Index

Page references followed by fig indicate an illustrated figure; followed by t indicate a table.

A
Access technologies: common LOB questions about, 207; continual emergence of, 213; proliferation of the “last mile” or, 206; standards to manage the overabundance of, 207. See also Communication; Technology
Addressable parts, 145
African bank’s ATM problem, 148–149
Age of Connected Things, 38
Agricultural payback scenarios, 110
Airline industry: IoT payback scenarios in the, 112–113; IoT waking up innovation in the, 230, 231 fig
Alchemist Accelerator, 154
Alcoa, 130
Amazon, 138
Anglo American Platinum Ltd (South Africa), 62 fig, 63
Antunes, Helder, 188, 217
APIs, 132, 133, 208
Apprenticeship USA program, 130
ARPU (average revenue per user or unit): IoT partnership between SP and enterprises for high, 71; mobile businesses build on the high, 70
Artificial Intelligence (AI), 144–145
Aspirational paybacks: considerations for other and, 116–123; steps to consider for IoT, 117
ATMs (automated teller machines): as early form of IoT, 14; IoT payback in financial services including, 226–227; IoT solution to African bank’s theft problem, 148–149
*Attaining IoT Value: How to Move from Connecting Things to Capturing Insights” study (2014) [Cisco], 22
Augmented reality (AR), 144
Auto industry: a car as a smartphone on wheels, 15–17 fig; how IoT is waking up innovation in the, 230, 231 fig; IoT model for the, 34, 35 fig; IoT transformation of the, 15–16, the traditional MPG (miles–per–gallon) ratings used in, 16
Automation building payback scenarios, 112
Automation Perspectives (2015), 82
Autonomous vehicles, 145
AVnu Alliance, 212
B
B2B (business–to–business) domain: current IoT as primarily in the, 226; focus of current IoT implementations in the, 4; how IoT can transform your, 151; illustration of the B2B2C and, 56; IoT as the new status quo in the, 154; key privacy considerations security in the, 198–199; retail payback scenarios in, 111; startups joining the IoT ranks, 67, 69–70
B2B2C (business–to–business–consumer) domain: expected IoT breakthroughs in the, 4; expected IoT implementations to the, 226; how IoT can transform your, 151–152; illustration of the B2B and, 56; privacy of data issue in, 198–199
B2C (business–to–consumer) domain, 226
Banks, Steve, 101
Barcelona (Spain): “Internet of Things World Forum” (2013) held in, 32, 33 fig, 61; as leading example in IoT applications, 32, 43, 54–55
Barros, João, 59
BC Hydro (Canada), 62 fig, 63
Before/during/after IoT security approach, 189–190 fig
Belani, Ravi, 154
Bennett, Martha, 218
Benteler Automobiltechnik GmbH (Germany), 62 fig, 64
Berra, John, 79, 87
BI (business intelligence) services, 72
Blockchain technology: description of, 199, 213–214; introduction to, 14, 90; long–term potential applications of, 217–221
Bluetooth LLE, 206
Boeing, 129
Bonomi, Flavio, 214–215
BPR, 151
Buzkowski, James, 17
Business Insider, 127
Business survival: the Harley–Davidson IoT case of, 6–7, 8 fig, 12, 18, 21, 32, 63, 76, 78, 87; how the Generation IoT drives 21st Century, 7, 9–10
Business value. See Value proposition
C
C-suite: get in front of the coming IoT change by enlisting the, 171; IoT success through sponsorship of the, 39; talking to your CISO about IoT security, 187, 201–202; vendor IoT journey being sponsored by, 232–233
Chand, Sujeet, 66, 78, 106
Change: resistance to, 147; Six Sigma’s approach to, 150, 151; understanding IoT as both an
agent and result of global, 147–148. See also IoT transformation change
Change management: importance of communication in successful, 153; required for successful IoT change, 152–153. See also Managers
Chief information security officer (CIoSO), 187, 201–202
Christiansen, Christian, 193
Chui, Michael, 19
Cisco: “Attaining IoT Value: How to Move from Connecting Things to Capturing Insights” study (2014) by, 22; Connected Industries Group adoption of IoT at, 9; country digitization initiatives signed by, 142; customer IoT implementations recently documented by, 61–64; debate over what to call the IoT trend at, 70; “The Digital Manufacturer, Resolving the Service Dilemma” survey (2015) by, 79–80, 81ff; how predictive analytics is used by, 106–108; “Internet of Things World Forum” (2013) hosted by, 32, 33ff; 61; as investor in Ravi Belani’s Alchemist Accelerator’s IoT track, 154; IoE (Internet of Everything) coined by, 12, 15; IoT partnership between Rockwell Automation and, 9, 66; ROI worksheet data to predict IoT ROI, 90–95; working toward open standards and open IoT model, 222
