Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xxi</td>
</tr>
<tr>
<td>Companion Website</td>
<td>xxiii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxv</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Fundamentals of the Biorefinery Concept</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 Biorefinery Principles</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Biorefinery Types and Development</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Biorefinery Features and Nomenclature</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Biorefinery Feedstock: Biomass</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1 Chemical Nature of Biorefinery Feedstocks</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2 Feedstock Characterization</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Processes and Platforms</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Biorefinery Products</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1 Background of Lignin</td>
<td>26</td>
</tr>
<tr>
<td>1.7 Electrochemistry Application in Biorefineries</td>
<td>31</td>
</tr>
<tr>
<td>1.8 Introduction to Energy and Water Systems</td>
<td>34</td>
</tr>
<tr>
<td>1.9 Evaluating Biorefinery Performances</td>
<td>36</td>
</tr>
<tr>
<td>1.9.1 Performance Indicators</td>
<td>36</td>
</tr>
<tr>
<td>1.9.2 Life Cycle Analysis</td>
<td>38</td>
</tr>
<tr>
<td>1.10 Chapters</td>
<td>38</td>
</tr>
<tr>
<td>1.11 Summary</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>II TOOLS</td>
<td>43</td>
</tr>
<tr>
<td>2. Economic Analysis</td>
<td>45</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>45</td>
</tr>
<tr>
<td>2.2 General Economic Concepts and Terminology</td>
<td>46</td>
</tr>
<tr>
<td>2.2.1 Capital Cost and Battery Limits</td>
<td>46</td>
</tr>
<tr>
<td>2.2.2 Cost Index</td>
<td>46</td>
</tr>
<tr>
<td>2.2.3 Economies of Scale</td>
<td>47</td>
</tr>
<tr>
<td>2.2.4 Operating Cost</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>LCIA Methods</td>
</tr>
<tr>
<td>4.9</td>
<td>Future R&D Needs</td>
</tr>
<tr>
<td>References</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>Data Uncertainty and Multicriteria Analyses</td>
</tr>
<tr>
<td>5.1</td>
<td>Data Uncertainty Analysis</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Dominance Analysis</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Contribution Analysis</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Scenario Analysis</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Sensitivity Analysis</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Monte Carlo Simulation</td>
</tr>
<tr>
<td>5.2</td>
<td>Multicriteria Analysis</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Economic Value and Environmental Impact Analysis of Biorefinery Systems</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Socioeconomic Analysis</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>Value Analysis</td>
</tr>
<tr>
<td>6.1</td>
<td>Value on Processing (VOP) and Cost of Production (COP) of Process Network Streams</td>
</tr>
<tr>
<td>6.2</td>
<td>Value Analysis Heuristics</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Discounted Cash Flow Analysis</td>
</tr>
<tr>
<td>6.3</td>
<td>Stream Economic Profile</td>
</tr>
<tr>
<td>6.4</td>
<td>Concept of Boundary and Evaluation of Economic Margin of a Process Network</td>
</tr>
<tr>
<td>6.5</td>
<td>Stream Profitability Analysis</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Value Analysis to Determine Necessary and Sufficient Condition for Streams to be Profitable or Nonprofitable</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>Combined Economic Value and Environmental Impact (EVEI) Analysis</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Equivalency Between Economic and Environmental Impact Concepts</td>
</tr>
<tr>
<td>7.3</td>
<td>Evaluation of Streams</td>
</tr>
<tr>
<td>7.4</td>
<td>Environmental Impact Profile</td>
</tr>
<tr>
<td>7.5</td>
<td>Product Economic Value and Environmental Impact (EVEI) Profile</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td>205</td>
</tr>
<tr>
<td>8</td>
<td>Optimization</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Linear Optimization</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Step 1: Rewriting in Standard LP Format</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Step 2: Initializing the Simplex Method</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Step 3: Obtaining an Initial Basic Solution</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Step 4: Determining Simplex Directions</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Step 5: Determining the Maximum Step Size by the Minimum Ratio Rule</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Step 6: Updating the Basic Variables</td>
</tr>
<tr>
<td>8.3</td>
<td>Nonlinear Optimization</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Gradient Based Methods</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Generalized Reduced Gradient (GRG) Algorithm</td>
</tr>
</tbody>
</table>
viii Contents

8.4 Mixed Integer Linear or Nonlinear Optimization 239
8.4.1 Branch and Bound Method 240
8.5 Stochastic Method 243
8.5.1 Genetic Algorithm (GA) 244
8.5.2 Non-dominated Sorting Genetic Algorithm (NSGA) Optimization 246
8.5.3 GA in MATLAB 248
8.6 Summary 248
References 248

