Index

abrasion, 89, 314
activation energy
catalyzed reactions, 18, 47, 236, 246, 248
lump-based models, 304
surface reactions, 27, 34
Adams–Bashforth methods, 254, 255
adsorption
definition, 18
MBS experiment, 238
reactant controlling, 24
types, 18–19
aeration, 166
agglomeration, 89
Air Products/DOE LaPorte three-phase slurry bubble column reactor, 149
allothermal dual-bed reactor, 121–126
animal cell cultures, 167–168
ANSYS Fluent™, 258
Archimedes number, 83, 84
Aris’ numbers, 62
Arrhenius equation, 18, 63
aspect ratio, 176–177
ATR see autothermal reforming (ATR)
attrition, 89
automatic exhaust systems, 178
autothermal reforming (ATR), 7
axial dispersion model, 143–144
axial flow fixed-bed reactor, 55, 56
backward Euler method, 254
bacterial cell aggregation rate, 118
batch bioreactors, 158, 159
BET equation, 20
bimolecular surface reactions, 25–27
biodiesel, 365
biomass accumulation and clogging
trickle-bed bioreactors, 115–121
biofuel旭催化剂
aeration, 166
animal cell cultures, 167–168
batch operation, 157–158
configurations, 157
continuous operation, 158–159
enzymatic processes, 159–160
fed-batch operation, 158, 159
heat transfer, 167
immobilized enzymes/cells, 164–166
living cell growth process, 160–164
mixing, 166–167
monitoring and control, 168
overall mass balance, 159
reactor equations, 159
scale-up, 167
Biot number ratio, 49
bogging, 89
bubble column reactors, 274
bubbling flow reactor modeling, 90–91
bubbling fluidized beds, 84–85
bulk diffusion, 39, 40
Carberry number, 64
carbon monoxide
preferential oxidation, 350–351
selective methanation, 351–352
catalyst
definition of, 18
pellet forms, 273
physical properties, 20
scale, 271–272
selectivity, 21
stability, 21
catalyst activity, 21
catalyst deactivation, 21–22
catalytic hydrodesulfurization, 110–115
catalytic microstructured reactors (CMRs)
multiphase flows see multiphase catalytic microreactors
single-phase see single-phase catalytic microreactors
catalytic steam reforming, 4
catalytic washcoat
isothermal reactor model, 206
reaction and diffusion, 190–194
schematic representation, 174
taylor flow, 205
CFB reactor see circulating fluidized-bed (CFB) reactor
CFD see computational fluid dynamics (CFD)
Chapman–Enskog equation, 40
Chart Energy & Chemicals, Inc., 278
chemical adsorption, 19–20, 27
chemical regime effectiveness factor, 64
chemisorption see chemical adsorption
Chilton–Colburn analogy, 36
circulating fluidized-bed (CFB) reactor, 12, 86, 275–276, 280
CMRs see catalytic microstructured reactors (CMRs)
coke formation processes, 22
collision efficiency, 118
column-type reactors, 14
combined diffusivity, 40
combined heat and power (CHP) PEM fuel cell/methane fuel processor system, 357
Compact GTL company, 278
compositional modulation, 287
computational fluid dynamics (CFD), 57, 85, 256–259
tree-phase slurry reactors, 147–150
COMSOL Multiphysics™, 257, 259, 264
continuous bioreactors, 157–159
continuous stirred tank reactors (CSTRs), 29–30
CSTRs see continuous stirred tank reactors (CSTRs)
Damköhler–Graetz diagram
linear kinetics, 201, 202
nonlinear kinetics, 203
Damköhler number, 38, 49, 68, 183, 184
data analysis methods
differential method, 31–32
initial rates method, 32
integral method, 32
DBT hydrogenolysis see dibenzothiophene (DBT) hydrogenolysis
dibenzothiophene (DBT) hydrogenolysis, 111
differential-algebraic equation (DAE), 255
diffusional regime effectiveness factor, 64–66
dimethyl ether synthesis, 121–126
direct liquefaction, 271
Dirichlet boundary condition, 183–187, 189, 196, 198
disk reactor, 10, 11
dominant fluid–solid heat transfer, 70–72
dominant fluid–solid mass transfer, 66–70

ebullated-bed reactors (EBRs), 314–315
economy of scale philosophy, 289–290
effective diffusivity, 40–41
