CONTENTS

Contributors xix
Foreword xxi
Preface xxiii

PART I INTRODUCTION

1 Drug Discovery and Early Drug Development 3
 Mitchell N. Cayen
 1.1 The Drug Discovery and Development Scene, 3
 1.1.1 Pharmaceutical Research and Development Challenges, 3
 1.1.2 Attrition During Discovery and Development, 5
 1.1.3 Corporate Strategy Perspectives, 6
 1.2 Drug Discovery, 8
 1.2.1 Target Identification, 8
 1.2.2 Hit-to-Lead Identification, 9
 1.2.3 Lead Optimization Strategies, 10
 1.3 Pre-FIH Drug Development, 12
 1.3.1 Introduction, 12
 1.3.2 Pre-FIH Toxicology, 12
 1.3.3 Formulation and Drug Delivery, 13
 1.3.4 Pre-FIH Drug Metabolism and Pharmacokinetics, 14
 1.4 The FIH Trial, 15
 1.5 The Regulatory Landscape, 16
CONTENTS

1.6 Contract Research Organizations, 18
1.7 Concluding Remarks on Introductory Perspectives, 22
References, 23

PART II LEAD OPTIMIZATION STRATEGIES

2 ADME Strategies in Lead Optimization
Amin A. Nomeir
2.1 Introduction, 27
2.2 Absorption, 30
 2.2.1 Permeability, 32
 2.2.2 Efflux Transport, 35
2.3 Distribution, 36
 2.3.1 Plasma Protein Binding, 36
 2.3.2 Brain Uptake, 40
 2.3.3 Tissue Distribution, 41
2.4 Metabolism, 42
 2.4.1 In Vitro Metabolism Studies, 42
2.5 Excretion, 61
2.6 Pharmacokinetics, 64
2.7 Prioritizing ADME Screens, 68
2.8 In Silico ADME Screening, 69
2.9 The Promise of Metabolomics, 76
2.10 Conclusions, 78
References, 79

3 Prediction of Pharmacokinetics and Drug Safety in Humans
Peter L. Bullock
3.1 Introduction, 89
3.2 Prediction of Human Pharmacokinetic Behavior, 91
 3.2.1 In Vitro Models for Predicting Intestinal Absorption,
 Intrinsic Hepatic Clearance, and Drug Interactions, 92
 3.2.2 In Vivo Models for Predicting Pharmacokinetic
 Behavior, 107
CONTENTS

3.3 Prediction of Drug Safety, 113
 3.3.1 In Vitro Approaches for Predicting Drug Safety, 114
 3.3.2 In Vivo and Ex Vivo Methods for Predicting Drug Safety, 116
 3.3.3 In Silico Methods for Predicting Drug Safety, 119

3.4 Conclusions, 120

References, 121

4 Bioanalytical Strategies 131
Christopher Kemper

4.1 Introduction, 131
 4.1.1 Bioanalysis: The Primary Basis for Pharmacokinetic and Pharmacodynamic Evaluations, 131
 4.1.2 Regulatory Initiatives in Bioanalysis, 132

4.2 Basic Bioanalytical Techniques and Method Development, 133
 4.2.1 Sample Preparation, 133
 4.2.2 Component Separation, 139
 4.2.3 Detection, 144
 4.2.4 Ligand-Binding Assays, 149
 4.2.5 Integration of Method Development Components: Example with LC-MS/MS, 154

4.3 Bioanalytical Method Validation, 156
 4.3.1 Introduction to Validation, 156
 4.3.2 The Primary Metrics: Acceptance Criteria, 157
 4.3.3 Additional Validation Criteria, 165

4.4 Special Issues with Ligand-Binding Assays, 168
 4.4.1 Characterization, 168
 4.4.2 Selectivity Issues, 168
 4.4.3 Matrix Effects, 168
 4.4.4 Quantification Issues, 169

4.5 Partial and Cross-Validations, 169

4.6 Application of Validated Methods to Sample Analyses: Some Perspectives, 170
 4.6.1 Stability, 171
 4.6.2 Calibration Curves, 172
 4.6.3 Quality Control Samples, 172
 4.6.4 Analytical Notes, 172
 4.6.5 Acceptance Criteria, 173
CONTENTS