III PROCESS SYNTHESIS AND DESIGN 251

9 Generic Reactors: Thermochemical Processing of Biomass 253
9.1 Introduction 253
9.2 General Features of Thermochemical Conversion Processes 254
9.3 Combustion 257
9.4 Gasification 258
9.4.1 The Process 258
9.4.2 Types of Gasifier 260
9.4.3 Design Considerations 260
9.5 Pyrolysis 262
9.5.1 What is Bio-Oil? 262
9.5.2 How Is Bio-Oil Obtained from Biomass? 264
9.5.3 How Fast Pyrolysis Works 265
9.6 Summary 270
Exercises 270
References 270

10 Reaction Thermodynamics 271
10.1 Introduction 271
10.2 Fundamentals of Design Calculation 272
10.2.1 Heat of Combustion 272
10.2.2 Higher and Lower Heating Values 276
10.2.3 Adiabatic Flame Temperature 278
10.2.4 Theoretical Air-to-Fuel Ratio 279
10.2.5 Cold Gas Efficiency 280
10.2.6 Hot Gas Efficiency 281
10.2.7 Equivalence Ratio 281
10.2.8 Carbon Conversion 282
10.2.9 Heat of Reaction 282
10.3 Process Design: Synthesis and Modeling 282
10.3.1 Combustion Model 282
10.3.2 Gasification Model 283
10.3.3 Pyrolysis Model 289
10.4 Summary 291
Exercises 291
References 292

11 Reaction and Separation Process Synthesis: Chemical Production from Biomass 295
11.1 Chemicals from Biomass: An Overview 296
11.2 Bioreactor and Kinetics 297
Contents
ix

11.2.1 An Example of Lactic Acid Production 299
11.2.2 An Example of Succinic Acid Production 304
11.2.3 Heat Transfer Strategies for Reactors 308
11.2.4 An Example of Ethylene Production 309
11.2.5 An Example of Catalytic Fast Pyrolysis 311
11.3 Controlled Acid Hydrolysis Reactions 318

11.4 Advanced Separation and Reactive Separation 327
11.4.1 Membrane Based Separations 327
11.4.2 Membrane Filtration 330
11.4.3 Electrodialysis 333
11.4.4 Ion Exchange 334
11.4.5 Integrated Processes 338
11.4.6 Reactive Extraction 341
11.4.7 Reactive Distillation 352
11.4.8 Crystallization 354
11.4.9 Precipitation 360
11.5 Guidelines for Integrated Biorefinery Design 360
11.5.1 An Example of Levulinic Acid Production: The Biofine Process 365
11.6 Summary 368

References 370

12 Polymer Processes 373
12.1 Polymer Concepts 374
12.1.1 Polymer Classification 375
12.1.2 Polymer Properties 376
12.1.3 From Petrochemical Based Polymers to Biopolymers 379
12.2 Modified Natural Biopolymers 385
12.2.1 Starch Polymers 385
12.2.2 Cellulose Polymers 389
12.2.3 Natural Fiber and Lignin Composites 389
12.3 Modeling of Polymerization Reaction Kinetics 391
12.3.1 Chain-Growth or Addition Polymerization 392
12.3.2 Step-Growth Polymerization 396
12.3.3 Copolymerization 398
12.4 Reactor Design for Biomass Based Monomers and Biopolymers 400
12.4.1 Plug Flow Reactor (PFR) Design for Reaction in Gaseous Phase 400
12.4.2 Bioreactor Design for Biopolymer Production – An Example of Polyhydroxyalkanoates 402
12.4.3 Catalytic Reactor Design 403
12.4.4 Energy Transfer Models of Reactors 412
12.5 Synthesis of Unit Operations Combining Reaction and Separation Functionalities 416
12.5.1 Reactive Distillation Column 416
12.5.2 An Example of a Novel Reactor Arrangement 418
12.6 Integrated Biopolymer Production in Biorefineries 421
12.6.1 Polysters 421
12.6.2 Polyurethanes 422
12.6.3 Polyamides 422
12.6.4 Polycarbonates 424
12.7 Summary 424

References 424
Contents

13 Separation Processes: Carbon Capture 425
 13.1 Absorption 426
 13.2 Absorption Process Flowsheet Synthesis 429
 13.3 The Rectisol™ Technology 431
 13.3.1 Design and Operating Regions of Rectisol™ Process 433
 13.3.2 Energy Consumption of a Rectisol™ Process 435
 13.4 The Selexol™ Technology 446
 13.4.1 Selexol™ Process Parametric Analysis 448
 13.5 Adsorption Process 457
 13.5.1 Kinetic Modeling of SMR Reactions 458
 13.5.2 Adsorption Modeling of Carbon Dioxide 460
 13.5.3 Sorption Enhanced Reaction (SER) Process Dynamic Modeling Framework 460
 13.6 Chemical Looping Combustion 463
 13.7 Low Temperature Separation 471
 13.8 Summary 472
References 473

