Index

a
- absolute production constraint 195
- active power control mode
 - absolute production constraint 195
 - balance regulation requirement 196
 - basic requirements 194
 - Danish transmission system operator 194
 - delta production constraint 195
 - frequency-controlled regulation 198
 - power gradient constraint 196–197
 - stop regulation 196
 - system protection 197–198
- active power control strategy
 - emergency active power support 198
 - frequency regulation 198
 - identification of the control priority 199
 - output schedule tracking 198
 - peak load regulating 198
 - real-time active power control strategy 200–201
 - wind farms at state 0 199
 - wind farms at state 1 199
 - wind farms at state 2–5 199
- active powers 58
- adaptive controller for maximum power point tracking (MPPT) design
 - architecture 140–141
 - closed-loop reference system 142
 - parameters 142–144
 - problem formulation 140
 - full-load regime 133–134
 - generator control system
 - generator torque control 138–139
 - speed control 139–140
 - speed reference calculation 136–138
 - tip-speed ratio 135–136
 - hill climbing search control 134–135
 - MPPT performance 144–147
 - optimal regimes characteristics 133–134
 - partial-load regime 133–134
 - power signal feedback control 135
 - tip-speed ratio control 135
 - variable speed WECS 133–134
 - wind speed estimation 144
- additional DC voltage coupling controller 108–109
- aerodynamics 119–120
 - model 64–66
 - torque, identification of 123
- AGC communication management units 200
- anti-parallel thyristor 60
- automatic generation control (AGC) 200, 202
- automatic voltage regulators (AVRs) 234

b
- balance regulation requirement 196

c
- China Gansu Jiuquan Wind Power Base 208
- closed-loop stability 249–250
- clustering-based identification method 122–123

continuous voltage operating range 17–18
controller design
 1p individual pitch control 71–72
 2p individual pitch control 72
control system, full scale converter
 block diagram 96
 constant stator voltage control 99–102
 control principle 96
 grid-side converter 101, 103–107
 PMSG side converter 98–99
 SCIG side converter 97–98
 unit power factor control 99
 correction factor, identification of 125–126
 corrective voltage control mode 184–185
crowbars 59

d
Danish transmission system operator 194
DC-link voltage ripple 56–57
decoupled control 46
delta production constraint 195
design of L_1 adaptive controller
 architecture 140–141
 closed-loop reference system 142
 parameters 142–144
 problem formulation 140
DFIGs. see doubly-fed induction generators (DFIGs)
diode rectifier 60
direct-drive PMSG-based wind turbine 86
direct torque control (DTC), DFIG 46–47
 application of 49
 features of 47–49
 mathematic model 50–51
 realization 51–59
 low-voltage ride through 58–61
 PQ control of 40–41
 grid-side converter 41–43
 rotor-side converter 43–46
 principles of 37–40
wind turbines 202
drivetrain 120
 model 66–67
 drivetrain torsional vibration control 63–64
LQG controller design 73, 77–79
 simulation analysis 79–83
dynamic discrete time piecewise affine (PWA) model
 active power control 117
 clustering-based identification method 122–123
 formulation of A' and B' 126
 high wind speed case 129–131
 identification of aerodynamic torque 123
 identification of correction factor 125–126
 identification of generator torque 123–124
 identification of thrust force 124–125
wind farm control based on D-MPC
 without ESS 163–169
wind farm equipped with energy storage modelling of ESS unit 161–162
 MPC problem formulation 162–163
 wind farm control structure 160–161
wind farm without energy storage control structure 152–153
 load evaluation of the wind turbine 154
 MPC problem formulation 154–156
 parallel generalized fast dual gradient method 158–160
 standard QP problem 156–158
doubly-fed induction generators (DFIGs) 5–6, 17
direct torque control 46–47
 application of 49
 features of 47–49
 mathematic model 50–51
 realization 51–59
 parallel generalized fast dual gradient method 158–160
 standard QP problem 156–158
wind farm control based on D-MPC with ESS 166–171
low wind speed case 128–129
operational regions of power-controlled wind turbines 118–119
power reference during simulation 128
region construction through intersection 126
simplified wind turbine model
 aerodynamics 119–120
drivetrain 120
generator 120–121
 pitch actuator 121–122
tower 121
variable speed pitch-controlled wind turbine 117–118
wind speed variation 127
wind turbine 126–127
dynamic model, wind turbine
 aerodynamic model 64–66
drivetrain model 66–67
electrical control model 67
tower model 66
wind conditions model 64
frequency-controlled regulation 198
full-scale converter induction generators (FSC-IGs) 87
full-scale converter model 94–95
full-scale converter (FSC) wind turbine generator (WTG)
 basic structure 85–86
 DC link 86
direct-drive PMSG-based wind turbine 86
fault ride through capability 85
full scale converter control system 96–107
full-scale converter model 94–95
gearbox 86
generator model 91–94
gird-connected stability control 107–108
 additional DC voltage coupling controller 108–109
 simulations 109–114
transient voltage control 108
large-scale offshore wind farms projects 87
maximum power point tracking 87
operating characteristics 88–89
permanent magnet machine 86
reactive current contribution 85
shaft model 89–91
squirrel cage asynchronous machine 87
topological structure 87
Gansu Jiuquan Renewable Energy Base 213
generator 120–121
generator control system
generator torque control 138–139
 speed control 139–140
 speed reference calculation 136–138
tip-speed ratio 135–136
generator model
 PMSG 92–94
 SCIG 91–92
generator torque, identification of 123–124
harshest fault situation 228–229
high-voltage controllable reactor 203, 205
high-voltage ride through (HVVRT) 107
hill climbing search control algorithm
134–135
HVDC system, POD
electrical system 235–236
offshore converter 236–237
onshore converter 236–237

