CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Phytotherapies—Past, Present, and Future</td>
<td>1</td>
</tr>
<tr>
<td>Iqbal Ramzan and George Q. Li</td>
<td></td>
</tr>
<tr>
<td>1.1 Overview of Phytotherapy</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Definition</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 International Trend in the Usage of Complementary Medicines</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Preclinical Research on Phytotherapies</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Pharmacognosy and Quality Standardization of Phytotherapies</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Pharmacological Studies and Identification of Bioactive Compounds</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Application of Proteomics and Metabolomics in Phytotherapy Research</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Clinical Research on Phytotherapies</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Efficacy of Popular Phytotherapies</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Chinese Herbal Medicines</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3 Food Nutrition and Translational Research</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Safety of Phytotherapies</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Profile of Research in Complementary Medicine</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1 International Profile</td>
<td>9</td>
</tr>
<tr>
<td>1.5.2 Australian Profile of Research in Complementary Medicines</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Summary and Future Directions</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>
2 Quality Control and Quality Assurance of Phytomedicines: Key Considerations, Methods, and Analytical Challenges
Wai-Ping Yau, Cheong Hian Goh, and Hwee-Ling Koh

2.1 Introduction 18
2.2 Key Considerations in QC/QA of Phytomedicines 20
 2.2.1 Identification and Good Agricultural and Collection Practices (GACP) 20
 2.2.2 Contamination 22
 2.2.3 Substitution 25
 2.2.4 Adulteration 25
 2.2.5 Contents and Standardization 26
 2.2.6 Stability 26
 2.2.7 Processing 26
2.3 Methods for QC/QA of Phytomedicines 27
 2.3.1 Macroscopic Evaluation 27
 2.3.2 Microscopic Evaluation 27
 2.3.3 Physicochemical Analysis 29
 2.3.4 Chemical Fingerprinting 29
 2.3.5 DNA Fingerprinting 35
 2.3.6 “Omics” Technology 36
2.4 Challenges 37
2.5 Conclusions 40
References 40

3 Preclinical (In Vivo) and Laboratory (In Vitro) Evidence of Phytomedicine Efficacy
Mohi Iqbal Mohammed Abdul and Tom Hsun-Wei Huang

3.1 Introduction to Development of Drugs from Nature 49
3.2 Use of In Vitro and In Vivo Models in Herb Drug Research: Learning Thus Far 50
 3.2.1 In Vitro Assays 50
 3.2.2 In Vivo Assays 51
3.3 Cardiovascular- and Stroke-Related Diseases: In Vitro and In Vivo Focus 53
 3.3.1 Cardiovascular Diseases 53
 3.3.2 Stroke 55
3.4 Conclusions 60
References 61

4 Clinical Efficacy Trials with Natural Products and Herbal Medicines
Christina L. Nance

4.1 Introduction 65
4.2 Trials in Various Disease States 66
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Profile: RCT of Natural Product in Rheumatoid Arthritis (RA)</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2 Asthma</td>
<td>67</td>
</tr>
<tr>
<td>4.2.3 Cancer</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4 Cardiovascular Disease</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5 Diabetes</td>
<td>69</td>
</tr>
<tr>
<td>4.2.6 Dermatology</td>
<td>70</td>
</tr>
<tr>
<td>4.2.7 Gastroenterology</td>
<td>70</td>
</tr>
<tr>
<td>4.2.8 Viral Infections</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Natural Product: Green Tea</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1 Green Tea Catechin, Epigallocatechin Gallate (EGCG)</td>
<td>73</td>
</tr>
<tr>
<td>4.4 EGCG Clinical Trials</td>
<td>75</td>
</tr>
<tr>
<td>4.4.1 Polyphenon E</td>
<td>75</td>
</tr>
<tr>
<td>4.4.2 Safety, Toxicity, and Pharmacokinetics</td>
<td>75</td>
</tr>
<tr>
<td>4.4.3 Metabolism</td>
<td>76</td>
</tr>
<tr>
<td>4.4.4 Clinical Studies</td>
<td>76</td>
</tr>
<tr>
<td>4.4.5 Cancer Studies</td>
<td>77</td>
</tr>
<tr>
<td>4.5 Human Clinical Study: EGCG and HIV-1 Infection</td>
<td>78</td>
</tr>
<tr>
<td>4.5.1 Translational Medicine: EGCG: Bench-to-Bedside</td>
<td>78</td>
</tr>
<tr>
<td>4.5.2 Phase I Clinical Trial: Polyphenon E in HIV-1 Infection</td>
<td>79</td>
</tr>
<tr>
<td>4.6 Conclusion</td>
<td>80</td>
</tr>
</tbody>
</table>

