## Contents to Volume 1

**Preface**  
*XXVII*

**A Personal Foreword**  
*XXI*

**Acknowledgements**  
*XXIII*

### Part I Introduction to Protein Therapeutics: Past and Present  
*1*

1. **Early Recombinant Protein Therapeutics**  
   *Pierre De Meyts*  
   *3*

2. **Evolution of Antibody Therapeutics**  
   *Hervé Watier and Janice M. Reichert*  
   *25*

### Part II Antibodies: The Ultimate Scaffold for Protein Therapeutics  
*51*

3. **Human Antibody Structure and Function**  
   *Ponraj Prabakaran and Dimiter S. Dimitrov*  
   *53*

4. **Antibodies from Other Species**  
   *Melissa L. Vadnais, Michael F. Criscitiello, and Vaughn V. Smider*  
   *85*

### Part III Discovery and Engineering of Protein Therapeutics  
*113*

5. **Human Antibody Discovery Platforms**  
   *William R. Strohl*  
   *115*

6. **Beyond Antibodies: Engineered Protein Scaffolds for Therapeutic Development**  
   *Nishant K. Mehta and Jennifer R. Cochran*  
   *161*
Contents to Volume 2

Preface XVII
A Personal Foreword XXI
Acknowledgements XXIII

Part IV Physiological and Manufacturing Considerations for Biologics 311

10 Pharmacokinetics of Therapeutic Proteins 313
Zheng Lu, Jennifer Sheng, and Wenhui Zhang
10.1 Absorption 313
10.2 Distribution 315
10.3 Metabolism and Elimination 316
10.3.1 FcRn-Mediated Salvage and the Nonspecific (Linear) Clearance 317
10.3.2 Target-Mediated Drug Disposition 318
10.3.3 Immunogenicity-Induced Clearance Change 320
10.3.4 Fragment of mAbs 322
10.3.5 Variability 323
10.3.6 Renal Clearance of mAbs 324
10.4 Pharmacokinetic Modeling of Therapeutic Proteins 325
References 334

11 Safety Considerations for Biologics 341
Maggie Dempster, Lucinda R. Weir, and Rajni S. Fagg
11.1 Introduction 341
11.2 Small Molecules versus Large Molecules – A Comparison 342
11.3 Toxicity Related to Exaggerated Pharmacology – Importance of Species Selection 344
11.4 Toxicity Unrelated to Exaggerated Pharmacology 347
11.4.1 Cytokine Storm 347
11.4.2 Unexpected Toxicity 348
11.5 Regulatory Guidance 349
11.6 Development Considerations Due to Biological Characteristics 350
11.6.1 Early Discovery – Information Needed to Set the Stage and Early Studies 350
11.6.1.1 New Targets/Pathways 350
11.6.1.2 Alternate Hit/Lead Discovery Approaches for Existing Targets 352
11.6.1.3 New Lead Optimization Methods 354
11.6.1.4 Feasibility/Tractability Assessment 360
11.7 First in Human (FIH) to Registration 366
11.7.1 Cross-Reactivity Study 366
11.7.2 Safety Pharmacology 367
11.7.3 In Vivo Studies 367
11.7.4 Selection of Dose Levels 369
11.7.5 Pharmacokinetics/Pharmacodynamics 369
11.7.6 Immunogenicity 370
11.7.7 Immunotoxicity 371
11.7.8 Reproductive Toxicity 371
11.7.8.1 Fertility 372
11.7.8.2 Embryofetal Development and Pre- and Postnatal Development 372
11.7.9 Genotoxicity and Carcinogenicity 374
11.8 Selection of a Safe Starting Dose for First Time in Human Clinical Study 374
11.9 Summary 375
12 Immunogenicity of Biologics 387
12.1 Introduction 387
12.2 Mechanistic View of Immunogenicity: Innate and Adaptive Immunity 388
12.2.1 Innate Immunity 388
12.2.1.1 Dendritic Cells 388
12.2.1.2 Endocytosis of Proteins by DC 390
12.2.1.3 Innate Immune Receptors 391
12.2.2 Adaptive Immunity 393
12.2.2.1 Antigen Processing 393
12.2.2.2 T-Cell Recognition of MHC–Peptide Complexes 397
12.2.2.3 Immunogenicity Risk Mitigation by Protein Engineering 398
12.2.2.4 Immunogenicity and the Properties of Antigens 399
12.2.2.5 Immunological Tolerance 400
12.3 Immunogenicity of Protein Therapeutics in Autologous Cell Therapies 402
12.4 Regulatory Context 403
12.5 Application of the “Risk-Based Approach” for Undesirable Immunogenicity 405
  12.5.1 Linkage to Product Life Cycle 405
  12.5.2 Initial Risk Assessment for Lead Candidate Selection 405
  12.5.3 Early Screening to Identify “Cryptic” B-Cell Epitopes 406
  12.5.4 Control of Product Quality 407
  12.5.5 IND-Enabling Safety Studies 408
  12.5.6 First-Time-In-Human Studies 409
  12.6 Clinical Proof of Concept and Beyond 410
  12.7 Future Perspectives 411