4.6.6 Repeat Analyses of Incurred Samples, 174
4.6.7 Sample Stability and Incurred Samples, 176
4.6.8 Scientific Versus Production Issues, 177
4.6.9 Documentation, 178
4.6.10 Resources, 179

4.7 Risk-Based Paradigms: Discovery and Development Support, 188
4.7.1 Logistics and Discovery, 189
4.7.2 Early Involvement of Consultants and CROs, 192
4.7.3 Metabolites: Bioanalytical Issues Pre-FIH, 193
4.7.4 Racemic Mixtures, 194

4.8 The Road to “First in Human”, 194
4.8.1 Clinical Collaboration Prior to Initiation of the FIH Trial, 195

4.9 International Perspectives, 196
4.9.1 European Union, 196
4.9.2 Japan, 197
4.9.3 India, 197

4.10 Conclusions, 198

References, 199

PART III BRIDGING FROM DISCOVERY TO DEVELOPMENT

5 Chemistry, Manufacturing, and Controls: The Drug Substance and Formulated Drug Product 207

Örn Almarsson and Christopher J. Galli

5.1 Introduction, 207

5.2 Pre-NCE Activities and CMC Development, 208
5.2.1 Rationale for CMC Involvement in Discovery, 208
5.2.2 Pharmaceutical Properties, 209
5.2.3 CMC Interactions with Discovery at NCE Selection, 212
5.2.4 Biopharmaceuticals, 214

5.3 CMC Considerations at the NCE Stage, 216
5.3.1 Solid-State Compounds, 216
5.3.2 Selection of Development Form (Crystalline State), 217
5.3.3 Characterization of Drug Substance (Preformulation), 220

5.4 NCE-to-GLP Transition (Bridging from Discovery to Pre-FIH Development), 222
CONTENTS

5.4.1 Drug Synthesis and Formulation for Toxicity Studies: Meeting the Delivery Objectives, 222
5.4.2 Bridging to Formulations for FIH Studies, 224

5.5 CMCs to Meet Clinical Trial Material Requirements, 229
5.5.1 Drug Substance Comparability with Material Used in Pre-FIH GLP Studies, 229
5.5.2 Good Manufacturing Practices, 230
5.5.3 Analytical Development for Assay of Drug Substance and Drug Product, 230
5.5.4 Placebos and Blinding, 235

5.6 CMC Strategic Considerations, 236
5.6.1 Interactions Across Disciplines, 236
5.6.2 Outsourcing (and Insourcing) CMC Work, 237

5.7 Case Studies, 238
5.7.1 Indinavir, 238
5.7.2 Doxorubicin Peptide Conjugate, 241

5.8 Evolution of Drug Development: Implications for CMCs in the Future, 244

Resources, 245
References, 247

6 Nonclinical Safety Pharmacology Studies Recommended for Support of First-in-Human Clinical Trials 249

Duane B. Lakings

6.1 Introduction and Overview, 249
6.2 Timing of Safety Pharmacology Studies, 252
6.3 CNS Safety Pharmacology, 254
6.4 Cardiovascular Safety Pharmacology, 254
6.4.1 Study Designs, 254
6.4.2 Additional Information on QT-Interval Prolongation or Delayed Ventricular Repolarization, 267
6.5 Respiratory System Safety Pharmacology, 267
6.6 Renal/Urinary Safety Pharmacology, 274
6.7 Gastrointestinal System Safety Pharmacology, 274
6.8 Autonomic Nervous System Safety Pharmacology, 275
6.9 Other Systems, 276
6.10 Discussion and Conclusions, 277

References, 279

PART IV PRE-IND DRUG DEVELOPMENT

7 Toxicology Program to Support Initiation of a Clinical Phase I Program for a New Medicine 283
 Hugh E. Black, Stephen B. Montgomery, and Ronald W. Moch