electrostatics, 89
elutriation, 88
enzymatic processes, 159–160
Euler–Euler formulation, 147, 148
Euler–Euler two-fluid dynamic model, 115, 116
Euler’s method, 253
exothermic equilibrium reaction, 7
explicit techniques, 253–254
external effectiveness factor, 38, 62
external mass transfer, 33–35
external transport processes, 32–38, 48–50

falling film microreactors (FFMRs), 225, 226
fast fluidization and dense suspension
upflow, 85–86
FFRs see fixed-bed reactors (FFRs); fluidized-bed reactors (FFRs)
FCC see fluidized catalytic cracking (FCC)
fed-batch bioreactors, 158, 159
FFMRs see falling film microreactors (FFMRs)
Fick’s law, 58
finite difference method (FDM), 255–256
finite element method (FEM), 256–257
finite volume method (FVM), 258–259
first-order non-isothermal reaction, 62
Fischer–Tropsch synthesis (FTS), 271–291
fixed-bed gas–solid catalytic reactors
catalyst particle, averaging over, 61–66
heat transfer, 70–72
mass and thermal dispersion, 72–73
mass transfer, 66–70
modeling, 56–61
fixed-bed reactors (FFRs), 3–11, 60, 276–280, 310–313, 332
fixed-bed reformers, 336–337
fixed fluidized-bed reactors, 274, 275, 281
fluid and solid heat transfer, wall, 59
fluid dynamic similarity maintenance, 109–110
fluid heat dispersion coefficients, 58
fluidized-bed catalytic reactors, 91–92
advantages, 81
disadvantages, 81
hydrodynamics, 83–85
modeling, 89–91
pilot testing, 91–92
preconditions for, 81
reactor performance, 86–89
scale-up, 91
fluidized-bed reactors (FFRs), 11–13, 280–281
fluidized catalytic cracking (FCC), 12

foiling, 89
fractional collision efficiency, 113
fractional-order kinetics, 304
Freundlich isotherm, 20
FTS see Fischer–Tropsch synthesis (FTS)
gas-fluidized beds, 83–86
gas–liquid slurry bubble column reactors, 150
gas–liquid–solid reactions, 226
gas mixing, 87
gas-phase FTS, 288
gas recycling, 308–309
gas–solid PFRs, 10
Gear’s backward difference formulas, 254
German FTS reactors, 272–274
Graetz–Lévêque problem, 182–186
Graetz–Nusselt problem, 182

catalysts, 86
chemistry, 108
kinetic models, 23
kinetic models, 24
kinetic models, 25
kinetic models, 26
kinetic models, 27
kinetic models, 28
kinetic models, 29
kinetic theory of granular flows (KTGF), 148
Knudsen diffusion, 39, 40
laboratory catalytic reactors, 29–31
laboratory-scale packed bed operation
catalyst deactivation, 373–374
fluid dynamics, 373
heat transfer, 373
input variables, 366
overall strategy, 372–373
particle sizes and shapes, 373
pressure drop, 373
modeling and simulation, 317–326
petroleum refining, 297–298
process variables, 307–310
reactors, 310–316
recycle gas circuit, 309
thermodynamics, 305–306

hydrotreating trickle-bed reactors, 110–115
idealized flow models, 143–144
immobilized enzymes/cells, 164–166
impact attrition, 89
implicit integration techniques, 254–255
indirect liquefaction, 271
indirect partial oxidation (IPOX), 259–261
industrial catalytic processes, fluidized-bed reactors, 81–83
industrial reactor, 109–110
instrumentation, fluidized-bed reactor, 92
integrated aqueous-phase glycerol reforming, 121–126
integrated methanol fuel processor, 358
internal effectiveness factor, 42
internal/intraparticle transport processes, 39–50
interphase momentum exchange, 148
intraparticle heat transfer, 41
intraparticle mass transfer, 39–41
intrinsic kinetics
heterogeneous reactions, 22–32, 104
intraparticle transport resistances, 47–48
wall-coated monolith/microreactor, 198–199
isothermal axial flow bed, 67–70
isothermal effectiveness, 41–45
isothermal overall effectiveness, 48–49
kinetic measurement
data collection criteria, 234
microkinetic approach, 241
steady-state flow experiments, 235–237
surface science experiments, 238–241
TAP approach, 241–248
technical catalysts, 234