References 411

13 Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture 423
  Adam J. Brown, Devika Kalsi, Alejandro Fernandez-Martell, Joe Cartwright,
  Nicholas O. W. Barber, Yash D. Patel, Richard Turner, Claire L. Bryant, Yusuf B.
  Johari, and David C. James

13.1 Introduction 423
13.2 Host Cell Systems 425
  13.2.1 Chinese Hamster Ovary (CHO) Cells 425
  13.2.2 Alternative Mammalian Cell Hosts 428
  13.2.3 Non-mammalian Expression Systems 428
13.3 Mammalian Cell Transfection 430
  13.3.1 Methodologies 430
  13.3.2 Bioprocess Application 431
  13.3.3 Gene Targeting 432
13.4 Controlling Recombinant Gene Expression 433
  13.4.1 Introduction 433
  13.4.2 Promoters 434
  13.4.3 Untranslated Regions, Epigenetic Regulatory Elements, and Protein-Coding Sequences 435
    13.4.3.1 Untranslated Regions 435
    13.4.3.2 Epigenetic Regulatory Elements 436
    13.4.3.3 Protein-Coding Sequences 437
13.5 Selection and Amplification Systems 437
13.6 Transient Production Systems 438
  13.6.1 CHO Cell Engineering for Increased Transient Production 439
  13.6.2 Recombinant DNA Delivery Mechanisms 439
  13.6.3 Process and Media Optimization 440
13.7 Protein Purification 440
  13.7.1 Clarification 441
  13.7.2 Chromatography 441
    13.7.2.1 Affinity Chromatography 441
    13.7.2.2 Ion-Exchange Chromatography 442
    13.7.2.3 Hydrophobic Interaction Chromatography 443
13.7.2.4 Mixed-Mode Chromatography 443
13.7.3 Membranes 443
13.7.4 Economics 444
13.7.5 Future Trends and Conclusions 445
13.8 CHO Cell Engineering for Enhanced Bioprocessing

Properties 445
13.8.1 Programmed Cell Death 446
13.8.2 Folding and Assembly Machinery 446
13.8.3 Unfolded Protein Response 447
13.8.4 Secretory Pathway 447
13.8.5 Glycosylation Pathways 447
13.8.6 Gene Editing 449
13.8.7 Directed Evolution Approach 449
13.8.8 miRNAs – A Novel Cell Engineering Approach 450
Abbreviations 450
References 452

14 Stability, Formulation, and Delivery of Biopharmaceuticals 469
Hanns-Christian Mahler and Andrea Allmendinger
14.1 Introduction 469
14.2 Stability 469
14.3 Drug Product Development 471
14.3.1 Product Requirements 472
14.3.2 Container Closure System (CCS) 473
14.3.2.1 Some Challenges with Container Closure Systems 473
14.3.3 Development of the Protein Formulation 475
14.3.3.1 Dosage Form 475
14.3.3.2 Formulation Composition 476
14.3.3.3 Stability Testing 480
14.3.3.4 Analytical Panel 482
14.4 Handling and Administration Considerations 484
14.5 Summary and Conclusion 487
References 487

Part V Clinical Applications 493
15 Protein Therapeutics in Autoimmune and Inflammatory Diseases 495
Anthony J. Coyle and Leigh S. Zawel
15.1 Introduction 495
15.2 Rheumatoid Arthritis 495
15.2.1 TNF-α Antagonists 496
15.2.2 Inhibition of Co-Stimulation 497
15.2.3 Anti-IL-1 Based Therapies 498
15.2.4 Anti-IL-6 Therapies 498
Contents

15.2.5 B-Cell Depletion Therapies 499
15.3 Psoriasis 500
15.4 TNF-α Antagonist Therapy 500
15.5 Anti-IL-12/IL-23 Therapies 501
15.6 Anti-IL-17 Therapies 502
15.7 Atopic Dermatitis 502
15.7.1 Anti-IL-4/IL-13 Therapies 503
15.8 Inflammatory Bowel Disease (IBD) 503
15.8.1 Pathophysiology of IBD 504
15.8.2 Anti-TNF-α Therapies in IBD 505
15.8.3 Integrin Inhibitors 506
15.8.4 IL-12/IL-23 Therapies 507
15.9 Systemic Lupus Erythematosus 507
15.9.1 B-Cell-Directed Therapies 508
15.9.1.1 Rituximab 508
15.9.1.2 Epratuzumab 509
15.9.1.3 Belimumab 509
15.9.1.4 Other Regulators of B Cells Survival 509
15.9.2 Type I Interferons and SLE 510
15.10 Conclusions 511