References | 80 |

5 Novel Formulations and Drug Delivery Systems for Phytotherapies | 89 |

Shengpeng Wang, Meiwan Chen, Qi (Tony) Zhou, and Hak-Kim Chan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Limitations of Conventional Formulations for Herbal Medicines</td>
<td>89</td>
</tr>
<tr>
<td>5.1.1 Barriers in Physicochemical and Biological Properties</td>
<td>89</td>
</tr>
<tr>
<td>5.1.2 Challenges in Quality and Safety Assurance</td>
<td>90</td>
</tr>
<tr>
<td>5.1.3 Conventional Formulations Limit the Therapeutic Efficacy of Herbal Medicines</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Crucial Issues of Developing Novel Delivery Systems for Herbal Medicines</td>
<td>91</td>
</tr>
<tr>
<td>5.2.1 How Novel Delivery Systems Follow the Tradition?</td>
<td>91</td>
</tr>
<tr>
<td>5.2.2 Pharmacokinetic Research on Delivery Systems for Herbal Medicines</td>
<td>92</td>
</tr>
<tr>
<td>5.2.3 Safety Considerations on Delivery Systems for Herbal Medicines</td>
<td>92</td>
</tr>
<tr>
<td>5.3 Novel Delivery Systems of Herbal Medicines</td>
<td>93</td>
</tr>
<tr>
<td>5.3.1 Pulmonary Delivery of Herbal Medicines</td>
<td>93</td>
</tr>
<tr>
<td>5.3.2 Nanocarriers of Herbal Medicines for Drug/Gene Delivery</td>
<td>94</td>
</tr>
<tr>
<td>5.3.3 Surface Modification of Nanocarriers by Herbal Medicines</td>
<td>95</td>
</tr>
<tr>
<td>5.3.4 Herbal Medicines as Photosensitizers for Photodynamic Therapy</td>
<td>95</td>
</tr>
<tr>
<td>5.4 Summary</td>
<td>96</td>
</tr>
</tbody>
</table>

References | 97 |
Contents

6 *Phytotherapies Used by Indigenous Populations* 101
Bradley S. Simpson and Susan J. Semple

6.1 Introduction 101
6.2 Phytotherapies of Indigenous Australians 103
6.2.1 Introduction 103
6.2.2 Philosophy and Knowledge Transmission 104
6.2.3 Ailments Treated with Medicinal Plants 106
6.2.4 How Plant Medicines Have Been Used 107
6.2.5 Methods of Plant Preparation 109
6.2.6 Prized and Commonly Used Plants in Australian Indigenous Medicine 111
6.3 Challenges of a Changing Environment 114
6.3.1 Safety of Australian Phytotherapies 115
6.3.2 Development and Regulation of Australian Indigenous Medicines 116
6.3.3 Integration of Traditional and Western Medicine in Indigenous Populations 117
6.4 Conclusions 117
References 118

7 *Phytotherapies from Traditional Chinese Medicine* 122
Michael Rieder

7.1 Traditional Chinese Medicine 122
7.2 Key Concepts in Traditional Chinese Medicine 124
7.3 Herbal Medicine and Traditional Chinese Medicine 126
7.4 Issues in the Development of Phytotherapy from Traditional Chinese Medicine 130
7.5 Phytotherapies Developed from Traditional Chinese Medicine 131
7.6 Huang Qin Tang and the Development of PHY906 134
7.7 Ginseng 136
7.8 Moving Forward 138
References 138

8 *Integrating Traditional Greco-Arab and Islamic Diet and Herbal Medicines in Research and Clinical Practice* 142
Bashar Saad

