<table>
<thead>
<tr>
<th>Aircraft materials, 2, 12–16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airy stress function, 56, 57</td>
</tr>
<tr>
<td>Aluminum alloys, 14, 15, 212</td>
</tr>
<tr>
<td>Angle of twist, in torsion, 69, 86–89, 246</td>
</tr>
<tr>
<td>multicell sections, 93</td>
</tr>
<tr>
<td>narrow rectangular section, 79</td>
</tr>
<tr>
<td>single-cell section, 81</td>
</tr>
<tr>
<td>Apparent engineering moduli, 275</td>
</tr>
<tr>
<td>Average stress, 189</td>
</tr>
<tr>
<td>Axial force, 117</td>
</tr>
<tr>
<td>Axial member, 2, 20, 25</td>
</tr>
<tr>
<td>Axial stiffness, 2</td>
</tr>
<tr>
<td>Axial stress, 26</td>
</tr>
<tr>
<td>Beam, 5, 115</td>
</tr>
<tr>
<td>Beam-column, 225</td>
</tr>
<tr>
<td>Bending, bidirectional, 120–128</td>
</tr>
<tr>
<td>Bending equations</td>
</tr>
<tr>
<td>for symmetrical section, 119</td>
</tr>
<tr>
<td>for unsymmetrical section, 122–124</td>
</tr>
<tr>
<td>Bending member, 5</td>
</tr>
<tr>
<td>Bending moments, 117, 121</td>
</tr>
<tr>
<td>Bending rigidity of plate, 257</td>
</tr>
<tr>
<td>Bending stiffness of beam, 5</td>
</tr>
<tr>
<td>Bending stress, 6, 122</td>
</tr>
<tr>
<td>Bernoulli–Euler beam, 115, 119</td>
</tr>
<tr>
<td>Bifurcation points, 230</td>
</tr>
<tr>
<td>Boundary conditions, 54</td>
</tr>
<tr>
<td>for plates, 257</td>
</tr>
<tr>
<td>Buckling</td>
</tr>
<tr>
<td>of bars of unsymmetric section, 244</td>
</tr>
<tr>
<td>effective length of, 235</td>
</tr>
<tr>
<td>of flat plate, 256</td>
</tr>
<tr>
<td>load, see Critical load</td>
</tr>
<tr>
<td>local, 264</td>
</tr>
<tr>
<td>mode shape, 230</td>
</tr>
<tr>
<td>of open section, 264</td>
</tr>
<tr>
<td>of rectangular plate, 259–263</td>
</tr>
<tr>
<td>of straight bar, 235</td>
</tr>
<tr>
<td>torsional, 248–250</td>
</tr>
<tr>
<td>torsional-flexural, 251</td>
</tr>
<tr>
<td>Center of twist, 68, 74, 77, 105</td>
</tr>
<tr>
<td>Centroidal axis, 115</td>
</tr>
<tr>
<td>Compatibility equation, 54, 71, 93, 176</td>
</tr>
<tr>
<td>Composites, 2, 12, 15–16, 45–46</td>
</tr>
<tr>
<td>ceramic matrix, 16</td>
</tr>
<tr>
<td>metal matrix, 16</td>
</tr>
<tr>
<td>polymer matrix, 16, 46</td>
</tr>
<tr>
<td>Coulomb–Mohr criterion, 184</td>
</tr>
<tr>
<td>Coupling, shear-extension, 274, 276</td>
</tr>
<tr>
<td>Crack closure method, 206</td>
</tr>
<tr>
<td>Crack, Griffith, 194</td>
</tr>
<tr>
<td>Crack growth rate, 217</td>
</tr>
<tr>
<td>Crack surface displacement, 204, 205</td>
</tr>
<tr>
<td>Crack tip plasticity, 211</td>
</tr>
<tr>
<td>Crippling stress, 264</td>
</tr>
</tbody>
</table>
Critical load
 for clamped-clamped bar, 234–235
 for clamped-free bar, 231–232
 for clamped-pinned bar, 232–233
 for flat plate, 260–263
 for pinned-pinned bar, 230
 for torsional buckling, 248, 250, 253

Critical strain energy release rate, 196

Critical stress intensity factor, 208

Cylindrical bending, 258

Dilatation, 188

Dislocation, 187

Displacement, concept of, 19–21

Distortional energy, 190

Doubly symmetric section, 248

Dowling, N. E., 212

Eccentrically loaded bars, buckling
 of, 225

Effective length of buckling, 235

Effective slenderness ratio, 235

Elastic compliances, 43, 44, 272

Elastic constants, 44, 45

Elastic symmetry, 45

End constraint, 103–110

Endurance limit, 216

Equilibrium equations, 28, 54
 for buckling of flat plates, 257
 for torsional buckling, 248
 for torsional-flexural buckling, 252

Euler’s formula, 230

Fatigue, 214–219
 crack growth rate, 217
 failure, 214–217
 life, 214
 limit, 216