References 511

16 Antibody-Based Therapeutics in Oncology 521
Paul A. Moore, Ross La Motte-Mohs, Jonathan C. Li, and Gurunadh R. Chichili
16.1 Introduction 521
16.2 Targeting Cell-Surface Signaling Pathways in Solid Tumors 522
16.2.1 Antibody Targeting of Receptor Tyrosine Kinases (RTKs) Pathways 522
16.2.1.1 ErbB Family 522
16.2.1.2 EGFR 529
16.2.1.3 HER2 530
16.2.1.4 HER3 531
16.2.1.5 Insulin-Like Growth Factor 1 Receptor (IGF-1R) 532
16.2.1.6 PDGFR – PDGFRα 532
16.2.1.7 KIT Family – Colony-Stimulating Factor 1 Receptor (CSF1R) and KIT 533
16.2.1.8 VEGFR Family – VEGFR1, VEGFR2, and VEGFR3 533
16.2.1.9 VEGFR1 534
16.2.1.10 VEGFR2 534
16.2.1.11 VEGFR3 534
16.2.1.12 FGFR Family – FGFR2, FGFR2b, and FGFR3 535
16.2.1.13 HGF Family – Proto-Oncogene-MET (MET) and Recepteur d’Origine Nantais (RON) 535
Contents

16.2.1.14 EPHR Family 536
16.2.2 Targeting of Additional Signaling Pathways and Cell-Surface Antigens 537
16.2.2.1 Notch Signaling Pathway 537
16.2.2.2 Wnt–FZD Pathway 538
16.2.2.3 Death Receptors – TRAILR1 and TRAILR2 538
16.2.2.4 Additional Cell-Surface Antigens 539
16.3 Targeting of Immune Modulators 540
16.3.1 Tumor Immunology 540
16.3.2 Check-point Inhibitors 542
16.3.2.1 Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) 542
16.3.2.2 Programmed Death-1 (PD-1) and PD-1 Ligand 545
16.3.2.3 Targeting of Additional Putative Check-Point Inhibitor Pathways 548
16.4 Bispecific Antibodies 557
16.4.1 Immune Cell Re-Targeting 558
16.4.1.1 Lymphoid Effectors 558
16.4.1.2 Hematological Malignancies 561
16.4.1.3 Solid Tumors 563
16.4.2 Dual Targeting of Two Receptor Pathways on Cancer Cell Using BsAbs 566
16.5 Conclusions and Future Directions 568
References 570

