–32
BiNbBa₂, 2H–BaNiO₃ structure 36
bond valence model 303–306
cation location 304–305
cation valence 305–306
hexagonal perovskite-related structures 304–306
Brownmillerite structures 57–68
brownmillerites 57–62
microstructures 62–63
temperature variation and disorder 63–64
B-site doped 64–65
B-site doping and oxygen pressure 65
A-site doped 65–66
brownmillerite related phases 66–68
BX₆ distortion 11–12
BX₆ tilt/rotation 11–12
Ca₂Nb₂O₆-related phases 136–138
Ca₆RuO₆, metal–insulator transitions 255–256
canted spins, magnetic ordering pattern 238–240
CaTiO₃ and GdFeO₃, orthorhombic symmetry 26–29
cation displacement, BaTiO₃ 12–16
cation location, bond valence model 304–305
cation valence, bond valence model 305–306
CDC materials see colossal dielectric constant materials
ceramic modulators 299
ceramic perovskites
thermoelectric properties 289–291
transparency 289–291
ceramic piezoelectrics 193–195
electrostriction 195
charge ordering, electronic conductivity 268–270
CMR see colossal magnetoresistance
cobaltite-related phases 73–74
colossal dielectric constant (CDC) materials, dielectric perovskites 181–182
colossal magnetoresistance (CMR) 270–272
commensurate modulated composite structures 76–78
conductivity, electronic see electronic conductivity
crystal symmetry, ferroelectric/piezoelectric perovskites 191–192
cubic perovskite oxides, AA′₃B₄O₁₂-related phases 48–51
cubic perovskite-related structures, antiferromagnetic perovskites 222–229
cubic perovskite structure: SrTiO₃ 4–6
cuprate high-temperature superconductors 258–267
cuprate superconductors 138–146
Jahn–Teller octahedral distortion 139–140
La₂CuO₄ 139–141
layered perovskite structures 141–142, 143, 144, 145
Nd₅CuO₄ 139–141
structures related to the layered cuprate phases 142–146
YBa₂Cu₃O₇ 139–141
Curie–Weiss law
ferroelectric/piezoelectric perovskites 189–190
magnetism 218, 219–222
paraelectric state 189–190
Index

dielectric perovskites 178–182
colossal dielectric constant (CDC) materials 181–182
general properties 178–180
relative permittivity 178–180
dielectric properties
dielectric perovskites 178–182
ferroelectric/piezoelectric perovskites 182–192
insulating perovskites 176–177
diffusion 156–158
Arrhenius equation 156–157
LiNbO₃ 157–158
Dion–Jacobson and related phases
improper ferroelectricity 208
modular structures 131–134, 152–154
double exchange mechanism, ferromagnetic perovskites 233–235
double perovskites 42–51
other ordered perovskites 45–48
rock-salt ordered double perovskites 42–45
dye-sensitised solar cells (DSSCs) 299–300
electrocaloric effect 288–289
electrochromic films 291–292
electronic conductivity 247–275
charge ordering 268–270
cuprate high-temperature superconductors 258–267
half-metals and spin polarisation 267–268
magnetoresistance 270–272
metal–insulator transitions 250–256
metallic perovskites 247–250
Mott insulators 250, 255–256
NaOsO₃ 256
orbital ordering 268–270
oxygen pressure dependence 165–166
perovskite band structure 247–250
perovskite superconductors 257–258
semiconductor in perovskites 272–274
spin polarisation and half-metals 267–268
surface conductivity 275
thin films 275
electro-optic properties 293–301
electro-optic intensity modulators 296–298
electro-optic phase modulators 294–296
refractive index changes 293–294
electrostriction, ceramic piezoelectrics 195