transient flow experiments, 237–238
kinetic models, 23–27
kinetic theory of granular flows (KTGF), 148
Knudsen diffusion, 39, 40
laboratory catalytic reactors, 29–31
laboratory-scale packed bed operation
catalyst deactivation, 373–374
fluid dynamics, 373
heat transfer, 373
input variables, 366
overall strategy, 372–373
particle sizes and shapes, 373
pressure drop, 373
residence time, 374–375
superficial velocity, 374
laboratory testing, 91–92
Langmuir batch reaction curves, 368
Langmuir–Hinselwood formulation, 23, 111
Langmuir isotherm for molecular adsorption, 19
Levenberg–Marquardt-based multiple parameter optimization algorithm, 372
Lewis number, 63
LHHW rate equations see Langmuir–Hinselwood–Hougen–Watson (LHHW) rate equations
liquid biofuels, 365
liquid holdup, 99–100
liquid-phase FT, 288
liquid-phase sulfiding procedure, 316
liquid–solid mass transfer, three-phase fixed-bed reactors, 105–106
liquid-to-wall mass transfer coefficient, 225
living cell growth process, 160–164
Lockhart–Martinelli model, 225
low-temperature Fischer–Tropsch (LTFT) synthesis, 13
MASI approximation see most abundant surface intermediate (MASI) approximation
mass Biot number, 63, 66
mass dispersion, 72–73
mass dispersion effective coefficients, 57–58
mass transfer, 88
with chemical reaction, 41–45
single-phase catalytic microreactors, 214–215
three-phase fixed-bed reactors, 104–106
mass transfer coefficients correlations, 35
three-phase slurry reactors, 145, 146
mass transfer resistances, 104
mathematical model
fixed-bed reactors, 56–61
trickle-bed bioreactors, 116–118
MATLAB software, 31, 255, 259
maximum allowable temperature (MAT), 326
MBRs see moving-bed reactors (MBRs)
MBS see molecular beam scattering (MBS) Mears’ criterion
external heat transfer effects, 35–36
external mass transfer effects, 34–35
membrane reactors (MRs), 333, 350
membrane reformers, 344–348
metabolic products, online monitoring of, 168
methane steam reforming, 4
Mexican Institute of Petroleum (IMP) process, 317
Michaelis–Menten kinetics, 159–161, 165, 166
microcalorimetry, 238
microchannel heat exchanger, 349
microchannel reactors bubble and slug length, 220–221
hydrodynamics, 218–220
liquid film thickness, 221–222
pressure drop, 222–225
schematic presentation, 11
microkinetic approach, 241
micoreactors catalytic reactions (see catalytic microstructured reactors (CMRs)) design and fabrication, 332–333
microwave-assisted flow process (MAFP) micoreactors, 225
minimum bubbling velocity, 84
minimum fluidization flow rate, 11
minimum fluidization superficial velocity, 83–84, 86
mixing, 166–167
mixing cell models see tank-in-series models molecular beam scattering (MBS), 238–240
momentum balance equation, 122, 123
monolith honeycomb, 173, 174, 177, 178
monolithic fuel processors, 355–357
monolithic reactors, 8–9, 332, 348
applications, 178
aspect ratio, 176–177
catalyst incorporation, 175–176
channel design (see wall-coated monolith channels) channel flow, 174
classification, 175
heat transfer operating modes, 177
regime mapping methodology, 197–204
scales representation, 173, 174
structure material, 177
three-phase processes, 204–206
WGS reaction, 348
monolithic reformers, 337–342
most abundant surface intermediate (MASI) approximation, 27
moving-bed reactors (MBRs), 11–14, 313–314
MRs see membrane reactors (MRs) multihydrotreating reactor with quenching, 308
multifunctional reactors, 56
multiphase catalytic microreactors liquid holdup, 217–218
microchannels, 218–225
microstructured packed beds, 216–217
multiphase fixed-bed reactors gas–liquid flow resistance, 99–100
multitubular packed-bed reformers, 4–6
multitubular trickle bed reactor, 275, 277
natural gas fuel processor/fuel cell system flow scheme, 355, 356