17 Protein Therapeutics in Respiratory Medicine 587
17.1 Introduction 587
17.2 Asthma 588
17.2.1 Phenotypes of Asthma 590
17.2.2 Biomarkers 591
17.2.3 The Th1 Pathway 593
17.2.4 The Th2 Pathway 594
17.3 Th2-Targeted Therapies 595
17.3.1 Immunoglobulin E 595
17.3.2 Interleukin 5 597
17.4 Mepolizumab 597
17.5 Other Anti-IL-5-Targeted Treatments 600
17.5.1 Interleukin 4 602
17.5.2 Interleukin 13 604
17.5.3 Interleukin 9 606
17.6 Other Respiratory Uses of Monoclonal Antibodies 606
17.7 Summary 607
References 608
18 Antibodies for the Prevention, Treatment, and Preemption of Infectious Diseases 611
Steve Projan
18.1 Prophylaxis and Precision Medicine 611
18.2 Antibacterial Immune Therapy – A Nineteenth Century Breakthrough 612
18.2.1 Why Has It Taken So Long for Novel Immunotherapeutics? 612
18.2.2 Monoclonal Antibodies for the Prevention and Treatment of Viral Infections 613
18.2.3 \textit{S. aureus}: No Longer the Hospital Scourge? 614
18.2.4 Monoclonal Antibodies to Prevent, Treat or Preempt Staphylococcal Infections 614
18.2.5 \textit{P. aeruginosa}: The Bacterial Cockroach 615
18.2.6 Immune Evasion: A Bridge Too Far? 616
18.2.7 Monoclonal Antibodies for \textit{C. difficile} Infection: "A Winning Bet or a Crap Shoot" 616
18.2.8 Are Two Antibodies Enough; Is Six Too Many? 617
18.2.9 Prophylaxis or Treatment? Beware of False Dichotomies 617
18.3 Other Potential Anti-infective mAbs 617
18.3.1 Safety: Human Enough for You? 617
18.3.2 \textit{Another Precinct is Heard from: Immunomodulatory Agents for the Treatment of Chronic Infections} 618
18.3.3 Are We There Yet? Easy-to-Use, Fast-Turnaround, Point-of-Care Diagnostics 618
18.3.4 Are Biologic Drugs Going To Be Too Expensive to Treat Infections? 619
References 619
19 Rescue Therapies 621
Stephan Glund
19.1 Introduction 621
19.1.1 Clinical Development Peculiarities 621
19.2 Antidotes/Reversal Agents 622
19.2.1 Introduction 622
19.2.2 Anti-digoxin Fab 622
19.2.2.1 Background 622
19.2.2.2 Mode of Action 623
19.2.2.3 Studies in Volunteers 624
19.2.2.4 Dose Considerations 624
19.2.2.5 Cost Considerations 624
19.2.2.6 Studies in Patients 625
19.2.2.7 Safety 625
References 619
19.2.3 Idarucizumab and Andexanet Alfa: Reversal Agents for Oral Anticoagulants 625
19.2.3.1 Background 625
19.2.3.2 Idarucizumab 626
19.2.3.3 Andexanet Alfa 628
19.2.4 Glucarpidase 629
19.2.4.1 Background 629
19.2.4.2 Mode of Action 629
19.2.4.3 Studies in Volunteers 630
19.2.4.4 Studies in Patients 630
19.2.4.5 Safety 630
19.2.4.6 Immunogenicity 631
19.2.5 Selected Reversal-Agent Approaches in Clinical Testing 631
19.2.5.1 Butyrylcholinesterase (Protexia; TV-1380) 631
19.2.5.2 Anti-methamphetamine Antibodies 631
19.3 Antivenoms and Antitoxins 631
19.3.1 Background and History 632
19.3.2 Epidemiology of Envenoming 633
19.3.2.1 Effects of Immunoglobulin Design on Antiserum Pharmacokinetics 633
19.3.3 Generation of Antivenoms and Antitoxins 634
19.3.4 Specificity 635
19.3.4.1 Anti-anthrax Approaches 635
19.3.5 Safety and Tolerability 637
19.4 Conclusion 638

References 638

20 Biosimilars 645
20.1 Introduction 645
20.2 Concept and Definition of Biosimilars 645
20.2.1 Generic Small Molecule Drugs Compared with Biosimilars 645
20.2.2 Definition and Interpretation of Biosimilars 647
20.3 Rationale and Significance of Biosimilars 648
20.3.1 The Potential for Cost Reduction 648
20.3.2 The Scale of the Opportunity to Reduce Cost 650
20.4 Current Approvals and Trends 651
20.4.1 Biosimilar Approvals 651
20.4.2 Regulatory Pathways for Biosimilars 653
20.4.2.1 Quality 654
20.4.2.2 Non-clinical and Clinical Studies 655
20.5 Challenges and Future Trends 656

References 658
Part VI  Future Horizons  661

21  Future Horizons and New Target Class Opportunities  663
   Herren Wu, Carl Webster, Judy Paterson, Sandrine Guillard, Ron Jackson, and Ralph Minter
   21.1 Introduction  663
   21.2 Targeting the Central Nervous System  663
      21.2.1 The Opportunity  663
      21.2.2 The Challenge  664
      21.2.3 Nature’s Solution  665
      21.2.4 Targeting Pathways into the Brain  666
      21.2.5 Lessons from Preclinical Studies  669
      21.2.6 ADME in the Brain  670
      21.2.7 Path to the Clinic  671
      21.2.8 Future Perspectives  671
   21.3 Intracellular Biologics  672
      21.3.1 The Opportunity for Intracellular Biologics  672
      21.3.2 The Challenges of Intracellular Delivery  672
      21.3.3 Nature’s Solution to the Challenges of Intracellular Delivery: AB Toxins  674
      21.3.4 Re-Engineering AB Toxins for Novel Therapeutic Functions  675
      21.3.5 Alternative Delivery Strategies for Intracellular Biologics  677
      21.3.6 Increasing the Potency of Intracellular Payloads  678
      21.3.7 Conclusions and Outlook for Intracellular Biologics  679
   21.4 Building on the Success of Traditional Monoclonal Antibodies  679
      21.4.1 Rise of “Non-traditional” Antibodies  680
      21.4.1.1 Bispecific Antibody and Multispecific Biologics  681
      21.4.2 Antibody–Drug Conjugates  683
      21.4.2.1 Dawn of In Vivo Expressed Biologics  684
      21.4.3 Oral Biologics  688
      21.4.4 Conclusions  690
      References  690

Index  701