Contents

Part One - Growth

1 Bulk Growth of Mercury Cadmium Telluride (MCT) 3
P. Capper
1.1 Introduction 3
1.2 Phase equilibria 4
1.3 Crystal growth 5
 1.3.1 Solid state recrystallization (SSR) 6
 1.3.2 Traveling heater method (THM) 9
 1.3.3 Bridgman 12
 1.3.4 Accelerated crucible rotation technique (ACRT) 13
1.4 Conclusions 18
References 19

2 Bulk Growth of CdZnTe/CdTe Crystals 21
A. Noda, H. Kurita and R. Hirano
2.1 Introduction 21
2.2 High-purity Cd and Te 22
 2.2.1 Cadmium 22
 2.2.2 Tellurium 23
2.3 Crystal growth 23
 2.3.1 Polycrystal growth 23
 2.3.2 VGF single-crystal growth 24
CONTENTS

2.4 Wafer processing 41
 2.4.1 Process flow 42
 2.4.2 Characteristics 44
2.5 Summary 48
Acknowledgements 48
References 49

3 Properties of Cd(Zn)Te Relevant to Use as Substrates 51
S. Adachi
3.1 Introduction 52
3.2 Structural properties 52
 3.2.1 Ionicity 52
 3.2.2 Lattice constant and crystal density 53
 3.2.3 Spontaneous ordering 54
 3.2.4 Structural phase transition 55
3.3 Thermal properties 55
 3.3.1 Phase diagram 55
 3.3.2 Specific heat and Debye temperature 56
 3.3.3 Thermal expansion coefficient 57
 3.3.4 Thermal conductivity and diffusivity 57
3.4 Mechanical and lattice vibronic properties 58
 3.4.1 Elastic constant and related parameters 58
 3.4.2 Microhardness 58
 3.4.3 Optical phonon frequency and phonon deformation potential 59
3.5 Collective effects and some response characteristics 61
 3.5.1 Piezoelectric constant 61
 3.5.2 Fröhlich coupling constant 61
3.6 Electronic energy-band structure 62
 3.6.1 Bandgap energy 62
 3.6.2 Electron and hole effective masses 64
 3.6.3 Electronic deformation potential 65
 3.6.4 Heterojunction band offset 66
3.7 Optical properties 67
 3.7.1 The reststrahlen region 67
 3.7.2 The interband transition region 68
 3.7.3 Near or below the fundamental absorption edge 69
3.8 Carrier transport properties 70
 3.8.1 Low-field mobility 70
 3.8.2 Minority-carrier transport 71
References 71

4 Substrates for the Epitaxial Growth of MCT 75
 J. Garland and R. Sporken
 4.1 Introduction 76
 4.2 Substrate orientation 77
 4.3 CZT substrates 78
 4.3.1 Effects of poor thermal conductivity on MCT growth 78
 4.3.2 Effects of substrate crystalline defects on MCT growth 79
 4.3.3 Effects of substrate impurities 80
 4.3.4 Effects of nonuniform substrate composition and substrate
 roughness 80
 4.3.5 Effects of surface nonstoichiometry and contaminants 81
 4.3.6 Characterization and screening of CZT substrates 81
 4.3.7 Use of buffer layers on CZT substrates 82
 4.4 Si-based substrates 82
 4.4.1 Nucleation and growth of CdTe on Si 83
 4.4.2 The effects of As and Te monolayers 84
 4.4.3 Advantages of CdTe/Si substrates 85
 4.4.4 Disadvantages of CdTe/Si substrates 86
 4.4.5 Reduction of the dislocation density 87
 4.4.6 Passivation of dislocations 88
 4.5 Other substrates 89
 4.6 Summary and conclusions 90
References 90

5 Liquid Phase Epitaxy of MCT 95
 P. Capper
 5.1 Introduction 95
 5.2 Growth 96
 5.2.1 Introduction 96
 5.2.2 Phase diagram and defect chemistry 98
 5.2.3 LPE growth techniques 98
 5.3 Material characteristics 103
 5.3.1 Composition and thickness 103
6 Metal-Organic Vapor Phase Epitaxy (MOVPE) Growth
C. D. Maxey
6.1 Requirement for epitaxy
6.2 History
6.3 Substrate choices
 6.3.1 Orientation
 6.3.2 Material
6.4 Reactor design
6.5 Process parameters
6.6 Metal-organic sources
6.7 Uniformity
6.8 Reproducibility
6.9 Doping
6.10 Defects
6.11 Annealing
6.12 In situ monitoring
6.13 Conclusions
References