IV BIOREFINERY SYSTEMS 475

14 Bio-Oil Refining I: Fischer–Tropsch Liquid and Methanol Synthesis 477
 14.1 Introduction 477
 14.2 Bio-Oil Upgrading 478
 14.2.1 Physical Upgrading 478
 14.2.2 Chemical Upgrading 478
 14.2.3 Biological Upgrading 480
 14.3 Distributed and Centralized Bio-Oil Processing Concept 481
 14.3.1 The Concept 481
 14.3.2 The Economics of Local Distribution of Bio-Oil 482
 14.3.3 The Economics of Importing Bio-Oil from Other Countries 483
 14.4 Integrated Thermochemical Processing of Bio-Oil into Fuels 483
 14.4.1 Synthetic Fuel Production 484
 14.4.2 Methanol Production 485
 14.5 Modeling, Integration and Analysis of Thermochemical Processes of Bio-Oil 486
 14.5.1 Flowsheet Synthesis and Modeling 486
 14.5.2 Sensitivity Analysis 488
 14.6 Summary 494
References 494

15 Bio-Oil Refining II: Novel Membrane Reactors 497
 15.1 Bio-Oil Co-Processing in Crude Oil Refinery 497
 15.2 Mixed Ionic Electronic Conducting (MIEC) Membrane for Hydrogen Production and Bio-Oil
 Hydrotreating and Hydrocracking 499
 15.3 Bio-Oil Hydrotreating and Hydrocracking Reaction Mechanisms and a MIEC Membrane Reactor
 Based Bio-Oil Upgrader Process Flowsheet 502
 15.4 A Coursework Problem 510
 15.5 Summary 513
References 514
Contents

16 Fuel Cells and Other Renewables 515

16.1 Biomass Integrated Gasification Fuel Cell (BGFC) System Modeling for Design, Integration and Analysis 517
16.2 Simulation of Integrated BGFC Flowsheets 520
16.3 Heat Integration of BGFC Flowsheets 528
16.4 Analysis of Processing Chains in BGFC Flowsheets 529
16.5 SOFC Gibbs Free Energy Minimization Modeling 532
16.6 Design of SOFC Based Micro-CHP Systems 536
16.7 Fuel Cell and SOFC Design Parameterization Suitable for Spreadsheet Implementation 537
 16.7.1 Mass Balance 539
 16.7.2 Electrochemical Descriptions 540
 16.7.3 An air Blower Power Consumption 542
 16.7.4 Combustor Modeling 543
 16.7.5 Energy Balance 543
16.8 Summary 546

References 546

17 Algae Biorefineries 547

17.1 Algae Cultivation 548
 17.1.1 Open Pond Cultivation 548
 17.1.2 Photobioreactors (PBRs) 556
17.2 Algae Harvesting and Oil Extraction 562
 17.2.1 Harvesting 562
 17.2.2 Extraction 570
17.3 Algae Biodiesel Production 570
 17.3.1 Biodiesel Process 570
 17.3.2 Heterogeneous Catalysts for Transesterification 572
17.4 Algae Biorefinery Integration 572
17.5 Life Cycle Assessment of Algae Biorefineries 575
17.6 Summary 579

References 579

18 Heterogeneously Catalyzed Reaction Kinetics and Diffusion Modeling: Example of Biodiesel 581

18.1 Intrinsic Kinetic Modeling 582
 18.1.1 Elementary Reaction Mechanism and Intrinsic Kinetic Modeling of the Biodiesel Production System 582
 18.1.2 Solution Strategy for the Rate Equations Resulting from the Elementary Reaction Mechanism 590
 18.1.3 Correlation between Concentration and Activity of Species Using the UNIQUAC Contribution Method 591
 18.1.4 An Example of EXCEL Spreadsheet Based UNIQUAC Calculation for a Biodiesel Production System is Shown in Detail for Implementation in Online Resource Material, Chapter 18 – Additional Exercises and Examples 592
 18.1.5 Intrinsic Kinetic Modeling Framework 592
18.2 Diffusion Modeling 595
18.3 Multi-scale Mass Transfer Modeling 598
 18.3.1 Dimensionless Physical Parameter Groups 606
18.4 Summary 612

References 612
V ONLINE RESOURCES

Web Chapter 1: Waste and Emission Minimization
Web Chapter 2: Energy Storage and Control Systems
Web Chapter 3: Water Reuse, Footprint and Optimization Analysis

Case Study 1: Biomass CHP Plant Design Problem – LCA and Cost Analysis
Case Study 2: Comparison between Epoxy Resin Productions from Algal or Soya Oil – An LCA Based Problem Solving Approach
Case Study 3: Waste Water Sludge Based CHP and Agricultural Application System – An LCA Based Problem Solving Approach
Case Study 4: LCA Approach for Solar Organic Photovoltaic Cells Manufacturing

Index 613