gas temperature, carbon monoxide and hydrogen content, 355, 356
start-up energy demand, 355, 357
Navier–Stokes equations, 116
Neumann boundary condition, 183–186, 189, 260
nonequilibrium thermomechanical models, 102–104
nonisothermal conditions
external and internal transport effects, 49–50
multiple steady states, 36–38
nonisothermal effectiveness factor, 46–47, 65, 66
non-isothermal kinetics, 65–66
non-isothermal nth-order reaction, 64
non-isothermal non-adiabatic axial flow bed, 70
non-isothermal reaction–diffusion systems, 63
nonisothermal spherical catalyst particle, 46
NOx removal, 178
classification, 175
channel design (see wall-coated monolith channels) channel flow, 174
classification, 175
heat transfer operating modes, 177
regime mapping methodology, 197–204 scales representation, 173, 174
structure material, 177
three-phase processes, 204–206
WGS reaction, 348
monolithic reformers, 337–342
most abundant surface intermediate (MASI) approximation, 27
moving-bed reactors (MBRs), 11–14, 313–314
MRs see membrane reactors (MRs) multihydrotreating reactor with quenching, 308
multifunctional reactors, 56
multiphase catalytic microreactors liquid holdup, 217–218
microchannels, 218–225
microstructured packed beds, 216–217
multiphase fixed-bed reactors gas–liquid flow resistance, 99–100
multitubular packed-bed reformers, 4–6
multitubular trickle bed reactor, 275, 277
natural gas fuel processor/fuel cell system flow scheme, 355, 356
gas temperature, carbon monoxide and hydrogen content, 355, 356
start-up energy demand, 355, 357
Navier–Stokes equations, 116
Neumann boundary condition, 183–186, 189, 260
nonequilibrium thermomechanical models, 102–104
nonisothermal conditions external and internal transport effects, 49–50
multiple steady states, 36–38
nonisothermal effectiveness factor, 46–47, 65, 66
non-isothermal kinetics, 65–66
non-isothermal nth-order reaction, 64
non-isothermal non-adiabatic axial flow bed, 70
non-isothermal reaction–diffusion systems, 63
nonisothermal spherical catalyst particle, 46
NOx removal, 178
classification, 175
channel design (see wall-coated monolith channels) channel flow, 174
classification, 175
heat transfer operating modes, 177
regime mapping methodology, 197–204 scales representation, 173, 174
structure material, 177
three-phase processes, 204–206
WGS reaction, 348
monolithic reformers, 337–342
most abundant surface intermediate (MASI) approximation, 27
moving-bed reactors (MBRs), 11–14, 313–314
MRs see membrane reactors (MRs) multihydrotreating reactor with quenching, 308
multifunctional reactors, 56
multiphase catalytic microreactors liquid holdup, 217–218
microchannels, 218–225
microstructured packed beds, 216–217
multiphase fixed-bed reactors gas–liquid flow resistance, 99–100
multitubular packed-bed reformers, 4–6
multitubular trickle bed reactor, 275, 277
natural gas fuel processor/fuel cell system flow scheme, 355, 356
gas temperature, carbon monoxide and hydrogen content, 355, 356
start-up energy demand, 355, 357
Navier–Stokes equations, 116
Neumann boundary condition, 183–186, 189, 260
nonequilibrium thermomechanical models, 102–104
nonisothermal conditions external and internal transport effects, 49–50
multiple steady states, 36–38
nonisothermal effectiveness factor, 46–47, 65, 66
non-isothermal kinetics, 65–66
non-isothermal nth-order reaction, 64
non-isothermal non-adiabatic axial flow bed, 70
non-isothermal reaction–diffusion systems, 63
nonisothermal spherical catalyst particle, 46
NOx removal, 178
numerical solution techniques
CFD, 256–259
hydrocarbon steam reforming, 261–265
methane, IPOX of, 259–261
ODE, 253–255
PDE, 255–256
ODE see ordinary differential equations (ODE)
1D two-fluid model, 101
operando spectroscopy, 237