exfoliation, modular structures 151–154
extrinsic ferroelectricity 206–208
ferrielectrics 199
ferromagnetic perovskites 236–237
ferroelectric domain switching, ferroelectric/piezoelectric perovskites 185–187
ferroelectric hysteresis loops, ferroelectric/piezoelectric perovskites 188–189, 197–198
ferroelectric/piezoelectric perovskites 182–192
antiferroelectrics 196–199
BaTiO₃ 182–185
ceramic piezoelectrics 193–195
crystal symmetry 191–192
Curie–Weiss law 189–190
doping and modification of properties 208–212
extrinsic ferroelectricity 206–208
ferrielectrics 199
ferroelectric domain switching 185–187
ferroelectric hysteresis loops 188–189, 197–198
flexoelectric effect 214–215
improper ferroelectricity 206–208
morphotropic phase boundaries (MPBs) 209–210
nanoparticles 212–215
paraelectric state 189–190
piezoelectrics 191–192
pyroelectrics 191–192
relaxor ferroelectrics 200–206
spontaneous polarisation and domains 182–185
strain gradient 214–215
strain versus electric field loops 192
temperature dependence of ferroelectricity 189–190
thin films 212–215
ferromagnetic perovskites 233–235
flexoelectric effect, ferroelectric/piezoelectric perovskites 214–215
GdFeO₃ and CaTiO₃, orthohombic
symmetry 26–29
GKA rules see Goodenough–Kanamori–Anderson rules
Goldschmidt tolerance factor 6–11
Goodenough–Kanamori–Anderson (GKA)
rules, magnetism 218
half-metals and spin polarisation,
electronic conductivity 267–268
hexagonal perovskite-related
structures 79–122
(cc…ch) AₙBₙ₋₁O₃ₙ shift and twinned
phases 112
(cc…chh) AₙBₙ₋₁O₃ₙ structures 108–110
(cc…chh) AₙBₙ₋₂O₃ₙ structures 107–108
(hhcc…chhc…c) intergrowth
phases 110–112
anion-deficient phases containing BaO₂
(c’') layers 112–117
anion-deficient phases with BaOX
layers 117–119
Ba₆Mn₅O₁₆ 120–121
BaNiO₃-related phases containing
digonal prisms 81–92
BaNiO₃, structure 79–81
bond valence model 304–306
hexagonal perovskites with ch₉ and c₉h
stacking 98–105
hexagonal perovskites with c₉hh
stacking 106–112
perovskites with mixed hexagonal/cubic
packing: nomenclature 92–95
perovskites with mixed hexagonal/cubic
packing: stacking sequences 95–97
polytypes 93
Ramsdell notation 94
Sr₂Mn₃O₁₀ 120–121
stacking sequences 95–97
temperature and pressure variation
120–121
Zhdanov notation 95
hexagonal perovskites, antiferromagnetic
perovskites 229–232
hexagonal perovskites with ch₉ and c₉h
stacking 98–105
(ch₉) structures 98–99
(c₉h) structures 99–104
c₉h intergrowth structures 104–105
hybrid organic–inorganic perovskites
32, 33
improper ferroelectricity 206–208
Dion–Jacobson and related phases 208
Ruddlesden–Popper phases 208
incommensurate modulated composite
structures 76–78
inorganic–organic perovskites, hybrid
32, 33
insulating perovskites 176–177
intercalation, modular structures 151–154
inverse (antiperovskite) perovskite
structure 3
ionic conductivity 159–162
applications 161
Arrhenius equation 159
Ln₂NiO₄₊δ 161–162
solid oxide fuel cells (SOFCs) 161
Jahn–Teller octahedral distortion
AA’₃B₄O₁₁-related phases 48
cuprate superconductors 139–140
KCuF₃ 16–19, 32
K₂NiF₄ (T or T/O) structure 123–127
KCuF₃, Jahn–Teller octahedral
distortion 16–19, 32
Kröger–Vink notation, point defects 50,
307–308
La₃CuO₄ 139–141
LaAlO₃, trigonal symmetry 24–26
LaNiO₃, metal–insulator transitions
252–253
lanthanoid cobaltites, metal–insulator
transitions 254