7.1 Introduction, 283

7.2 Toxicology Support of Discovery, 284

7.3 Goals of the Pre-FIH Toxicology Program, 285

7.4 Importance of a Clinical Review of the Nonclinical Pharmacology Data, 286

7.5 Take the Time to Plan Appropriately, 286

7.6 The Active Pharmaceutical Ingredient, 286
 7.6.1 Availability Issues, 286
 7.6.2 Impurity Considerations, 287
 7.6.3 Inactive Ingredients, 288

7.7 Timely Conduct of In Vitro Assays, 288
 7.7.1 Comparative In Vitro Metabolism, 288
 7.7.2 Genetic Toxicology, 289

7.8 Development of Validated Bioanalytical and Analytical Assays, 290
 7.8.1 Validated Bioanalytical Assay for Determining Plasma Concentrations of the NCE, 290
 7.8.2 Validated Analytical Assays for Dosing Solutions or Suspensions, 290
 7.8.3 Validated Assays for Dosing Solution Stability, 291

7.9 Planning for the Conduct of Toxicity Studies, 291
 7.9.1 Timing of the IND/CTA, 291
 7.9.2 The Danger of Shortcuts, 292
 7.9.3 Pilot In Vivo Studies for Dose Selection and Bleeding Time Determinations, 292

7.10 GLP Toxicology Program, 293
 7.10.1 Toxicology Requirements for Initiating an FIH Trial, 294
 7.10.2 Toxicology Protocols, 295
 7.10.3 Study Monitoring, 302
8 Toxicokinetics in Support of Drug Development

Gary Eichenbaum, Vangala Subrahmanyam, and Alfred P. Tonelli

8.1 Introduction, 309
8.2 Historical Perspectives, 310
8.3 Regulatory Considerations, 311
8.4 Factors to Consider in the Design of Toxicokinetic Studies, 312
 8.4.1 Drug Supply Requirements, 312
 8.4.2 Species Selection, 313
 8.4.3 API Properties: Salt/Crystal Form, Particle Size, and Impurities, 314
 8.4.4 Dose-Related Exposure, 314
 8.4.5 Changes in Pharmacokinetics Following Multiple Dosing, 315
 8.4.6 Selection of Dosing Vehicles, 316
 8.4.7 Bioanalytical Method, 316
 8.4.8 Evaluation of Metabolites, 317
 8.4.9 Evaluation of Enantiomers, 321
 8.4.10 Matrix Considerations, 321
 8.4.11 Number of Animals, 322
 8.4.12 Gender, 322
 8.4.13 Dose Selection, 323
 8.4.14 Dose Volume, 324
 8.4.15 Blood Sampling Variables, 324
 8.4.16 Sampling Times, 329
 8.4.17 Considerations with Biopharmaceutics, 331
 8.4.18 Practical Considerations in Planning a Toxicokinetic Program, 332
8.5 Toxicokinetic Parameter Estimates and Calculations, 332
 8.5.1 Data Analysis (Noncompartmental Versus Compartmental), 332
 8.5.2 Noncompartmental Kinetic Parameters, 333
 8.5.3 Statistics and Outliers, 338
 8.5.4 Physiologically Based Toxicokinetic Modeling, 338
CONTENTS

8.6 Interpretation of Toxicokinetic Data, 339
8.6.1 Review of In-life Results, 339
8.6.2 Protocol Deviations, 339
8.6.3 Confirmation of Exposure and Evaluation of Dose Proportionality, 339
8.6.4 Exposure after Single and Multiple Dosing: Accumulation Perspectives, 341
8.6.5 Gender Effects, 343
8.6.6 Relationship to Toxicology Findings, 344
8.6.7 Midstudy Changes in Dosing Duration or Dose Level, 345

8.7 Role of Toxicokinetics in Different Types of Toxicity Studies, 345
8.7.1 Acute Studies, 346
8.7.2 Dose-Range-Finding and Tolerability Studies, 346
8.7.3 Subchronic Studies (Two Weeks to Three Months), 347
8.7.4 Chronic Studies (Six to 12 Months), 347
8.7.5 Safety Pharmacology and Specialty Studies, 347
8.7.6 Genetic Toxicology, 348
8.7.7 Reproductive Toxicology, 348
8.7.8 Carcinogenicity Studies, 349
8.7.9 Bridging Toxicity Studies, 350