Fiber-reinforced composites, 15–16, 46, 271

Fibers, mechanical properties of, 16

Flat plates
 elastic shear buckling of, 263
 equilibrium equations of, 257

Flexural shear flow, 151
 in closed sections, 165
 in multicell sections, 173–177
 in open sections, 149–157

Fracture criterion, 196
 for mixed mode fracture, 210

Fracture mechanics, 193–201

Fracture toughness, 196, 208
 effect of thickness, 212
 plane strain, 212

Fuselage, basic structure, 11

Gere, J. M., 246, 249

Griffith, A. A., 194

Hooke’s law, 44

Hydrostatic stress, 60

Inglis, N. P., 193

Initial imperfection of bar, 236

Isotropic materials, 43, 46–47, 183–223

\(J_2 \), 190

Lamina, 280

Laminar stress, 288

Laminate, composite, 16, 280
 angle-ply, 282
 balanced, 282
 cross-ply, 282
 quasi-isotropic, 286
 symmetric, 282, 285

Longitudinal modulus, 53

Maximum principal stress criterion, 184

Maximum shear stress, 35

Mean stress, 215

Metallic materials, 12–15

Modes of loading for fracture, 201, 204
Modulus
 bulk, 60, 189
effective, 285–286
 engineering, 43–45
 longitudinal Young’s, 53
 shear, 42
 transverse Young’s, 53
 Young’s, 39
Moment equation, 175
Moments of inertia, 121
Neutral axis, 118, 122
Neutral plane, 118, 122
Normal strains, 22
Normal stresses, 27, 32, 39
Off-axis loading, 277
Orthotropic solids, 45–46
 Palmgren–Miner rule, 216
 Paris fatigue model, 217
 Plane strain, definition of, 49
 Plane stress, definition of, 49
 Plastic strain, 187
 Ply, composite, 281
 Poisson’s ratios, definition of, 39
 Polar moment of inertia, 75, 248
 Postbuckling of bar, 238–243
 Prandtl stress function, 68, 70
 Primary warping, 97
 Principal axes (directions), 32
 Principal stresses, 31–34
 Product of inertia, 121
 Quasi-isotropic laminates, 286
 Radius of gyration, 235
 polar, 250
 Resultant force, 117, 118, 283
 Resultant moment, 117
 Rigid body motion, 24
 S–N curve, 215
 Saint-Venant’s principle, 63–67, 77
 Saint-Venant torsion, 106
 Secondary warping, 97
 Shear center, 177
 in closed sections, 167
 definition of, 159
 in open sections, 159–164
 Shear deformation, 133
 Shear-extension coupling, 274
 Shear flow, 84, 149–181; see also
 Flexural shear flow and
 Torsional shear flow
 junction, 157–158
 statically determinate, 171–173
 transverse, 130–132
 Shear force, 118, 128
 Shear lag, 140–144
 Shear panels, 4
 Shear strains, 23
 Shear stress, 27, 34–36, 128–132
 Singular stress field at crack tip, 202, 205
 Stacking sequence, 280–281
 Steel alloys, 14, 212
 Stiffnesses
 extensional, 284
 reduced, 272
 Strain component, 55
 Strain, definition of, 20–24
 Strain-displacement relations, 21–24
 Strain energy, 47–49
 in axial member, 197
 in beam, 197
 in torsion member, 198
 Strain energy density, 49
 Strain energy release rate, 194–196
 Strength criteria, 183–186
 Coulomb–Mohr, 184
 maximum principal stress, 184
 Stress concentration factor, 193
 Stress, definition of, 25
 Stress intensity factor, 201–210
 mode I, 202
 mode II, 205
 Stress range, 215
 Stress ratio, 215
Stress-strain relations, 38–47
 for orthotropic solids, 45, 53, 272–274
 for plane strain, 51–53
 for plane stress, 51–53
 for 3-D, 43
Stress vector, 26, 31

Timoshenko beam theory, 136–140, 208
 boundary conditions, 137
 equilibrium equations, 137
Timoshenko, S. P., 246, 249
Titanium alloys, 14, 15
Torque, 67
Torsion of bars of circular section, 74–77
Torsion constant, 74, 79, 89, 93
Torsion member, 7, 198
Torsion, nonuniform, 246
Torsion of thin-wall bars, 81–96
 multicell sections, 86–96
 narrow rectangular section, 77–80
 single-cell section, 81–91
Torsional rigidity, 74
Torsional shear flow, 84
Torsional stiffness (rigidity), 8
Transformation, coordinate
 of lamina stiffnesses and compliances, 274
 of strain, 273
 of stress, 36–38, 273
 of stress-strain relations, 283

Unidirectional lamina, 280

Variable amplitude loading, 216

Warping
 in closed thin-walled section, 101–103
 primary, 97
 secondary, 97
 in thin-walled bar, 246
 in thin-walled section, 96–101
Warping constant, 247
Warping function, 70, 77, 79
Wing, 8–11
 rib, 9
 spar, 10

Yield criterion
 maximum distortion energy, 190
 maximum shear stress, 192
 Tresca, 187
 von Mises, 190
Yield stress, 38, 186
Young’s modulus, 39