lanthanoid manganites, metal–insulator
transitions 253–254
layered perovskite structures 141–142, 143, 144, 145
LFMR see low-field magnetoresistance
LiNbO₃, diffusion 157–158
Ln₂NiO₄₊δ, ionic conductivity 161–162
LnBaCo₂O₅.₅₀ phases 73–74
LnCoO₃, metal–insulator transitions 254
LnMnO₃, metal–insulator transitions 253–254
low-field magnetoresistance (LFMR) 272
Mach–Zehnder interferometer, electro-optic properties 296
magnetism 217–246
antiferromagnetic perovskites 222–232
canted spins 238–240
Curie–Weiss law 218, 219–222
ferrimagnetic perovskites 236–237
ferromagnetic perovskites 233–235
Goodenough–Kanamori–Anderson (GKA) rules 218
magnetic ordering 238–240
multiferroic perovskites 243–246
nanoparticles 243
paramagnetic perovskites 219–222
spin glass behaviour 237–238
superexchange 218
thin films 240–243
magnetocaloric effect (MCE) 287–288
magnetoresistance
colossal magnetoresistance (CMR) 270–272
electronic conductivity 270–272
low-field magnetoresistance (LFMR) 272
manganites 69–71
MCE see magnetocaloric effect
metal–insulator transitions
Ca₂RuO₄ 255–256
electronic conductivity 250–256
LaNiO₃ 252–253
lanthanoid cobaltites 254
lanthanoid manganites 253–254
LnCoO₃ 254
LnMnO₃ 253–254
Sr₂RuO₄ 255–256
titanates and related phases 250–252
metallic perovskites, electronic conductivity 247–250
microdomains 74–75
modular structures 123–154
Aurivillius phases 134–136
Ca₂Nb₂O₇-related phases 136–138
composition variation 146–151
cuprate superconductors and related phases 138–146
Dion–Jacobson and related phases 131–134, 152–154
exfoliation 151–154
intercalation 151–154
K₃NiF₄ (T or T/O) structure 123–127
Nd₂CuO₄ (T⁰) and T* structures 129–130
Ruddlesden–Popper phases 123–129, 146–152
modulated phases 75–78
modulated structures 89–92
modulators
ceramic modulators 299
electro-optic intensity modulators 296–298
electro-optic phase modulators 294–296
morphotrophic phase boundaries (MPBs), ferroelectric/piezoelectric perovskites 209–210
Mott insulators, electronic conductivity 250, 255–256
MPBs see morphotrophic phase boundaries
multiferroic perovskites 243–246
nanoparticles
ferroelectric/piezoelectric perovskites 212–215
magnetism 243
NaOsO₃, electronic conductivity 256
Nd₂CuO₄ 139–141
Nd₂CuO₄ (T⁰) and T* structures 129–130
negative thermal expansion (NTE) 280–283
niobates, A-site-deficient perovskite structures 55–57
nitrides/oxynitrides, anion substituted perovskites 51–53
NTE see negative thermal expansion
octahedral tilting 19–29
optical properties see electro-optic properties
orbital ordering, electronic conductivity 268–270
organic–inorganic perovskites, hybrid 32, 33
orthorhombic symmetry, GdFeO₃ and CaTiO₃ 26–29
oxide ion mixed conductors 167–169
oxides, perovskite see perovskite oxides
oxyfluorides, anion substituted perovskites 53–54
oxygen pressure dependence, electronic conductivity 165–166
oxynitrides/nitrides, anion substituted perovskites 51–53
paraelectric state
Curie–Weiss law 189–190
ferroelectric/piezoelectric perovskites 189–190
paramagnetic perovskites 219–222
perovskite band structure, electronic conductivity 247–250
perovskite oxides
oxide ion mixed conductors 167–169
oxygen pressure dependence, electronic conductivity 165–166
proton conductivity 162–165
perovskite solar cells 299–301
perovskite superconductors 257–258
perovskite tungsten bronzes 55