i
ideal POD controller 242–243
IEC61400 standard 64
IEEE modified 12.bus system 238, 240
individual pitch control (IPC) 63–64, 67–68
control implementation 68
controller design 71–72
linearization 68–71
simulation analysis 73–79
induction generators (IGs) 4
insulated gate bipolar transistor (IGBT) 94
insulated gate bipolar transistor Q2 60
IPC. see individual pitch control (IPC)

j
leakage coefficient 45
linear blade element momentum theory 69
linear-quadratic-Gaussian method (LQG)
controller design 73–79
low-voltage ride through (LVRT) 58–61, 107
Denmark 31–32
Germany 30
Ireland 29–30
Quebec and Alberta 34–36
Spain 31–33
Sweden 32–34
UK 26–29
USA 33, 35
LVRT. see low-voltage ride through (LVRT)

m
maximum power point tracking (MPPT), adaptive controller for design
architecture 140–141
closed-loop reference system 142
parameters 142–144
problem formulation 140
full-load regime 133–134
generator control system
generator torque control 138–139
speed control 139–140
speed reference calculation 136–138
tip-speed ratio 135–136
hill climbing search control 134–135
MPPT performance 144–147
optimal regimes characteristics 133–134
partial-load regime 133–134
power signal feedback control 135
tip-speed ratio control 135
variable speed WECS 133–134
wind speed estimation 144
mechanically switched capacitor (MSC) 4
mechanical side oscillations 252–253
model predictive voltage control coordination with OLTC 183–184
corrective voltage control mode 184–185
general composite model 182–183
5-MW full-converter WTGs
normal operation 187
operation with disturbances 187–190
preventive voltage control mode 186
proportional dispatch algorithm 176
required reactive power reference 176
sensitivity coefficient calculation
voltage sensitivity to reactive power 178–179
voltage sensitivity to tap position 179
short-circuit ratios 175
SVC/SVG modeling 181–182
Var/Volt regulation devices 190
voltage regulation devices 176
wind farm collector system 176
wind farm voltage controller 176–178
WTG modeling 180
MPPT strategy 51

o
offshore HVDC converter control 236–237
on-load tap changing (OLTC) transformers 175
onshore HVDC converter control 236–237