ordinary differential equations (ODE), 253–255
outflow boundary condition, 112
oxidative steam reforming, 330
packed-bed reactors (PBRs), 3–8
packed metal gauze technology, 348
paraffin hydrocracking, 302
partial differential equations (PDE), 255–256
partial oxidation, 178, 330
particle diffusion, 368–369
particle mixing, 86–87
PBRs see packed-bed reactors (PBRs)
PD (Sibunit) catalyst, 365, 366
Pd/C (Aldrich) catalyst, 365–370, 372
PDE see partial differential equations (PDE)
Pecler number, 58, 69, 190, 366, 371–373
permeable composite monolith membranes, 287
phenol biodegradation, 115–121
physical adsorption, 19, 20
pilot testing, 91–92
Pittsburgh Energy Technology Center (PETC), 276
plate heat exchanger
fuel processors, 357–358
microstructured reformers, 342–344
WGS reaction, 348–349
plug-flow reactors (PFRs), 30
poisoning, 22
polynuclear aromatics (PNA), 297, 302, 305
pore diffusion, 39, 367–368
porous spherical catalyst particle, 43–45
powder group, 84
power-law kinetics, 65
Prater’s parameter, 63
preferential oxidation, 330
carbon monoxide, 350–351
process intensification approach, 225–226
product controlling desorption, 24
pseudo-homogeneous model, 66, 67, 71
Qatar reactors, 274, 277, 288
quantitative treatment of
chemisorption, 19–20
radial flow fixed-bed reactor, 55, 56
radial flow reactors, 9, 10
radial mixing, 87
erate-determining mass transfer resistance, 88
rate-determining slow step, 23
reaction temperature, 307–308
reactor modeling, 89–91
reformers, 333–336
fixed-bed, 336–337
membrane, 344–348
microstructured, 342–344
monolithic, 337–342
regime mapping methods, monolith reactors
intrinsic kinetic measurements, 198–199
linear kinetics, 201–202
nonlinear reaction kinetics, 202–203
operating ranges, 197
operating regimes, conceptual analysis of,
199–201
performance evaluation, 203–204
process conditions, 199
residence time distribution (RTD), 138,
213–214, 371
reverse water–gas shift reaction (RWGS), 351
Reynolds number, 58
Rheinpreussen–Koppers synthesis, 274
Rideal–Eley mechanism, 25, 26
RTD see residence time distribution (RTD)
Ruhrchemie normal-pressure synthesis, 274
Runge–Kutta–Fehlberg (RKF) method, 254
Runge–Kutta–Gill method, 254
Runge–Kutta (RK) method, 253
Sankey diagram, 357
Sasol reactors, 274–276, 279–282, 288
Sasol Synthol reactor, 12
saturation reactions, 301–302
Sauter mean particle diameter, 83
SBCR see slurry bubble column
reactor (SBCR)
scale down, trickle-bed reactors, 109–110
scaling up
bioreactors, 167
fluidized-bed reactors, 91
trickle-bed reactors, 108–109
Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) algorithm, 258
short contact time reactors, 10–11
tsided tubular reformer, 4, 5
SIMPLE algorithm see Semi-implicit Method
for Pressure-Linked
Equations (SIMPLE) algorithm
single cylindrical pore diffusion, 42–43
single pellet string reactors, 110
single-phase catalytic microreactors
eexternal mass transfer, 215
flow maldistribution effect, 214
heat transfer, 215–216
internal mass transfer, 215
RTD, 213–214
slugging flow reactor modeling, 90–91
slurry bubble column reactor (SBCR), 13, 14,
274–275, 281–286
slurry-phase reactor (SPR), 315
slurry reactors, 13–14
small chemical reactors, 271, 273
SMSI see strong metal–support
interactions (SMSI)
solid-catalyzed reactions, 18
solid heat dispersion coefficients, 58
solid-phase shear viscosity, 148
space time, 21
space velocity, 309–310
spatially segregated microchannel reactors,
261–265
spherical fixed-bed reactor, 56
spinning basket reactor, 29–30
SPR see slurry-phase reactor (SPR)
SSTKIA experiments see steady-state isotopic
transient kinetic analysis (SSTKIA)
experiments
standard two-fluid models, 100–102
steady-state flow experiments, 235–237
