Index

absorbance, 323
absorbeny, 56
absorbent fibres, 94
acid milling dyes, 173
acrylic fibre dyeing
 basic (cationic) dyes, 171–172
 disperse dyes, 172
 ion-exchange mechanism, of dyeing acrylic fibres, 171
activated state theory, 17
activation energy of diffusion, 246–247
addition polymerisation, 81, 87
additive colour mixing, 278–279
adsorption isotherms
 Freundlich adsorption isotherm, 253
 Langmuir adsorption isotherm, 254
 Nernst adsorption isotherm, 252
 partition coefficient, 253
air-laid, 345
air-textured yarn, 345
aliphatic hydrocarbons
 homologous series, 28
 saturated compounds, 28
 unsaturated compounds, 29
alkalis, 73
alkene ethene, 87
alkyl group, 32
American Association of Textile Chemists and Colourists (AATCC), 329
amino acids, in protein fibres, 67
amino end groups, protonation of, 170
ammonium ethanoate, 148
ammonium sulphate (NH₄)₂SO₄, 25
amorphous regions, 52
amphoteric, 70
aniline, 38
anionic dyes, 260
anthraquinone dyes
 acid dye, for wool, 116
 anthracene oxidation, 115
aramid fibres, 84
aromatic hydrocarbons, conjugated system, 31
aromatic monomers, 84
aromatic organic compounds, 27
Arrhenius equation, 16
atomic number, 2
atomic structure
 atomic number, 2
 filling up shells, by electrons, 3
 protons, neutrons and electrons, 1
 attractive and repulsive forces, 263
auxochromes, 110
azobenzene see phenylazobenzene
azo dyes
 chemical classes, 113
 chemical reaction, diazonium salt and coupling component, 113
 diazo coupling, 114
 H-acid, 114
 azo group, 111
barré, 168
basket weave, 345
bast fibres, 65
batt, 345
Beer–Lambert law, 323
Beer’s law plots, 240
Bemberg silk, 76
benzaldehyde, 38
benzene-1,4-dicarboxylic acid, 39
benzoic acid, 38
binders, 107
biological oxygen demand (BOD), 44
Bombyx mori, 74
braided yarn, 345
British Standards Institution (BSI), 327
British wools, 66
buffer capacity, 25
buffer solution, 25
bulk-scale dyeing, 309
Bureau International pour la Standardisation des Fibres Artificialles (BISFA), 49
carbon dioxide formation, 19
carbon disulphide (CS₂), 76
carboxymethyl cellulose (CMC), 208
carding, 345
carriers
 chemical groups, 42–43
 polyester fibres dyeing, 42
catalysts
 energy pathway, of chemical reaction, 18
 enzymes, 18
 homogeneous/heterogeneous, 18
catalytic hydrogenation process, 156
cationic dyes, 138
cationic polymethine dyes, 116
cellobiose formation, 59
cellulose acetate fibres
 secondary, 79
 triacetate, 79
cellulosic fibre dyeing
 azoic dyes, 136–137, 162
direct dyes
 anionic, 152
 cationic fixatives, 154
 dyeing profile, 153
 inherent substantivity, 127
 metal complex formation, 154
 SDC classification, 152
 wet fastness properties, 128
reactive dyes
 batch dyeing, 159
 continuous dyeing, 160–161
 dyeing profiles, 158
 fibre-reactive dye, structure, 131
 fibre-reactive groups, characteristics of, 132
 low substantivity, 157
 MCT, 157
 monofunctional, 132
 semi-continuous dyeing, 159–160
sulphur dyes, 161–162
 classification, 135
 organic compounds, 134
 oxidants producing variations, 136
vat dyes
 dyeing and printing, 128
 fermentation vat dyes, 128
 hydrogen bonding, 129
 sodium dithionite oxidation, 156
 solubilised, 129–130
 vatting of indigo, 155
 water-insoluble pigment, 154
chain flexibility, 52
chelating agents, 40
chelation reaction, 40
chemical adsorption see chemisorption
chemical etching, 214
chemical oxygen demand (COD), 44
chemical reaction
 catalysts, 17–18
 effect of temperature, rate of reaction, 16–17
 effluent disposal, 44–45
 rates of and chemical equilibria, 14–16
 types, 13–14
chemical resist printing, 220
chemisorption, 250
chlorotriazinyl reactive dyes, 170
chromaticity, 303
chrome mordant method, 145
chroming, 146
chromophores, 110
CIE standard illuminants, 289
CIE system
 applications
 colorant formulation, 304–309
 colour-difference formulae, 310–316
 metamerism, 316
 colour specification
 colour-matching wavelengths, 299
 standard observer, 297–299
 surface colours, CIE XYZ system, 299–302
 tristimulus values, 298, 302–304
circular knitting, 345
ocourse wool fibres, 55
co-ions, 261
cold-dyeing dyes, 159
collision theory of reaction rates, 16
Index