p
parallel generalized fast dual gradient method
distributed optimization algorithm 159–160
properties of dual problem 158–159
passive crowbar circuit 60
permanent magnet synchronous generator (PMSG) 85
pitch actuator 121–122
POD. see power oscillation damping (POD)
power-controlled wind turbine model 117–118
power electronic sources 234–235
POD controller 241
practical considerations for parameter tuning 241–245
study case 238, 240–241
power gradient constraint 196–197
power oscillation damping (POD)
HVDC connection of offshore WPPs 233–234
HVDC system
electrical system 235–236
offshore converter 236–237
onshore converter 236–237
implementation on
VSC-HVDC-connected WPPs
collateral effects on WPPs 252–253
demonstration on study case 246–248
ramp-rate limiters 251
realization of POD control 245–246
sensitivity to delays 251
stability and performance limitations 248–251
from power electronic sources 234–235
POD controller 241
practical considerations for parameter tuning 241–245
study case 238, 240–241
wind power plant controls 238–239
electrical system 237–238
power system 238
power quality 24–26
power signal feedback control 135
power system stabilizers (PSSs) 234
PQ control of DFIG 40–41
grid-side converter 41–43
rotor-side converter 43–46
preventive voltage control mode 186
proportion and integration (PI)-based space vector control 46
pulse-width modulation (PWM) voltage source converter (VSC) 41
r
ramp-rate limiters 251
reactive power and power factor requirements 12–17
reactive power and voltage control control of WT converter 205, 207–208
high-voltage controllable reactor 203, 205
impact 200, 202–204
series compensation for the transmission line 203
static var generators 205–206
wind farm AVC design scheme 210, 212–213
wind farm cluster optimization strategy 208–209
wind farm group voltage control strategy 208, 210
wind farm voltage control strategy 208, 211
reactive powers 58–59
real POD controller 243–245
real-time active power control strategy 200–201
rotor flux ripple 55
rotor-side converter 43–46

s
sensitivity coefficient calculation
voltage sensitivity to reactive power 178–179
voltage sensitivity to tap position 179
shaft model
with gearbox 89–90
mathematical model 90–91
without gearbox 90
simplified wind turbine model
aerodynamics 119–120
drivetrain 120
generator 120–121
pitch actuator 121–122
tower 121
single-machine–infinite-bus system 238, 240
sliding mode controller (SMC) 135
slip frequency 44
small-signal stability 234
small variable-speed wind energy conversion system (WECS) 133
space vector pulse width modulation (SVPWM) 47
spring-mass-damper system 66
squirrel cage induction generator (SCIG) 4, 85, 135
standard quadratic programming (QP) problem
multiple wind turbines 158
single wind turbine 156–158
static var compensators (SVCs) 175
static var generators (SVGs) 175, 205–206
steady-state operational requirements, WPPS
continuous voltage operating range 17–18
frequency operating range 18–19
frequency response 18–23
power quality 24–26
reactive power and power factor requirements 12–17
stop regulation 196
system protection 197–198

t
10-GW wind power base 205
TenneT TSO GmbH 22, 30
three-phase short-circuit fault 224–226
three-phase short circuits 61
thrust force, identification of 124–125
time-domain simulations, VSC-HVDC 223–224
harshest fault situation 228–229
parameters 224
three-phase short-circuit fault 224–226
unbalanced fault 225–228
tip-speed ratio (TSR) 134, 135–136
tower 121
tower fore-aft vibration control 63
tower lateral-vibration control 63
tower model 66
transient voltage control of grid-side converter 108
type 1 generators 4–5
Index | 263

type 2 generators 5
type 3 generators 5–6
type 4 generators 6

u
unbalanced fault 225–228

v
variable-speed wind turbines (VSWTs) 7
vector control technology 67
voltage phase-locked loop (PLL) 105
voltage sensitivity
to reactive power 178–179
to tap position 179
voltage source converter high voltage direct current (VSC-HVDC)
advantages 215
control of WPP-side VSC 220–222
control strategy 215
doubly fed induction generators 216
feedforward DC voltage control based FRT technique 222–224
FRT methods 216
grid code requirements 215
modeling of VSC-HVDC-connected WPP 217, 219–220
modeling with an external grid 217–218
power oscillation damping
collateral effects on WPPs 252–253
demonstration on study case 246–248
ramp-rate limiters 251
realization of POD control 245–246
sensitivity to delays 251
stability and performance limitations 248–251
time-domain simulations 223–224
harshest fault situation 228–229
parameters 224
three-phase short-circuit fault 224–226
unbalanced fault 225–228
voltage space vectors 48
VSC-HVDC. see voltage source converter high voltage direct current (VSC-HVDC)