steady-state isotopic transient kinetic analysis
(SSTKIA) experiments, 233, 237
steam reforming, 330
tenaxic acid deoxygenation
adsorption parameters, 368
estimated and experimentally observed
concentrations, 372, 373
experimental data, 365
model assumptions, 366–367
model equations, 367–368
parameter identification studies, 370–371
parameter sensitivity studies, 369–370
particle diffusion study, 369
Peclet number estimation, 371–372
scale-up considerations, 372–375
simplified reaction scheme, 366
stirred-tank reactors, 14–15
Stokes’ law, 118
strong metal–support interactions (SMSI), 22
structured packings, 286–288
supercritical FTS technology, 288–289
surface diffusion, 39–40
surface reaction controlling, 24
surface science experiments, 238–241
synthesis gas (syngas), 271, 274, 275
tank-in-series models, 144–145
TAP approach see temporal analysis of
products (TAP) approach
technical catalysts, 234
Temkin isotherm, 20
temperature programmed desorption (TPD),
240–241
temporal analysis of products (TAP)
approach, 233
eperiment design, 242
pressure/materials correlation, 242
probe molecules, 248
pulse response data analysis, 243–244
thermal Biot number, 87
termal dispersion, 72–73
Thiele modulus, 63, 64, 191, 192
three-phase fixed-bed reactors
flow regimes, 98–99
hydrodynamics, 98–104
mass and heat transfer, 104–108
trickle-bed bioreactors, 108–121
three-phase monolith reactors
film flow, 206
friction factor, 205
isothermal reactor model, 206
mass transfer coefficient, 205
packed bed configuration, 206
Taylor/slug flow, 204, 205
tree-phase reactions, 178
three-phase slurry reactors
agitated tanks, 133–134
applications, 135–136
bubble columns, 133–134
CFD-based models, 147–149
fluidized beds, 133–134
hydrodynamic parameters, 146
ide contacting patterns, 140
liquid dispersion coefficients, 146, 147
lower order models, 143–144
mass transfer coefficients, 145, 146
particle level transport, 139–143
reactor design, 134, 136–139
scale-up, 134, 136–139
schematic diagrams, 134
tank-in-series/mixing cell models, 144–145
transport parameters, 145–146
types, 132, 133
vessel designs and performance attributes, 133–134, 137
TOF see turnover frequency (TOF)
TON see turnover number (TON)
transient flow experiments, 237–238
transport fuels, 271
transport-reaction phenomena, 57–59
Trapezoidal rule, 254
trickle-bed reactors, 9–10, 104
modeling, 110–126
scaling down, 109–110
scaling up, 108–109
trickle-to-pulse flow transition, 98
turbulence closures, 147, 148
turbulent fluidization flow regime, 85
turnover frequency (TOF), 21, 236
turnover number (TON), 21
two-bed reactor system
operating conditions, 125
schematic diagram, 121
two-dimensional heterogeneous
nonisothermal packed bed reactor, 60
two-phase downflow fixed-bed reactors, 98
two-phase pressure drop, 99–100, 114, 120, 121, 223
two-phase upflow fixed-bed reactors, 97, 99
UMFPACK solver, 257, 264
unsymmetrical dimethylhydrazine (UDMH), 226
VeGA microfuel processor systems, 358
Velocys commercial-scale Fischer–Tropsch reactor, 278
vessel-type packed-bed reactors, 6–8
volatile organic compounds (VOCs) emission reduction, 176, 178
wall-coated monolith channels
axial dispersion, 190
channel length and pressure drop, 179–180
friction factors and transfer coefficients, 180, 181
mass transfer, 182–190
nonisothermal operation, 194–197
reactant conversion, 187–190
reaction–diffusion model, 190–194
wall Nusselt number, 71
Warnier model, 225
washcoated monoliths see catalytic washcoat
water–gas shift (WGS) reactors, 70, 226, 330, 348–350
wear (wastage and erosion), 81, 89, 92
weight hourly space velocity (WHSV), 309
Weisz–Prater criterion, 48
Wentzel–Kramers–Brillouin (WKB) method, 185
wetting efficiency, 100
WGS reaction see water–gas shift (WGS) reactors