7 MBE Growth of Mercury Cadmium Telluride
J. Garland
7.1 Introduction
 7.1.1 The MBE growth technique
7.2 MBE Growth theory and growth modes
 7.2.1 Growth modes
 7.2.2 Quasiequilibrium theories
 7.2.3 Kinetic theories
7.3 Substrate mounting
7.4 In situ characterization tools
 7.4.1 Reflection high-energy electron diffraction
 7.4.2 Spectroscopic ellipsometry
 7.4.3 Other in situ characterization tools
7.5 MCT nucleation and growth
7.6 Dopants and dopant activation
References
Part Two - Properties

8 Mechanical and Thermal Properties

M. Martyniuk, J. M. Dell and L. Faraone

8.1 Density of MCT
 8.1.1 Introduction
 8.1.2 Variation of density with x
 8.1.3 Variation of density with temperature
 8.1.4 Conclusion

8.2 Lattice parameter of MCT
 8.2.1 Introduction
 8.2.2 Variation of lattice parameter with x
 8.2.3 Variation with temperature
 8.2.4 Conclusion

8.3 Coefficient of thermal expansion of MCT
 8.3.1 Introduction
 8.3.2 Variation with x
 8.3.3 Variation with temperature
 8.3.4 Conclusion

8.4 Elastic parameters of MCT
 8.4.1 Introduction
 8.4.2 Elastic parameter values
 8.4.3 Conclusion

8.5 Hardness and deformation characteristics of MCT
 8.5.1 Introduction
 8.5.2 Hardness
 8.5.3 Deformation characteristics of MCT
 8.5.4 Photoplastic effect
 8.5.5 Conclusion

8.6 Phase diagrams of MCT
 8.6.1 Introduction
 8.6.2 Binary systems
8.6.3 Solid phases 181
8.6.4 Quasibinary systems 183
8.6.5 Liquidus, solidus, and solvus surfaces 185
8.6.6 Thermodynamics 186
8.6.7 Conclusion 187
8.7 Viscosity of the MCT melt 187
 8.7.1 Introduction 187
 8.7.2 Temperature variation of kinematic viscosity of the MCT melt 187
 8.7.3 Conclusion 189
8.8 Thermal properties of MCT 189
 8.8.1 Introduction 189
 8.8.2 Specific heat (C_p) 189
 8.8.3 Thermal diffusivity (D_θ) 192
 8.8.4 Thermal conductivity (K_θ) 194
 8.8.5 Conclusion 197
References 197

9 Optical Properties of MCT 205
 J. Chu and Y. Chang
 9.1 Introduction 205
 9.2 Optical constants and the dielectric function 206
 9.3 Theory of band to band optical transition 206
 9.4 Near band gap absorption 207
 9.5 Analytic expressions and empirical formulas for intrinsic absorption and Urbach tail 209
 9.6 Dispersion of the refractive index 216
 9.7 Optical constants and related van Hover singularities above the energy gap 217
 9.8 Reflection spectra and dielectric function 220
 9.9 Multimode model of lattice vibration 221
 9.10 Phonon absorption 222
 9.11 Raman scattering 225
 9.12 Photoluminescence spectroscopy 227
References 231

10 Diffusion in MCT 239
 D. Shaw
 10.1 Introduction 239
 10.2 Self-diffusion 240
 10.2.1 Hg self-diffusion 241
 10.2.2 Cd self-diffusion 241
10.2.3 Te self-diffusion 241
10.2.4 Self-diffusion in doped material 242
10.2.5 Conclusions 242

10.3 Chemical self-diffusion 243
10.3.1 Composition: $x_{Cd} \sim 0.2$ 243
10.3.2 Composition: $0.198 \leq x_{Cd} \leq 0.51$ 245
10.3.3 Cadmium telluride (CdTe) 245
10.3.4 Conclusions 246