8.8 Role of Toxicokinetics in Integrated Safety Assessment, 350
8.8.1 Safety Margins: Role in Setting Clinical Doses for FIH Studies, 350
8.8.2 Role of Protein Binding and Blood Partitioning, 352
8.8.3 Toxicokinetics: Caution about Safety Margins, 353
8.8.4 Safety Margins for Different Toxicity Profiles, 354

8.9 Conclusions, 355
References, 355

9 Good Laboratory Practice 361
Anthony B. Jones, Kathryn Hackett-Fields, and Shari L. Perlstein

9.1 Introduction, 361
9.2 Hazard and Risk, 363
9.3 U.S. GLP Regulations, 366
9.3.1 Subpart A: General Provisions, 367
9.3.2 Subpart B: Organization and Personnel, 369
9.3.3 Subpart C: Facilities, 376
9.3.4 Subpart D: Equipment, 376
9.3.5 Subpart E: Testing Facilities Operation, 377
9.3.6 Subpart F: Test and Control Articles, 378
9.3.7 Subpart G: Protocol for and Conduct of a Nonclinical Laboratory Study, 379
9.3.8 Subpart J: Reports and Records, 384
9.3.9 Disqualification of Testing Facilities, 387
9.4 GLPs in the Bioanalytical Laboratory, 387
9.4.1 Organization and Personnel, 389
9.4.2 Equipment and Testing Facilities Operation, 389
9.4.3 Some Challenges in the Bioanalytical Laboratory, 391
9.5 Moving Into the Future: A Closing Overview, 393
9.6 Appendixes, 395
 Appendix 9.1: Preambles—Perspectives on GLP Requirements, 395
 Appendix 9.2: International Regulations, 396
 Appendix 9.3: Paraphrased FDA GLP Definitions, 398
 Appendix 9.4: FDA Inspections, 399
 Appendix 9.5: Critical Phase Inspections—What, Why, How, and When?, 401
 Appendix 9.6: Test System, 402
 Appendix 9.7: 21 CFR Part 11, 402
 Appendix 9.8: SOP Generation and Review, 408
 Appendix 9.9: Study Director’s Responsibilities, 411
 Appendix 9.10: Regulatory Requirements for the Study Protocol, 413
References, 416

PART V PLANNING THE FIRST-IN-HUMAN STUDY AND REGULATORY SUBMISSION

10 Estimation of Human Starting Dose for Phase I Clinical Programs
 Lorrene A. Buckley, Parag Garhyan, Rafael Ponce, and Stanley A. Roberts
 423
 10.1 Introduction, 423
 10.2 Characteristics of Well-Behaved Therapeutic Candidates, 424
 10.3 Regulatory Guidances for FIH-Enabling Nonclinical Safety Assessment: General Principles, 426
 10.4 Nonclinical Pharmacokinetics and Pharmacodynamics for Human Dose Projection, 427
10.5 Establishing the First-in-Human Dose, 427
 10.5.1 Phase I Clinical Trial Support: Use of the NOAEL-Based Approach, 428
 10.5.2 Estimating a Human Dose, 432
10.6 Phase I Clinical Trial Support: Use of the MABEL or Pharmacologically Active Dose, 439
 10.6.1 Predicting the MABEL and PAD in Humans, 441
10.7 Support of Exploratory Clinical Studies, 445
10.8 Considerations in the Design of Phase I Trials, 446
 10.8.1 Toxicological Considerations, 446
 10.8.2 Differences Between Animals and Humans That May Modify Exposure or Response, 447
 10.8.3 Healthy Human Subjects or Patients, 448
10.9 Interdisciplinary Partnerships, 448
 10.9.1 Chemistry, Manufacturing, and Control, 448
 10.9.2 Regulatory Affairs, 449
 10.9.3 Clinical, 449
10.10 Beyond the FIH Dose, 450
10.11 Concluding Perspective, 450
10.12 Four Case Studies, 451