Cloud–oriented technology: future of security services for, 198; IoT adoption of, 23; job positions in the, 132; matching your IoT needs to right, 172
Coaching, 162ff, 163
Collaborative partner IoT ecosystems: categories of the emerging, 68ff; Cisco and Rockwell Automation, 9, 66; the co–economy of, 234–237; description and emergence of, 64–67; examples of, 65–66; IaaS model partnership of PepsiCo and Rockwell automation, 76; IoT partnership between SP and enterprises, 71; IoT security in context of, 197–198; as IoT success factor, 28ff, 39ff, 64–65; nine rules for creating, 161–163; required for IoT implementation, 43–44; taking it to the next level, 72–73. See also IoT ecosystems; IT/OT convergence
Common Industrial Protocol (CIP), 140
Communication: IoT mistake of failure in, 173; as IoT success factor, 40; V2V (vehicle–to–vehicle), 191, 199, 200–201, 218; as vital to successful change management, 153. See also Access technologies
Connected operations: description of, 98; as fast IoT payback path, 97ff; Rockwell Automation example of, 98–99ff; steps in starting an IoT project, 99–100
Consultants IoT journey, 233
Consumer Electronics Show (Las Vegas), 4
Consumer freebie models, 229
Context–aware experiences, 145
Contu, Ruggero, 194, 195
Cool Hand Luke (film), 173
“Co–operation” notion, 235
Cost justification case: building an IoT, 82ff–85; business challenge of building the, 84–85; every IoT project needs estimated ROI and, 222–223; four basic categories of productive areas gains, 84; helpful hints on what to include in the, 87–89; identifying largest expense in IoT initiative, 88–89. See also IoT payback
Cost justification hints; include how organization save money when deploying IoT, 89; include the largest expense in setting up an IoT initiative, 88–89; include what IoT project provides fastest path to payback, 87; include which IoT process has the biggest payback, 88; include which vertical markets deliver the largest ROI, 87–88
Cost justification productive areas: application–specific issues, 84; consumer–related IoT activities, 84; information collection, 84; predictive analytics, 84
Cost reductions, IoT payback in, 96
Creative Intellect Consulting, 201
Customers: Cisco’s documentation of IoT implementations and, 61–64; co–economy participation by, 236; IoT journey by, 234; and partner relationship aspects of the IoT economy, 222
Daihatsu Motor Company, 13
Data: encrypted, 191; how fog computing brings analytics and processing to, 211–212ff; IoT transformation role of people, process, things, and, 36–38; key areas of IoT payback, 86; predictive analytics used for IoT cost justification case, 84, 88; privacy of employee, 198–199; ROI model worksheet, 92ff; SCADA (supervisory control and data acquisition) systems, 41
Davra Networks, 72, 99, 102, 224, 228
DBA (database administrator), 132
Decision making, IoT payback in making faster, 96
Developers IoT journey, 233–234
DevOps: IT/OT collaboration as extension of approach used by, 24; “The real cost of downtime” published by, 105
Didier, Paul, 212
“The Digital Manufacturer, Resolving the Service Dilemma” survey (2015) [Cisco], 79–80, 81ff
Drug Quality and Security Act, 140
Dundee Precious Metals, 80, 82
E
Early adopters of IoT, 141–142, 227, 238ff
Economy. See IoT economy
Education: as IoT success factor, 40; STEM, 130. See also Training
Educational payback scenarios, 112
Éléonore gold mine (Canada), 49, 50ff
EMEIA (Ernst & Young Advisory), 172
Emerson Process Management, 79
Employee data privacy, 198–199
Employees. See Workers
Encrypted data, 191
Entertainment and sports payback scenarios, 112
Environmental IoT applications, 113–116
Ernst & Young Advisory EMEIA, 172
Est, Alex, 127
Ethernet switches, 9
F
FANUC (Japan), 62ff, 64, 66
Fenn, Jackie, 20
Financial services. ATMs (automated teller machines) 5G standard, 211
Fog computing: bring the cloud to the edge, 214ff; description of, 14, 90, 213–214; the ultimate IoT enabler, 215ff, 216–217;
understanding the applications of, 211–212
Fog for 5G and IoT, 188
Food Safety Modernization Act, 140
Ford Motor Company: IoT-led transformation of, 10, 32; James Buczowski’s emergence as electronics thought leader at, 17
Forrester Research, 218