phase modulators, electro-optic 294–296
piezoelectrics see ferroelectric/piezoelectric perovskites
PNRs see polar nanoregions
point defects 74, 146–148
Kröger–Vink notation 50, 307–308
polar nanoregions (PNRs), relaxor ferroelectrics 202–205
polytypes, perovskites with mixed hexagonal/cubic packing: nomenclature 93
proton conductivity, perovskite oxides 162–165
proton mixed conductors 169–172
pyroelectric effect 288–289
pyroelectrics, ferroelectric/piezoelectric perovskites 191–192
quantum mechanical calculations
electronic structure 38–40
formation energies 38–40
Ramsdell notation, perovskites with mixed hexagonal/cubic packing: nomenclature 94
refractive index changes, electro-optic properties 293–294
relative permittivity
dielectric perovskites 178–180
relaxor ferroelectrics 200–202
relaxor ferroelectrics 200–206
macroscopic characteristics 200–202
microstructures 202–206
polar nanoregions (PNRs) 202–205
relative permittivity 200–202
ReO₃, WO₃ and related structures 54–55
rock-salt ordered double perovskites 42–45
Ruddlesden–Popper phases
improper ferroelectricity 208
modular structures 123–129, 146–152
SbNb₂, 2H–BaNiO₃ structure 36
Seebeck coefficient, thermoelectric properties 284–287
semiconductivity in perovskites 272–274
SOFCs see solid oxide fuel cells
solar cells, perovskite 299–301
solid oxide fuel cells (SOFCs) 172–174
see also thermal expansion
drawbacks 174
ionic conductivity 161
perovskite roles 173–174
spin glass behaviour, magnetism 237–238
spin polarisation and half-metals, electronic conductivity 267–268
Sr₂Mn₂O₅ 69–71
Sr₂RuO₄, metal–insulator transitions 255–256
Sr₃MnO₁₀ 120–121
SrFeO$_{2.5}$ and related phases 71–73
SrTiO$_3$, cubic perovskite structure 4–6
stacking sequences, hexagonal perovskite-related structures 95–97
strain gradient, ferroelectric/piezoelectric perovskites 214–215
structure-field maps 36–38, 39
superconductors 4, 47, 48
cuprate high-temperature superconductors 258–267
cuprate superconductors 138–146
perovskite superconductors 257–258
supercarboxylic acid, magnetism 218
surface conductivity, electronic conductivity 275
symmetry relationships 30–32
tantalates, A-site-deficient perovskite structures 55–57
theoretical calculations electronic structure 38–40
formation energies 38–40
thermal expansion 277–284
anomalous thermal expansion 280–283
negative thermal expansion (NTE) 280–283
normal thermal expansion 277–280
thermal contraction 280–283
zero thermal expansion (ZTE) materials 283–284
thermoelectric properties 284–287
ceramic perovskites 289–291
electrocaloric effect 288–289
electrochromic films 291–292
magnetocaloric effect (MCE) 287–288
pyroelectric effect 288–289
Seebeck coefficient 284–287
transparency 289–291
thin films electronic conductivity 275
ferroelectric/piezoelectric perovskites 212–215
magnetism 240–243
surface conductivity 275
tilting, octahedral 19–29
titanates, A-site-deficient perovskite structures 55–57
titanates and related phases, metal–insulator transitions 250–252
tolerance factor (Goldschmidt) 6–11
transparency 289–291
ceramic perovskites 289–291
thermoelectric properties 289–291
trigonal symmetry, LaAlO$_3$ 24–26
YBa$_2$Cu$_3$O$_7$ 139–141
zero thermal expansion (ZTE) materials 283–284
Zhdanov notation, hexagonal perovskite-related structures 95
ZTE see zero thermal expansion materials