8.1 Introduction 142
8.2 Food Therapy in Greco-Arab and Islamic Medicine 147
8.2.1 Honey 148
8.2.2 Olive Oil 149
8.2.3 Dates 151
8.2.4 Carob (*Ceratonia siliqua*) 152
8.2.5 Fig (*Ficus carica*) 153
8.2.6 Pomegranate (*Punica granatum*) 153
8.2.7 Garlic (*Allium sativum*) and Onion (*Allium cepa*) 154
8.2.8 Edible Wild Plants 154
8.3 Medicinal Plants 157
 8.3.1 Black Seed (Nigella sativa) 160
 8.3.2 Fenugreek (Trigonella foenum-graecum) 167
 8.3.3 Sage (Salvia officinalis) 168
 8.3.4 Khella (Ammi visnaga) 168
 8.3.5 Milk Thistle (Silybum marianum) 168
 8.3.6 Marjoram (Origanum majorana) 171
 8.3.7 Garlic (Allium sativum) and Onion (Allium cepa) 172
 8.3.8 Tayun (Inula viscosa) 172
 8.3.9 Rocket (Eruca sativa) 172
 8.3.10 Nettle (Urtica dioica) 173
 8.3.11 Peppermint (Mentha piperita) 173
 8.3.12 Chamomile (Chamomilla recutita) 174
 8.3.13 Coriander (Coriandrum sativum) 175
 8.3.14 Anise (Pimpinella anisum) 175
 8.3.15 Rosemary (Rosmarinus officinalis) 175
 8.3.16 Devil’s Dung (Ferula asafoetida) 176
 8.3.17 Ginger (Zingiber officinale) 176

References 177

9 Evolution of Herbal Medicines in Europe and its Relationship with Modern Medicine 183
 Elizabeth M. Williamson and Kelvin Chan
 9.1 Background 183
 9.2 Historical Perspective 184
 9.3 European Herbal Medicine: Relationship with Modern Medicine 194
 9.4 Summary 194

References 196

10 Chemical Classification and Chemistry of Phytotherapeutics
 Constituents 199
 Pei H. Cui and Colin C. Duke
 10.1 Introduction 199
 10.2 Phytochemicals 201
 10.2.1 Alkaloids 201
 10.2.2 Flavonoids 205
 10.2.3 Glycosides and Saponins 208
 10.2.4 Phytosterols 209
 10.2.5 Fatty Acids 212
 10.2.6 Essential Oils 214
 10.2.7 Terpenes 214
 10.3 Other Phytochemicals 215
 10.4 Medicinal Effects Relating to Dietary Intake 217
10.4.1 Anti-oxidants 217
10.4.2 Omega-3 Long Chain Fatty Acids and Derivatives 220
10.5 Natural Products as Leads for Drug Development 223
 10.5.1 Catechol Moiety of Piceatannol: Implication and Significance 224
 10.5.2 SAR Studies for Drug Development 226
10.6 Summary 230
References 230

11 Therapeutic Potential of Ginsenosides in Management of Atherosclerosis 236
Xiao-Jing Zhang, Huanxing Su, Yi-Tao Wang, and Jian-Bo Wan

11.1 Introduction 236
11.2 Chemical Diversity of Ginsenosides and Distribution 238
11.3 Anti-Atherosclerotic Effects of Ginsenosides 240
11.4 Underlying Mechanisms of Ginsenosides Against Atherosclerosis 244
 11.4.1 Regulation of Blood Lipid Profile 244
 11.4.2 Anti-oxidant Activity 251
 11.4.3 Anti-vascular Inflammation 252
 11.4.4 Effect on Vascular Cells 255
 11.4.5 Anti-platelet Effects 257
 11.4.6 Anti-angiogenesis Effects 257
11.5 Conclusions and Future Perspectives 258
Acknowledgments 258
References 258

12 Phytotherapy Pharmacophores for Major Cellular Drug Targets 268
Jennifer A. Ong, Paul W. Groundwater, and David E. Hibbs