G
Gartner, 19, 141, 194, 195
General Electric, 43
General Motors (GM), IoT application by, 32
Generation IoT: description and how to recognize, 10, 31–32; diversity of the, 123, 125; driving business survival in the 21st century, 7, 9–10; internal and external career choices for the, 137–139; IoT visionaries among the, 137–138, 142–145; new and old job positions filled by the, 132–137; welcoming early IoT adopters to the, 141–142, 227, 238ff; what type of business results attract the, 7. See also IoT journey; Workers
Germany’s Industry 4.0 initiative, 142
Glynn, Paul, 102, 224, 228
Goel, Asit, 16–17
Goldcorp (Canada): Éléonore gold mine challenges facing, 49, 50ff; the payback of IoT to, 49, 51
Goodyear Tire and Rubber Company, 40
Government sector: Apprenticeship USA program of the, 130; IoT adopters from the, 141–142; IoT agenda setters, 140–141; as IoT obstacle, 26; IoT regulators, 139–140
Gray, John, 21, 157
Green, Chloe, 226
Greenough, John, 127

H
Haley, Kathy, 41
Hannover Fair, 213
Harley-Davidson Motor Company: how IoT transformed, 6, 12, 18, 21, 32; illustration of the IoT case, 7, 8ff; lowering the HPU (hours per unit) manufacturing costs, 76, 87; results of combined efforts of IT and OT and, 6, 21, 63; strategic business outcomes from the IoT-induced changes at, 7, 7b, 78
Healthcare payback scenarios, 111, 226
Hilton, Steve, 70
HMI (human–machine interface), 72
“Hype Cycle for Emerging Technologies, 2014” report, 19
Hyperledger Project, 214