10.4 Compositional interdiffusion 247
10.4.1 \tilde{D} from CID profiles of x_{Cd} versus x 248
10.4.2 Conclusions 252

10.5 Impurity diffusion 253
10.5.1 Group 1 impurities 254
10.5.2 Group 3 and 5 impurities 256
10.5.3 Group 6 and 7 impurities 258

References 260

11 Defects in HgCdTe – Fundamental 263

M. A. Berding
11.1 Introduction 263
11.2 Native point defects in zincblende semiconductor 264
11.3 Measurement of native defect properties and density 266
11.4 Ab initio calculations 268
11.4.1 Defect formation energies 268
11.4.2 Electronic excitation energies 269
11.4.3 Defect free energies 270
11.4.4 Prediction of native point defect densities in HgCdTe 270
11.5 Future challenges 272
References 272

12 Band Structure and Related Properties of HgCdTe 275

C. R. Becker and S. Krishnamurthy
12.1 Introduction 275
12.2 Parameters 277
12.2.1 Optical bandgap 277
12.2.2 Valence band offset 277
12.2.3 Electron effective mass 279
12.3 Electronic band structure 279
12.3.1 $k \cdot p$ theory 279
12.3.2 Hybrid pseudopotential tight-binding method 281
13 Conductivity Type Conversion

D. Shaw and P. Capper

13.1 Introduction 297

13.2 Native defects in undoped MCT 298

13.3 Native defects in doped MCT 301

13.4 Defect concentrations during cool down 302

13.5 Change of conductivity type 304
 13.5.1 CTC by thermal annealing 304
 13.5.2 CTC by dry etching 307

13.6 Dry etching by IBM 307
 13.6.1 IBM of vacancy-doped MCT 307
 13.6.2 Modeling of IBM 309
 13.6.3 IBM of impurity-doped MCT 311
 13.6.4 Stability (relaxation) of CTC layers with respect to time and temperature after IBM 311

13.7 Plasma etching 313
 13.7.1 CTC with Ar and Hg plasmas 313
 13.7.2 CTC with H₂/CH₄ plasmas 313

13.8 Summary 314

References 315

14 Extrinsic Doping

D. Shaw and P. Capper

14.1 Introduction 318

14.2 Impurity activity 319
 14.2.1 Group I impurities 320
 14.2.2 Group II impurities 320
 14.2.3 Group III impurities 321
 14.2.4 Group IV impurities 321
 14.2.5 Group V impurities 321
 14.2.6 Group VI impurities 321
 14.2.7 Group VII impurities 322
 14.2.8 Group VIII impurities 322
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3 Thermal ionization energies of impurities</td>
<td>322</td>
</tr>
<tr>
<td>14.3.1 CdTe</td>
<td>322</td>
</tr>
<tr>
<td>14.3.2 LWIR and MWIR MCT</td>
<td>323</td>
</tr>
<tr>
<td>14.4 Segregation properties of impurities</td>
<td>324</td>
</tr>
<tr>
<td>14.4.1 Segregation in CdTe</td>
<td>325</td>
</tr>
<tr>
<td>14.4.2 Segregation in LWIR and MWIR MCT</td>
<td>326</td>
</tr>
<tr>
<td>14.5 Traps and recombination centers</td>
<td>327</td>
</tr>
<tr>
<td>14.5.1 Minority carrier lifetime in MCT</td>
<td>328</td>
</tr>
<tr>
<td>14.5.2 Reducing the concentrations of SRH centers</td>
<td>328</td>
</tr>
<tr>
<td>14.6 Donor and acceptor doping in LWIR and MWIR MCT</td>
<td>330</td>
</tr>
<tr>
<td>14.6.1 In</td>
<td>330</td>
</tr>
<tr>
<td>14.6.2 Iodine</td>
<td>331</td>
</tr>
<tr>
<td>14.6.3 Au</td>
<td>332</td>
</tr>
<tr>
<td>14.6.4 As</td>
<td>332</td>
</tr>
<tr>
<td>14.7 Residual defects</td>
<td>334</td>
</tr>
<tr>
<td>14.8 Conclusions</td>
<td>335</td>
</tr>
<tr>
<td>References</td>
<td>335</td>
</tr>
</tbody>
</table>

