Contents

Preface to the second English edition IX

Preface to the first English edition XI

Preface to the German edition XIII

1 A Short Survey of the History of Optics 1

2 The Electrodynamics of Continuous Media 15
 2.1 Maxwell’s Equations 15
 2.2 Molecular vs. Macroscopic Fields 18
 2.3 A Simple Model for the Electric Current 20
 2.4 Dispersion Relations and the Passivity Condition 23
 2.5 Electric Displacement Density and Magnetic Field Strength 27
 2.6 Index of Refraction and Coefficient of Absorption 33
 2.7 The Electromagnetic Material Quantities 35
 2.8 The Oscillator Model for the Electric Susceptibility 39
 2.9 Material Equations in Moving Media 40

3 Linear Waves in Homogeneous Media 45
 3.1 Elastic Waves in Solids 45
 3.2 Isotropic Elastic Media 48
 3.3 Wave Surfaces and Ray Surfaces 51

4 Crystal Optics 55
 4.1 The Normal Ellipsoid 55
 4.2 Plane Waves in Crystals 58
 4.3 Optically Uniaxial Crystals 62
 4.4 Optically Biaxial Crystals 65
 4.5 Reflection and Refraction at Interfaces 67
 4.6 Fresnel’s Equations 69
 4.7 The Fabry–Perot Interferometer 72
Contents

5 Electro-, Magneto-, and Elastooptical Phenomena
- 5.1 Polarization Effects up to First Order – Optical Activity 75
- 5.2 Polarization Effects of Higher Order 79
 - 5.2.1 Dependence on Distortions 80
 - 5.2.2 Dependence on Shear Flows 80
 - 5.2.3 Influence of Electric Fields 80
 - 5.2.4 Dependence on Magnetic Fields 81

6 Foundations of Nonlinear Optics
- 6.1 Nonlinear Polarization – Combination Frequencies 83
- 6.2 Nonlinear Waves in a Medium 85
- 6.3 Survey of Phenomena in Nonlinear Optics 89
- 6.4 Parametric Amplification and Frequency Doubling 91
- 6.5 Phase Matching 94
- 6.6 Self-Focussing, Optical Bistability, Phase Self-Modulation 95
- 6.7 Phase Conjugation 98
- 6.8 Fiber Optics and Optical Solitons 101

7 Short-Wave Asymptotics
- 7.1 Introductory Remarks 107
- 7.2 Short-Wave Expansion of Maxwell’s Equations 109
- 7.3 The Scalar Wave Equation 111
- 7.4 Phase Surfaces and Rays 113
- 7.5 Fermat’s Principle 115
- 7.6 Analogy Between Mechanics and Geometrical Optics 116

8 Geometrical Optics
- 8.1 Fermat’s Principle and Focal Points 121
- 8.2 Perfect Optical Instruments 122
- 8.3 Maxwell’s Fish-Eye 123
- 8.4 Canonical Transformations and Eikonal Functions 125
- 8.5 Imaging Points Close to the Optic Axis by Wide Spread Ray Bundles 129
- 8.6 Linear Geometrical Optics and Symplectic Transformations 132
- 8.7 Gaussian Optics and Image Matrices 135
- 8.8 Lens Defects and Seidel’s Theory of Aberrations 140