I
IaaS (Infrastructure as a Service) model, 76
IBM, 36
IDC: Fellow for The Internet of Things, 12; Security Products of, 193
IEEE Internet Initiative, 211
IEEE IoT Architectural Framework, 208, 211, 212
IHS, 127
IIC (Industrial Internet Consortium), 209, 212
IMEC, 210
Industrial and transportation industries: IoT payback in the, 226; Positive Train Control (U.S. railways), 140
Industrial Internet Consortium (IIC), 160
Industry 4.0 initiative (Germany), 142
Information Age, 38
Information Age magazine, 226
Innovation: how IoT is waking up industry, 230, 231ff; IoT’s contribution to the current renaissance of, 5, 230–234
Institute of Electrical and Electronics Engineers (IEEE), 199
International Society of Automation (ISA), 199, 202, 213
International Telecommunication Union (ITU) Study Group 20, 211
Internet Engineering Task Force (IETF), 199
“Internet of Things and the New Industrial Revolution” (Morgan Stanley–Automation World Industrial Automation Survey), 169–170
“The Internet of Things Has Finally Arrived” study (MPI Group), 227
“Internet of Things World Forum” (2013) [Barcelona], 32, 33ff, 61
“Internet of Things World Forum” (2015) [Dubai], 61, 222
Internet stages; “low-hanging fruit,” 89; making the cost justification case for your, 82ff–85; emerging IoT ecosystem to help support the, 64–67, 68ff; IoT mistake of ignoring future needs for, 171–172. See also Collaborative partner IoT ecosystems
IoT framework: the common, 207–208; IEEE IoT Architectural Framework, 208, 211, 212; IoT World Forum Reference Model, 208, 209ff. See also IoT standards
IoT (Internet of Things): a brief history and early forms of, 14–17; bringing together technology, the economy, and culture, 23–25; business aspects of, 237–239; continuing era of innovation and disruption by, 229–234; environmental applications and benefits by, 113–116; the global digital transformation through, 18–19; the government role in, 139–142; the key obstacles to, 25–26; predicted CAGR of, 19; as a revolutionary economic opportunity, 12–14; state of the IoT union today, 227–229; the three trends driving, 19, 21–23; understanding the impact on your organization by, 3–4. See also Internet stages; Technology; Value proposition
IoT journey: building an IoT cost justification for your, 82ff–85; emerging IoT ecosystem to help support the, 64–67, 68ff; examples of businesses at the beginning of their, 61–64; the increasing growth of organizations taking the, 58–61; IoT success by preparing for a, 27–28ff, 150–151ff; “low-hanging fruit,” 89; making the cost justification case for your, 82ff–89, 222–223; mistakes to avoid during your, 170–178; as a new journey for everyone,
IoT mistakes: avoiding the ones that are fatal, 178; common types of, 174ff; early identification of science projects vs. production projects, 172–173; fail fast/learn together approach to making, 173; failure to communicate, 173; focusing too much on current requirements instead of future needs, 171–172; implementing IoT solutions insolation, 171ff; moving forward and past your nonfatal, 177; summary of most common classes of challenges and, 173, 175ff–177; too optimistic forecasted ROI, 170. See also IoT success recipe

IoT obstacles: government as, 26; industry as, 26; organizational culture as, 26; security as, 25–26; strategic, 164–169; tactical, 169; technical, 25

IoT payback: aspirational, 116–124; breakout of IoT domain benefits in manufacturing for, 92ff; components of IoT, 85–86; Dundee Precious Metals, 80, 82; examples of specific types of, 78–82; five areas of fast, 96; four fast paths to, 97ff; Harley-Davidson’s IoT, 6, 7, 8ff, 12, 18, 21, 32, 63, 76, 78, 87; IOB managers reporting on IoT, 19, 21; PepsiCo’s IoT, 75–76, 77ff; smart environments, 86; Venaim’s mobile services, 59–60

IoT payback components: connected operations, 85; industrial control zones, 86; IoT as-a-Service, 85; metering and measurement, 85; predictive analytics, 85; remote monitoring, 85; remotely controlled machines and equipment, 86; smart environments, 86; Venaim’s mobile services, 59–60

IoT payback paths: connected operations, 97ff, 98–100; different scenarios on taking, 110–113; predictive analytics, 97ff, 102–105, 118; predictive maintenance, 97ff, 108ff–110; remote operations, 97ff, 100–102, 221–222; “the trillion-dollar question” on, 118

IoT payback scenarios: in agriculture, 110; in the airline industry, 112–113; in building automation, 112; in education, 112; in healthcare, 111; in the military, 110–113; in retail, 111; in sports and entertainment, 112; in utilities, 112

IoT security: best practices for, 195–197; challenges of, 197–198; common standards and best practices developed for, 199–200, 202; as everyone’s responsibility, 186ff; the first step on the journey toward, 10–11; as foundation of your IoT, 200–202; ISACA and RSA Conference 2016 survey on, 185; privacy concerns of, 198–200; security threats vs. security spending, 194ff; taking an industry approach to, 44; TIPPS (trust, identity, privacy, protection, safety, and security) systems, 237; understanding the importance of, 181–182; what the experts have to say about, 193–195