12.1 Introduction 268
12.2 What is a Pharmacophore? 269
12.3 Pharmacophore Models of Cardiovascular Drugs 270
12.4 Pharmacophore Models for Anticancer Drugs 285
12.5 Pharmacophore Models for Anti-Inflammatory Drugs 290
12.6 Pharmacophore Models for Anti-Infective Drugs 297
12.7 Pharmacophore Models for Neurological Drugs 299
12.8 Pharmacophore Models for Miscellaneous Drugs 305
12.9 Conclusions 309
References 309
13 Use of Kava as a Phytotherapeutic Agent and Kava-Related Hepatotoxicity

Dong Fu and Iqbal Ramzan

13.1 Introduction 312
13.2 Active Components in Kava 313
13.3 Therapeutic Applications of Kava 314
13.4 Pharmacology of Kava 314
 13.4.1 Anti-psychotic Effects of Kava 314
 13.4.2 Anti-cancer Effects of Kava 316
13.5 Side Effects of Kava 317
13.6 Hepatotoxicity of Kava 318
 13.6.1 Inhibition of Cytochrome P450 Enzymes Activities 318
 13.6.2 Reduction of Liver Glutathione 319
 13.6.3 Induction of Hepatic Inflammatory Responses 320
 13.6.4 Inhibition of Cyclooxygenase Enzyme Activity 320
 13.6.5 Inhibition of Hepatic Transporters 321
 13.6.6 Damage of Hepatic Mitochondria 321
13.7 Summary and Future Challenges 322
References 323

14 Phytotherapies as New Drug Sources: Gossypol and Curcumin

Vivian Wan Yu Liao, Rajeshwar Narlawar, David E. Hibbs, and Paul W. Groundwater

14.1 Botanical Sources of Gossypol and Curcumin 330
14.2 Stereoisomerism, Tautomerism, and Reactivity 332
 14.2.1 Stereoisomerism 332
 14.2.2 Tautomerism 333
 14.2.3 Reactivity 333
14.3 Biological Activity of Gossypol and its Analogues 337
 14.3.1 Antifertility 337
 14.3.2 Anticancer 338
 14.3.3 Antiviral 341
 14.3.4 Antimalarial 345
 14.3.5 Other Biological Activity 346
14.4 Biological Activity of Curcumin and its Analogues 346
 14.4.1 Introduction 346
 14.4.2 Anticancer 348
 14.4.3 Anti-inflammatory and Antioxidant 354
 14.4.4 Curcumin in Neurodegenerative Diseases 357
 14.4.5 Antimalarial 359
 14.4.6 Other Biological Activity 360
References 360
15 **Phytotherapies for the Management of Obesity and Diabetes**
Michel Rapinski and Alain Cuerrier

15.1 Introduction
15.2 Plants from the North American Pharmacopoeia
15.3 Pharmacological Screening: Providing Empirical Evidence for Phytotherapies
15.3.1 Diabetes
15.3.2 Obesity
15.4 Community-Based Participation: Developing Phytotherapies from Traditional Knowledge
15.5 Conclusions
References

16 **Phytotherapeutics for Cancer Therapy**
Daniel M.-Y. Sze, Hao Liu, Maureen V. Boost, Raimond Wong, and Stephen Sagar

16.1 Introduction
16.2 Anticancer Phytotherapeutics With NK Enhancement
16.2.1 Effects of Clinically Useful Phytocompounds on Cancer Patients’ NK Cell Immunity, Quality of Life (QoL), and Overall Survival
16.2.2 Commonly Used Phytotherapeutics in Cancer Management
16.2.3 Phytotherapeutic Formulae for Cancer via NK Modulation
16.3 Conclusions
References

17 **Phytomedicines for Fatty Liver Disease and Functional Gastrointestinal Conditions**
George Q. Li, Moon-Sun Kim, Fangming Jin, and Jun-Lae Cho

17.1 Introduction
17.2 Phytomedicines for FLD
17.2.1 Introduction and Pharmacotherapy
17.2.2 Treatment of Fatty Liver with Herbal Medicines
17.2.3 Common Herbs Used in Fatty Liver Management
17.3 Phytomedicines for IBS
17.3.1 Introduction and Pharmacotherapy
17.3.2 Treatment of IBS in Traditional Medicine
17.3.3 Common Herbs Used in the Management of IBS
17.4 Phytomedicines for Constipation
17.4.1 Treatment of Constipation with Herbal Medicines
17.4.2 Common Herbs Used in the Management of Constipation 446
17.5 Summary and Future Perspectives 448
References 448