w
wind conditions model 64
wind farm clusters
active power control mode
absolute production constraint 195
balance regulation requirement 196
basic requirements 194
Danish transmission system operator 194
delta production constraint 195
frequency-controlled regulation 198
power gradient constraint 196–197
stop regulation 196
system protection 197–198
active power control strategy
emergency active power support 198
frequency regulation 198
identification of the control priority 199
output schedule tracking 198
peak load regulating 198
real-time active power control strategy 200–201
wind farms at state 0 199
wind farms at state 1 199
wind farms at state 2–5 199
active power prediction and schedules 193
automatic generation control 200, 202
large-scale and centralized 193–194
reactive power and voltage control
control of WT converter 205, 207–208
high-voltage controllable reactor 203, 205
impact 200, 202–204
series compensation for the transmission line 203
static var generators 205–206
wind farm AVC design scheme 210, 212–213
wind farm cluster optimization strategy 208–209
wind farm group voltage control strategy 208, 210
wind farm voltage control strategy 208, 211
Index

wind farm control based on D-MPC with ESS
 centralized control 167
 D-MPC algorithm 167
 D-MPC-ESS algorithm 167–168
 800-kW/3-kWh ESS 166
load alleviation of wind turbines 168–171
wind farm control based on D-MPC without ESS
 convergence with the fast dual gradient method 163
 operation under high- and low-wind conditions 163–164
load alleviation of wind turbines 165–169
 power reference tracking 164–165
wind farm equipped with energy storage
 modelling of ESS unit 161–162
 MPC problem formulation 162–163
 wind farm control structure 160–161
wind farm remote terminal unit (RTU) 200
wind farms
 control based on D-MPC with ESS 166–171
 control based on D-MPC without ESS 163–169
 equipped with energy storage
 modelling of ESS unit 161–162
 MPC problem formulation 162–163
 wind farm control structure 160–161
 at state 0 199
 at state 1 199
 at state 2–5 199
wind farm control structure 152–153
wind farm without energy storage control structure 152–153
load evaluation of the wind turbine 154
MPC problem formulation 154–156
parallel generalized fast dual gradient method 158–160
standard QP problem 156–158
wind farm voltage controller (WFVC)
 automatic tap controller 178
 configuration 176–177
constant-\(V\) mode/constant-\(Q\) mode 177
corrective control mode 176
preventive control mode 176
sensitivity coefficients 178
structure 176–177
wind farm without energy storage control structure 152–153
load evaluation of the wind turbine 154
MPC problem formulation 154–156
parallel generalized fast dual gradient method 158–160
standard QP problem 156–158
wind power development 1–4
wind power plant, POD controls 238–239
electrical system 237–238
power system 238
wind power plants (WPPs), grid code requirements
 low-voltage ride through requirement
 Denmark 31–32
 Germany 30
 Ireland 29–30
 Quebec and Alberta 34–36
 Spain 31–33
 Sweden 32–34
 UK 26–29
 USA 33, 35
steady-state operational requirements
 continuous voltage operating range 17–18
 frequency operating range 18–19
 frequency response 18–23
 power quality 24–26
 reactive power and power factor requirements 12–17
wind turbine
 active control 63
 drivetrain torsional vibration control
 LQG controller design 73, 77–79
 simulation analysis 79–83
dynamic model
 aerodynamic model 64–66
 drivetrain model 66–67
 electrical control model 67
tower model 66
wind conditions model 64
fatigue damage 63
individual pitch control 67–68
control implementation 68
controller design 71–72
linearization 68–71
simulation analysis 73–77
load reduction control 63
wind turbine generators (WTGs) 1
wind turbine generator technology comparison 7
frequency stability 8
impact on power quality 7
impact on system planning 8
impact on system reliability 7–8
type 1 4–5
type 2 5
type 3 5–6
type 4 6
voltage stability 8
wind turbine rotor (WTR) 4
wound rotor induction generator (WRIG) 37–38
WPP-side VSC 220–222