9 Geometric Theory of Caustics
- 9.1 Short-Wave Asymptotics for Linear Partial Differential Equations 145
- 9.2 Solution of the Characteristic Equation 148
- 9.3 Solution of the Transport Equation 154
- 9.4 Focal Points and Caustics 157
- 9.5 Behavior of Phases in the Vicinity of Caustics 160
- 9.6 Caustics, Lagrangian Submanifolds, and Maslov Index 162
- 9.7 Supplementary Remarks on Geometrical Short-Wave Asymptotics 164
10 Diffraction Theory 171
10.1 Survey 171
10.2 The Principles of Huygens and Fresnel 175
10.3 The Method of Stationary Phases 179
10.4 Kirchhoff’s Representation of the Wave Amplitude 183
10.5 Kirchhoff’s Theory of Diffraction 188
10.6 Diffraction at an Edge 190
10.7 Examples of Fraunhofer Diffraction 192
10.7.1 Diffraction by a Rectangle 192
10.7.2 Diffraction by a Circular Aperture 193
10.7.3 Arrangements of Several Identical Structures 194
10.7.4 Random Distribution (Figure 10.15a) 195
10.7.5 Regular Lattice (Figure 10.15b) 196
10.7.6 Two Circular Holes 197
10.7.7 Diffraction by a Rectangular Aperture 198
10.7.8 Diffraction by a Circular Aperture 199
10.7.9 Arrangements of Several Identical Structures 199
10.7.10 Random Distribution (Figure 10.15a) 200
10.7.11 Regular Lattice (Figure 10.15b) 200
10.7.12 Two Circular Holes 201
10.8 Optical Image Processing in Fourier Space 196
10.8.1 The Dark-Ground Method 198
10.8.2 The Phase Contrast Method 198
10.8.3 The Schlieren Method 199
10.9 Morse Families 199
10.10 Oscillatory Functions and Fourier Integral Operators .. 202
10.11 Path Integrals in Optics 206
11 Holography 215
11.1 The Principle of Holography 215
11.2 Modifications and Applications 217
11.2.1 Observing Small Object Deformations 218
11.2.2 Holographic Optical Instruments 218
11.2.3 Pattern Recognition 219
11.3 Volume Holograms 219
12 Coherence Theory 223
12.1 Coherent and Incoherent Light 223
12.2 Real and Analytical Signals 225
12.3 The Light Wave Field as a Stochastic Process 229
12.4 Gaussian Stochastic Processes 232
12.5 The Quasimonochromatic Approximation 234
12.6 Coherence and Correlation Functions 236
12.7 The Propagation of the Correlation Function 239
12.8 Amplitude and Intensity Interferometry 242
12.8.1 Amplitude Interferometry: Michelson Interferometer 242
12.8.2 Photon Correlation Spectroscopy 243
12.9 Dynamical Light Scattering 244
12.10 Granulation 247
12.11 Image Processing by Filtering 249
12.12 Polarization of Partially Coherent Light 251
<table>
<thead>
<tr>
<th>13</th>
<th>Quantum States of the Electromagnetic Field</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Quantization of the Electromagnetic Field and Harmonic Oscillators</td>
<td>255</td>
</tr>
<tr>
<td>13.2</td>
<td>Coherent and Squeezed States</td>
<td>261</td>
</tr>
<tr>
<td>13.3</td>
<td>Operators, Ordering Procedures, and Star Products</td>
<td>269</td>
</tr>
<tr>
<td>13.4</td>
<td>The Q, P, and Wigner Functions of a Density Operator</td>
<td>276</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Detection of Radiation Fields</th>
<th>283</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Beam Splitters and Homodyne Detection</td>
<td>283</td>
</tr>
<tr>
<td>14.2</td>
<td>Correlation Functions and Quantum Coherence</td>
<td>289</td>
</tr>
<tr>
<td>14.3</td>
<td>Measurement of Correlation Functions</td>
<td>291</td>
</tr>
<tr>
<td>14.4</td>
<td>Antibunching and Sub-Poissonian Light</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Interaction of Radiation and Matter</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>The Electric Dipole Interaction</td>
<td>299</td>
</tr>
<tr>
<td>15.2</td>
<td>Simple Laser Theory</td>
<td>304</td>
</tr>
<tr>
<td>15.3</td>
<td>Three-Level Systems and Atomic Interference</td>
<td>306</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Electromagnetically Induced Transparency</td>
<td>309</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Refractive Index Enhancement</td>
<td>311</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Lasing Without Inversion</td>
<td>311</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Correlated Emission Laser</td>
<td>311</td>
</tr>
<tr>
<td>15.4</td>
<td>The Jaynes–Cummings Model</td>
<td>312</td>
</tr>
<tr>
<td>15.5</td>
<td>The Micromaser</td>
<td>318</td>
</tr>
<tr>
<td>15.6</td>
<td>Quantum State Engineering</td>
<td>320</td>
</tr>
<tr>
<td>15.7</td>
<td>The Paul Trap</td>
<td>323</td>
</tr>
<tr>
<td>15.8</td>
<td>Motion of a Two-Level Atom in a Quantized Light Field</td>
<td>330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Quantum Optics and Fundamental Quantum Theory</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Quantum Entanglement</td>
<td>333</td>
</tr>
<tr>
<td>16.2</td>
<td>Bell’s Inequalities</td>
<td>338</td>
</tr>
<tr>
<td>16.3</td>
<td>Quantum Erasers and Measurement Without Interaction</td>
<td>342</td>
</tr>
<tr>
<td>16.4</td>
<td>No Cloning and Quantum Teleportation</td>
<td>347</td>
</tr>
<tr>
<td>16.5</td>
<td>Quantum Cryptography</td>
<td>352</td>
</tr>
<tr>
<td>16.6</td>
<td>Quantum Computation</td>
<td>353</td>
</tr>
</tbody>
</table>

Selected References | 361 |
Index | 365 |