18 Phytomedicines for Inflammatory Conditions 464
Sigrun Chrubasik-Hausmann

18.1 Traditional Medicines for Inflammatory Conditions in Europe 464
18.2 Twenty-First-Century Update on PAIDs 465
18.3 Oral Extracts from Salix Species 465
 18.3.1 Efficacy 467
 18.3.2 Safety 467
18.4 Oral Extracts from Harpagophytum Procumbens 468
 18.4.1 Efficacy 469
 18.4.2 Safety 469
18.5 Oral Avocado–Soybean Unsaponifiables 469
 18.5.1 Efficacy 470
 18.5.2 Safety 473
18.6 Oral Extracts from Tripterygium wilfordii 473
 18.6.1 Efficacy 473
 18.6.2 Safety 474
18.7 Oral PAIDs Containing Unsaturated Fatty Acids 475
 18.7.1 Efficacy 475
 18.7.2 Safety 475
18.8 Other Oral PAIDs 476
18.9 Topical PAIDs 477
 18.9.1 Efficacy 478
 18.9.2 Safety 478
References 478

19 Phytotherapies for Infectious Diseases: Are These Really Useful? 483
Gail B. Mahady, Gabrielle Escalante, Pooja Mikkilineni, Laura J. Mahady,
Temitope O. Lawal, and Bolanle A. Adeniyi

The History of Medicine 483
19.1 Introduction 484
19.2 Historical Precedent for Natural Products as Antimicrobial Drugs 486
19.3 Are Phytotherapies Useful for the Treatment of Infectious Diseases? 487
 19.3.1 Cranberry (Vaccinium macrocarpon Ait) 488
 19.3.2 Turmeric (Curcuma longa L.) as an Antimicrobial Agent 492
 19.3.3 Ginger (Zingiber officinale L.) as an Antimicrobial Agent 494
19.4 Naturally Occurring Compounds that may Reduce Zoonosis 495
19.5 Synergistic and Additive Effects with Antibiotics 496
19.6 New Emerging Infectious Diseases and those with no Known Treatments 496
19.7 SARS 497
19.8 Reducing MRSA Carriage 498
19.9 Conclusions 499
References 500

20 Phytomedicines for CNS Disorders: Safety Issues for use with Antiepileptic Drugs 504
Sophia Yui Kau Fong, Rosina Yau Mok, Qiong Gao, Yin Cheong Wong, and Zhong Zuo

20.1 Introduction 504
20.2 Methodology of Systematic Literature Search 506
20.3 Pharmacokinetic Interactions 506
 20.3.1 Carbamazepine 507
 20.3.2 Phenytoin 507
 20.3.3 Valproate 510
 20.3.4 Diazepam 511
 20.3.5 Phenobarbitone 511
 20.3.6 Newer Generations of Antiepileptic Drugs 512
20.4 Pharmacodynamic Interactions 512
 20.4.1 Antiepileptic Effects 513
 20.4.2 Sedative Effects 517
 20.4.3 Anxiolytic Effects 520
 20.4.4 Memory Impairment Effects 520
 20.4.5 Motor Incoordination Effects 523
20.5 Conclusions 524
References 524

21 Phytotherapies: Drug Interactions in Cancer 536
Andrew J. McLachlan and Stephen J. Clarke

21.1 Introduction 536
21.2 Use of Herbal and Complementary Medicines by People Living with Cancer 537
21.3 Mechanisms of Phytotherapy–Drug Interactions 538
21.4 Selected Examples of Phytotherapy Medicines that have the Potential to Cause Drug Interactions in Cancer 540
 21.4.1 Black Cohosh (Cimicifuga racemosa) 540
 21.4.2 Echinacea (Echinacea purpurea) 541
 21.4.3 Fenugreek (Trigonella foenum graecum) 541
 21.4.4 Ginkgo Biloba 542
 21.4.5 Asian Ginseng (Panax ginseng) 542
 21.4.6 Green Tea (Camellia sinensis) 543
 21.4.7 Kava Kava (Piper methysticum Forst. f.) 544
 21.4.8 Liquorice (Glycyrrhiza uralensis) 544
 21.4.9 Milk Thistle (Silybum marianum) 544
 21.4.10 St. John’s Wort (Hypericum perforatum) 545
Contents