References, 459

11 Exploratory INDs/CTAs

Mitchell N. Cayen

11.1 Introduction, 465
11.2 Regulatory Background, 467
 11.2.1 FDA Single-Dose Toxicity Guidance, 467
 11.2.2 European Position Paper on Microdose Clinical Trials, 467
 11.2.3 FDA Critical Path Initiative, 468
 11.2.4 FDA Guidance on Exploratory IND Studies, 469
 11.2.5 Belgium National Guidance on Exploratory Trials, 472
 11.2.6 The ExpIND (or ExpCTA) Submission, 473
11.3 Experience and Various Perspectives on ExplINDs or ExpCTAs, 474
 11.3.1 Microdose Studies, 475
 11.3.2 Pharmacological Dose and MOA Studies, 479
CONTENTS

11.4 Some Reactions and Perspectives on the ExpIND/ExpCTA Initiative, 480
 11.4.1 What an ExpIND/ExpCTA Can Do, 481
 11.4.2 What an ExpIND/ExpCTA Cannot Do, 481
 11.4.3 Some Potential Drawbacks or Challenges in the Conduct of an ExpIND/ExpCTA Program, 482

11.5 What Is an Ideal Candidate for an ExpIND/ExpCTA?, 484

11.6 Conclusions, 484

References, 486

12 Unique Considerations for Biopharmaceutics 489
Laura P. Andrews and James D. Green

12.1 Introduction and Background, 489

12.2 Selection of the Molecule: Contrasts to Small-Molecule Considerations, 490
 12.2.1 Utility of Animal Efficacy Models, 491
 12.2.2 In Vitro Activity Profiling, Sequence Homology, and the Use of Homologous Molecules for Nonclinical Efficacy and Safety Assessments, 491
 12.2.3 In Vivo Profiling of Biopharmaceutical Activity, 492

12.3 Production and Process Considerations in Pre-FIH Development, 493

12.4 Bioanalytical Assay Considerations, 495

12.5 Objectives and Implementation of Pre-FIH Safety Assessment Programs, 496
 12.5.1 ICH S6 Guideline, 496
 12.5.2 Considerations and Typical Program Designs for Nonclinical Safety Assessment of Biopharmaceutics, 497

12.6 Post-IND Considerations: Support of Phases II and III and Registration, 507
 12.6.1 Changes in Production and Process, and Impact on Completed Studies, 507

12.7 The TeGenero Incident and Implications for Biopharmaceutic Nonclinical Safety Evaluation Programs, 508

12.8 Conclusions, 509

References, 510
13 Project Management and International Regulatory Requirements and Strategies for First-in-Human Trials 513
Carolyn D. Finkle and Judith Atkins
13.1 Introduction: Initiate Product Development with the End in Mind, 513
13.2 Importance of Project Management, 516
13.3 FDA Input Early and Often, 518
13.4 IND Submission in the United States, 519
13.5 Global Clinical Trials, 521
13.6 Clinical Trial Applications, 523
13.6.1 Europe, 523
13.6.2 Canada, 526
13.6.3 Australia, 528
13.6.4 Latin America, 530
13.6.5 China, 534
13.6.6 India, 535
13.6.7 Japan, 537
13.7 Conclusions, 539
References, 539

14 First-in-Human Regulatory Submissions 543
Mary M. Sommer, Mark Ammann, Ulf B. Hillgren, Kathleen J. Kovacs, and Keith Wilner
14.1 Introduction, 543
14.2 Submission Strategies, 544
14.2.1 Regulatory Environment, 545
14.2.2 Clinical Considerations, 546
14.3 First-in-Human Dossiers, 549
14.3.1 Introduction, 549
14.3.2 General Considerations for Dossier Preparations, 549
14.3.3 Coordination of the Disciplines, 553
14.3.4 Document Preparation, 557
14.4 United States: Investigational New Drug Application, 559
14.4.1 Regulatory Perspective, 559
14.4.2 Chemistry, Manufacturing, and Controls, 565
14.4.3 Nonclinical Sections, 574
14.4.4 Clinical Components, 580