IoT security architecture: adopt a single policy-based, 11; flexibility and other characteristics of the best, 191–193; recommendations on type to adopt, 202; Stuxnet worm attack on Iranian nuclear facility, 182, 201

IoT security policy: adopt a security architecture based on a single, 11; collaboration for implementing, 11; converge around the, 11

IoT security risk management: best practices for, 195–197; challenge and process of, 184–187; common standards and best practices developed for, 199–200, 202; comprehensive before/during/after approach to, 189–190ff; recommendation for “best of both worlds” approach to, 191, 192ff; risk-based self-defense, 183ff; Shadow IT issues for, 188–189; three sets of guidelines for, 11; time for radical new approach to, 187–188; traditional “security by isolation” or “perimeter defense,” 187; understand that physical separation provides no defense, 182; V2V connectivity and, 191, 199, 200–201, 218; Verizon’s “2015 Data Breach Investigations Report” on, 11; what the experts have to say about, 193–195

IoT solutions: to African bank’s ATM theft problem, 148–149; imagine the ones that your organization will need, 222–223; implementing business change through, 149–152; mistake of implementing in isolation, 171ff

IoT standards: Cisco and Rockwell Automation working toward open, 222; evolving existing horizontal, 208, 211–212; 5G standard, 211; industry consortia, 209, 212; industry-specific standards bodies, 213; IoT security, 199–200, 202; IoT success by converging around, 44, 203–204; making the case for, 204–207, 210; migrating different technologies to open, 208–209. See also IoT framework; Standards

IoT success recipe: attract and train new and existing talent, 28ff; collaborative partner ecosystems, 28ff, 39ff, 64–65; focus on solving real problems, 28ff, 95–96; integrate technology solutions with business processes, 28ff, 150; make security a priority, 28ff; prepare for a journey, 27–28ff, 150–151ff; start with “low-hanging fruit,” 28ff, 89, 232; transform culture along with technology, 28ff, 155, 157–158. See also IoT mistakes; specific topic “The IoT to make up almost half of IT budgets by 2020” (Green), 226

IoT transformation change: change management required for successful, 152–153; changing roles and golden opportunities during, 161–163; comparison of directions, 39ff; as driving IT/OT convergence, 155–158, 156ff, 157–158, 163ff, emergency, as both an agent and result of change, 147–148; exercise and questions on facilitating, 169–170; get in front of the coming, 170–171; how business change is implemented through, 149–152; learn and share with your IoT peers to facilitate, 159–160; new conceptual paradigm of the, 38; as the new status quo, 32–34, 36, 153–155; nine rules for creating the co-economy required for, 161–163; obstacles to, 25–26, 163–169; operational elements of a successful, 39–40; opportunities created by, 51–59; people, process, data, things as part of the, 36–38; the promise of making, 47–51; reasons to consider the, 43–45. See also Change

IoT World Forum Reference Model, 208, 209ff

IoT-native technologies, 23
workforce ecosystem in your, 161–163; startup IoT, 67, 69; understanding the impact of IoT on your, 3–4. See also IoT journey; specific companies

OT (operational technology): how Harley-Davidson’s IoT cooperated with their, 6, 21, 63; IoT bringing together culture, economy, and, 23–25; as IoT success factor, 40. See also IT/OT convergence

Ovum, 18, 19

Oxford University’s Smart Hand- Pumps (Kenya), 115–116

P

Payback. See IoT payback

PC industry innovation, 230, 231ff

People. See Workers

PepsiCo, 75–76, 77ff, 80, 87, 90

Planning IoT success, 39

“Platform” startups. See Startup companies

PLC (power line communication), 206

Poniewierski, Aleksander, 171–172

POS (point-of-sale) networks, 14

Positive Train Control (U.S. rail-

ways), 140

Predictive analytics: Cisco’s application of, 106–108; description of, 104; FANUC “near zero downtime” solution, 64, 105–106ff; as fast IoT payback path, 97ff; identifying which IoT process has biggest payback using, 88–89; introduction to real-time, 14, 90, 145; IoT cost justification using, 84, 88–89; manufacturing application of, 100–104; potential of strategic use of, 118. See also IoT technology