21.4.11 Valerian (*Valeriana officinalis*) 546

21.5 Future Perspectives: Need for Evidence and Advice to Cancer Patients and Physicians 546

21.6 Conclusions 547

Acknowledgments 547

Conflict of Interest 547

References 547

22 Quality Use of Medicines: Considerations in Phytotherapy 554

Lynn Weekes

22.1 Introduction 554

22.1.1 Judicious Use 554

22.1.2 Appropriate Selection 555

22.1.3 Safe and Effective Use 555

22.1.4 The QUM Paradigm 555

22.2 Relevance of QUM for Herbal Medicines 556

22.2.1 Is the QUM Framework Relevant for Herbal Therapies? 556

22.3 Use of Phytotherapies by Consumers 558

22.4 Consumer Attitudes and Beliefs about Herbal Medicines 559

22.4.1 Holistic View of Health and Well-Being 559

22.4.2 It is Natural, So it Must be Safe 560

22.5 Applying the QUM Framework to Phytotherapies 561

22.5.1 Judicious Use 561

22.5.2 Appropriate Selection 562

22.5.3 Safe and Effective Use 563

22.5.4 Adverse Reactions 563

22.5.5 Interactions 564

22.5.6 Allergy 565

22.5.7 Safe Formulation 565

22.5.8 Effectiveness 565

22.6 Building Blocks for Quality Use of Herbal Medicines 566

22.6.1 Objective Information and Ethical Promotion 566

22.6.2 Education and Training 568

22.6.3 Systems and Interventions 569

22.6.4 Shared Decision Making 569

22.7 Conclusion 570

References 570

23 Intellectual Property and Patent Issues with Phytotherapy Products 573

Gint Silins, Jennifer Tan, and Kelvin Chan

23.1 Introduction 573

23.1.1 Historical and Current Aspects of Intellectual Property 573

23.1.2 Types of Intellectual Property Rights 574

23.1.3 Worldwide IP Laws Have Yet to Be Harmonized 575

23.2 IP Rights—Phyto-Industry 575
23.2.1 IP Protection for Phytotherapy Products and Phytotherapies 575
23.2.2 Patents 576
23.2.3 Patents as IP Assets 576
23.2.4 Patents for Protecting Phyto-Inventions 577
23.2.5 Exclusions to Patentability 577

23.3 Brief Overview of Patents and the Patenting Process 578
23.3.1 Patent Searching 578
23.3.2 Patent Ownership 578
23.3.3 Patent Filing 579
23.3.4 Examination and Classification 579
23.3.5 Allowance and Grant 579
23.3.6 Extension of Patent Term 579

23.4 Other Types of IP Rights 585
23.4.1 Trade Secrets 585
23.4.2 Regulatory Exclusivity and Restricted Third-Party Access 585
23.4.3 Plant Variety Protection 586
23.4.4 Industrial Designs 586
23.4.5 Trademarks 586

23.5 Patenting Trends for Phytotherapeutics 587

23.6 Traditional Knowledge and IP Rights 587

Disclaimer
References 590

24 International Regulatory Status of Phytotherapies 593

Ernest V. Linek

24.1 Introduction 593
24.1.1 Country Law Sources 594
24.1.2 Common Requirement: Good Manufacturing Practices 594

24.2 Specific Country Regulations 596
24.2.1 Current Regulations in Australia 596
24.2.2 Current Regulations in Canada 597
24.2.3 Current Regulations in China 604
24.2.4 Current Regulations in the European Union (EU) 609
24.2.5 Current Regulations in India 616
24.2.6 Current Regulations in Japan 619
24.2.7 Current Regulations: United Kingdom 622
24.2.8 Current Regulations in the United States 625

24.3 Future of Phytotherapies: World Health Organization (WHO) 631

Further Reading 634

Index 635