15 Structure and Electrical Characteristics of Metal/MCT Interfaces

R. J. Westerhout, R. H. Sewell, J. M. Dell, L. Faraone and C. A. Musca

15.1 Introduction 340
15.2 Reactive/intermediately reactive/nonreactive categories 341
15.2.1 Au/MCT interface 341
15.2.2 In/MCT interface 341
15.2.3 Ag/MCT interface 342
15.2.4 Cu/MCT interface 343
15.2.5 Sb/MCT interface 343
15.2.6 Cr/MCT interface 343
15.3 Ultrareactive/reactive categories 344
15.3.1 Al/MCT interface 344
15.3.2 Pt/MCT interface 345
15.3.3 Sm/MCT interface 345
15.3.4 Ti/MCT interface 345
15.3.5 Pd/MCT interface 346
15.3.6 Sn/MCT interface 346
15.3.7 Conclusion 347
15.4 Passivation of MCT 347
15.4.1 Introduction 347
15.4.2 Device design and passivation requirements 347
CONTENTS

15.4.3 Criteria for good passivation 348
15.4.4 Properties for non CdTe passivant films on MCT 348
15.4.5 Passivation of MCT with CdTe 348
15.4.6 Conclusion 354
15.5 Contacts to MCT 354
15.5.1 Introduction 354
15.5.2 Metal/MCT contacts 354
15.5.3 Schottky barrier contacts 355
15.5.4 Ohmic contacts 356
15.5.5 Conclusions 356
15.6 Surface Effects on MCT 356
15.6.1 Introduction 356
15.6.2 Surface recombination velocity 357
15.6.3 Recombination velocity at heterointerfaces 357
15.6.4 Gated photoconductors 358
15.6.5 Gated photodiodes 358
15.6.6 Conclusions 359
15.7 Surface Structure of CdTe and MCT 359
15.7.1 Introduction 359
15.7.2 Surface structure and epitaxial growth 360
15.7.3 RHEED analysis of the (211) surface 361
15.7.4 Reconstruction of the (110) surface 363
15.7.5 Reconstruction of the (100) surface 365
15.7.6 Reconstruction of (111) surfaces 367
15.7.7 Conclusion 370

References 370

16 MCT Superlattices for VLWIR Detectors and Focal Plane Arrays 375

J. Garland

16.1 Introduction 376
16.2 Why HgTe-based superlattices 377
16.2.1 Advantages of HgTe/CdTe superlattices over MCT alloys 378
16.2.2 Problems with the use of HgTe/CdTe superlattices in VLWIR detectors and FPAs 381
16.2.3 Use of HgTe/CdTe superlattices as buffer layers on CdZnTe before MCT growth 382
16.2.4 Use of MCT-based superlattices as thermoelectric coolers for MCT detectors 383
16.2.5 HgTe/ZnTe superlattices 383
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Calculated properties</td>
<td>384</td>
</tr>
<tr>
<td>16.3.1 Normal electronic band structure: band structures and optical absorptivities</td>
<td>384</td>
</tr>
<tr>
<td>16.3.2 Inverted electronic band structure: band structure and optical absorptivity</td>
<td>385</td>
</tr>
<tr>
<td>16.4 Growth</td>
<td>386</td>
</tr>
<tr>
<td>16.4.1 Substrate orientation</td>
<td>387</td>
</tr>
<tr>
<td>16.4.2 Doping</td>
<td>388</td>
</tr>
<tr>
<td>16.5 Interdiffusion</td>
<td>389</td>
</tr>
<tr>
<td>16.5.1 Effect of interdiffusion on the bandgap and optical absorption spectra</td>
<td>390</td>
</tr>
<tr>
<td>16.5.2 Measuring interdiffusion by X-ray diffraction</td>
<td>391</td>
</tr>
<tr>
<td>16.5.3 Measuring interdiffusion by STEM</td>
<td>393</td>
</tr>
<tr>
<td>16.6 Conclusions</td>
<td>395</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>396</td>
</tr>
<tr>
<td>References</td>
<td>396</td>
</tr>
</tbody>
</table>