Predictive maintenance: Cisco survey results on IoT and, 79–80, 81ff; description of, 109–110; as fast IoT payback path, 97ff, 108ff–110; as most compelling business case for IoT, 79–80; Rio Tinto’s open-pit mining problem with, 47–49, 90, 108ff–110

Preparation IoT success factor, 39

PricewaterhouseCoopers, 154

Privacy concerns: employee data, 198; location of the employee data, 198; protection of sensitive employee data, 198–199; TIPPS (trust, identity, privacy, protection, safety, and security) systems, 237

Processes: IoT success by integrating technology solutions with business, 28ff, 150; IoT transformation role of people, data, things, and, 36–38

Productivity IoT payback, 96

PROFIBUS (Process Field Bus) [PI], 213

PROFINET (Process Field Net) [PI], 213

Public interests protection, 140–141

Quality improvement IoT payback, 96

Rail Safety Improvement Act, 140

“The real cost of downtime” (Demo vOps), 105

Remote expertise, 143

Remote operations: dairy company and Nimble Wireless’ development of a, 101–101; Davra Networks’ implementation of, 101; as fast IoT payback path, 97ff, 100, 101–102; financial savings of, 221–222; the trucking industry example of, 100–101

Retail payback scenarios, 111, 226

RFID (radio-frequency identification) tags, 14, 15

Rio Tinto: deep open mine illustration of the issue, 47, 48ff; leveraging IoT to streaming mining process of, 90; predictive maintenance challenge facing, 47–49, 90, 108ff–109, 108ff

Robotics field, 144, 226

Rockley, Whitney, 65

Rockwell Automation: Cisco’s IoT partnership with, 9, 66; connected operations of, 98–99ff; financial payback of IoT improvements at, 78; IaaS model partnership of PepsiCo and, 75–76, 77ff, 80, 87, 90; “PepsiCo Infrastructure as a Service” profile of, 76; working toward open standards and open IoT model, 222

ROI (return on investment): breakout of IoT domain benefits in manufacturing, 92ff; breakout of IoT domain benefits in manufacturing payback and, 90ff; evaluating tradeoffs of various pricing approaches, 229; every IoT project needs to be cost–justified with estimated, 222–223; examining the IoT, 6; Harley-Davidson’s IoT, 6, 7, 8ff, 12, 18, 21, 32, 63, 76, 78, 87; identify which vertical markets deliver the largest IoT, 87–88; LOB managers reporting on IoT, 19, 21; mistake of too optimistic forecast on, 170;

PepsiCo’s IoT, 75–76, 77ff, 80, 87, 90; predictive analytics to identify potential payback and, 84, 90–95; ROI worksheet data to predict, 91ff

Rotibi, Bola, 201

S

S&P 500: failure to keep up technologically by the, 7, 23; need to learn Generation IoT implementation by, 10

SCADA (supervisory control and data acquisition) systems, 41

Security issues. See IoT security

Self-learning networks (SLN), 221–222

Sensor swarms, 191

Service providers. See SPs (service providers)

Service–oriented architecture (SOA), 228

Shadow IT, 188–189

Siemens, 130, 154

Silicon Valley’s technological changes, 154–155

Sivakumar, Siva, 102

Six Sigma, 150, 151

SLN (self-learning networks), 221–222

Small businesses IoT journey, 232

Smart Handpumps (Oxford University) [Kenya], 115–116

SOA (service-oriented architecture), 228

Southeast Michigan Test Bod, 160

Sports and entertainment payback scenarios, 112

SPs (service providers): increasing IoT partnerships between enterprises and, 71; IoT journey of, 223; traditional business positions of, 70

Standards: example of the Beta-max vs. VHS, 211; open technology, 22–23; for solving the overabundance of access technologies problem, 207. See also IoT standards

Stanley Black & Decker, Inc., 27–28

Startup companies: increasing number of B2B IoT, 67; IoT application enablement platform type of, 67, 69; IoT platform-enabled solution type of, 69