17 Dry Plasma Processing of Mercury Cadmium Telluride and Related II–VI s

A. J. Stoltz

17.1 Introduction | 400 |
17.2 Effects of plasma gases on MCT | 401 |
17.3 Plasma parameters | 403 |
17.3.1 Physics of plasmas	403
17.3.2 Hydrogen variations	405
17.3.3 Plasma parameters—effects on II–VI semiconductors	408
17.3.4 Plasma parameter change ECR to ICP	410
17.4 Characterization—surfaces of plasma-processed MCT	411
17.4.1 Surface chemical analysis	411
17.4.2 In vacuo crystallographic surface analysis	413
17.4.3 Ex vacuo atomic force microscopy	413
17.5 Manufacturing issues and solutions	416
17.5.1 Etch lag and lateral photoresist etching—ion angular distribution (microloading, RIE lag)	416
17.5.2 Macroloading	418
17.6 Plasma processes in the production of II–VI materials	420
17.6.1 Trench delineation	421
17.6.2 Type conversion	422
17.6.3 Via formation substitutionally doped MCT	422
CONTENTS

17.6.4 Microlenses and antireflective structures 422
17.6.5 Cleaning 424
17.7 Conclusions and future efforts 424
References 425

18 MCT Photoconductive Infrared Detectors 429
I. M. Baker
18.1 Introduction 429
 18.1.1 Historical perspective and early detectors 430
 18.1.2 Introduction to MCT 431
 18.1.3 MCT photoconductive arrays 431
18.2 Applications and sensor design 432
18.3 Photoconductive detectors in MCT and related alloys 434
 18.3.1 Introduction to the technology of photoconductor arrays 435
 18.3.2 Theoretical fundamentals for LW arrays 436
 18.3.3 Special case of MW arrays 439
 18.3.4 Nonequilibrium effects in photoconductors 439
18.4 SPRITE detectors 440
 18.4.1 Introduction to the SPRITE detector 440
 18.4.2 SPRITE operation and performance 441
 18.4.3 Detector design and systems applications 444
18.5 Conclusions on photoconductive MCT detectors 444
Acknowledgements 445
References 445

Part Three - Applications 447

19 HgCdTe Photovoltaic Infrared Detectors 449
I. M. Baker
19.1 Introduction 450
19.2 Advantages of the photovoltaic device in MCT 450
19.3 Applications 450
19.4 Fundamentals of MCT photodiodes 451
 19.4.1 Ideal photovoltaic devices 451
 19.4.2 Nonideal behavior in MCT diodes 452
19.5 Theoretical foundations for MCT array technology 454
 19.5.1 Thermal diffusion currents in MCT 454
 19.5.2 Thermal generation through traps in the depletion region 455
 19.5.3 Interband tunnelling 455
 19.5.4 Trap-assisted tunnelling 456
 19.5.5 Impact ionization 456
CONTENTS

21.3.4 EAPD diodes at room temperature 501
21.3.5 MCT EAPD dark currents 503
21.3.6 MCT EAPD excess noise 504
21.4 Technology of MCT EAPDs 504
 21.4.1 Theoretical foundations for the EAPD device technology 504
 21.4.2 Via-hole technology 505
 21.4.3 Planar and advanced structures 506
21.5 Reported performance of arrays of MCT EAPDs 506
 21.5.1 Avalanche gain 506
 21.5.2 Noise figure 507
 21.5.3 Dark current 507
21.6 LGI as a practical example of MCT EAPDs 510
21.7 Conclusions and future developments 511
References 511

22 Room Temperature IR Photodetectors 513
 J. Piotrowski and A. Piotrowski
22.1 Introduction 513
22.2 Performance of room temperature infrared photodetectors 514
 22.2.1 Generalized model 514
 22.2.2 Reduced volume devices 517
 22.2.3 Design of high temperature photodetectors 518
22.3 HgCdTe as a material for room temperature photodetectors 519
 22.3.1 Ultimate performance of HgCdTe devices 519
 22.3.2 Non-equilibrium devices 521
 22.3.3 3D high-temperature photodetector concept 522
22.4 Photoconductive devices 522
22.5 PEM, magnetoconcentration, and Dember IR detectors 524
 22.5.1 PEM detectors 524
 22.5.2 Magnetoconcentration detectors 525
 22.5.3 Dember detectors 526
22.6 Photodiodes 526
 22.6.1 Dark current and resistance of near room temperature photodiodes 527
 22.6.2 Practical HgCdTe photodiodes 527
22.7 Conclusions 535
References 535
Index 539