State of the IoT union today, 227–229

Stealthwatch Learning Networks, 222

STEM education, 129

Strategic IoT obstacles, 164–169

Strategies: building IoT workforce ecosystems rules and, 161–163; collaboration, 43–44; converge around standard, 44, as IoT
Index

success factor, 39; take an industry approach, 44. See also IoT success recipe
Stuxnet worm attack, 182, 201
Success recipe. See IoT success recipe
Suppliers IoT journey, 234
“Surface World” conference (2015), 32
System integrators IoT journey, 233
T
Tactical IoT obstacles, 169
Teams: IoT success by building a diverse, 39; nine rules to build your IoT workforce ecosystem, 161–163
Technology: blockchain, 14, 90, 199, 217–221; cloud–oriented, 23, 132, 172, 195; fog computing, 14, 90, 211–212, 213–214; integrating business processes with, 28frg, 150; IoT success by transforming culture along with, 28frg, 155, 161–163; machine learning, 14, 90, 145, 215–216. See also Access technologies; IoT (Internet of Things); Predictive analytics
Things: Age of Connected Things, 38; IoT transformation role of process, data, people, and, 36–38
TIPPSS (trust, identity, privacy, protection, safety, and security) systems, 237
Tokar, Dima, 67, 69
Toronto Pearson International Airport, 41
Training: as IoT success factor, 40; Siemens’ apprenticeships approach to, 130; specialized IoT, 129. See also Education; Workers Transportation and industrial industries: IoT payback for, 226; Positive Train Control (U.S. railways), 140
Tratz–Ryan, Bettina, 141

“The trillion–dollar question” on payback, 118
TSN (Time Sensitive Networking), 212
TTTech, 212
2015 Automation Perspectives, 82
“2015 Data Breach Investigations Report” (Verizon), 11

U
UP Express (Union Pearson Express), 41
U.S. railways Positive Train Control, 140
Utilities payback scenarios, 112

V
V2V (vehicle–to–vehicle) connectivity: blockchain technology being considered for, 218; IoT security architecture able to handle, 191; recommendations on getting started with, 200–201; security potential of, 199
Value chains: example of collaborative partner IoT ecosystem to transform railway, 66; how IoT disrupts traditional, 7, 8frg, 12, 226; IoT vision for, 145
Value proposition: building an IoT cost justification using potential, 82frg–85; components of IoT payback for, 85–86; Dundee Precious Metals, 80, 82; Harley-Davidson IoT-induced changes and increased, 6, 7, 8frg, 12, 18, 21, 32, 63, 76, 78, 87; IoT-driven evolutionary improvements in, 5–6; PepsiCo case, 75–76, 77frg, 80, 87, 90; predictive maintenance as most compelling, 79–80. See also IoT (Internet of Things)
Vasseur, JP, 222
Vendors: co–economy participation by, 236; IoT journey taken by, 232–233

Veniam, 59–60
Verizon’s “2015 Data Breach Investigations Report,” 11
Villa, Nicola, 22
Virtual reality (VR), 143
VPN (virtual private network) connections, 188

W
Watson, Mark, 127
Wind power, 115–116
Wireless HART standard, 210
Wi–SUN, 206
Workers: changing roles and golden opportunities during IoT change, 161–163; hiring guide for finding, 128–132; IoT transformation role of process, data, things, and, 36–38; IoT visionaries among your, 137–138, 142–145; IoT will require a lot of qualified, 125–128; new positions and old positions with a new twist for, 132–137; nine rules to build your IoT workforce ecosystem, 161–163; privacy concerns related to employee data of your, 198–199. See also Generation IoT; Training
World Economic Forum, 142
World Wide Strategic Partnerships (IMEC), 210
“Worldwide Internet of Things Forecast, 2015–2020” report, 18, 19
WPAN (wireless personal area networks), 206

Z
Zhang, Tao, 188
Zheng, Raymond, 188
Zheng, Yi, 188
ZigBee NAN, 206