condensation polymers
 aramid fibres, 84–85
 elastomeric fibres, 87
 polyamide (nylon) fibres, 82–84
 polyester fibres, 85–86
 condenser-spun yarn, 345
 conical pan dyeing machine, 178
 contact printing system, 224
 continuous dyeing, 197–199
 continuous filaments, 54
 continuous ink jet technology, 226
 continuous phase, 208
 continuous transfer printing, 225
 convective diffusion, 232
 core-spun yarn, 345
 cotton, 57–58
 fibre, 61
 Gossypium, 57
 morphology of, 60–62
 organic, 64–65
 properties, 62–64
 cotton bolls, 60
 cotton linters, 62
 counter-ions, 261
 coupling component, 162
 covalent bond formation
 chlorine molecule formation, 8
 hybridisation, 10
 methane formation, 9
 by nitrogen and oxygen atoms, 10
 tetrahedral molecular structure, methane, 9
 Crepe de chine, 345
 crepe yarn, 345
 crimp, 96, 345
 critical micelle concentration, 138
 crockmeter, 340
 cross-links, rupture and re-formation of, 73–74
 crystalline and amorphous structure, 53
 crystalline regions, 52
 cuprammonium rayon, 76
 cyanoethene, addition polymerisation, 89
 dead cotton, 62
 decitex (dtex), 55
 decomposition reaction, 13
 degradation products, over-oxidation, 63
 degree of orientation, 52
 degree of polymerisation (DP), 59

 colorant formulation
 absorption coefficients, 305
 dye recipe prediction, 304
 iteration, 308
 Kubelka–Munk equation, 307
 colorimetry, 329
 colorant
 classification, 107–109
 strength and physical form, 141–142
 colour brightness, 278
 colour constancy
 definition, 317
 SDC mutameric samples, 318
 colour fastness standards, 329
 Colour Index Constitution Number (CICN), 108
 Colour Index Generic Name (CIGN), 108
 Colour Index™, 108
 application classes, 109
 CIGN, 108, 109
 dual classification system, 108
 essential colorant, 108
 colour, in organic molecules
 auxochromes, 111
 electron accepting groups, 112
 excited state, 110
 light energy, absorption, 110
 colour measurement
 additive colour mixing, 278–279
 colour solid
 chroma (C), 280
 electromagnetic spectrum, 281
 hue (H), 280
 lightness (L), 280
 describing colour, 278
 factors affecting colour appearance
 light sources, 285–290
 reflection, 290–295
 solution, 322–326
 spectrophotometer, 322
 subtractive colour mixing, 279–280
 colour sorting, 319–321
 colour strength, 278
 commingled yarn, 345
 Commission Internationale de l’Eclairage (CIE), 288
 complementary colours, 278
 condensation polymerisation, 81
Index

delocalised compounds, 31
denier, 345
deuterium, 2
1,3-diaminobenzene (m-phenylenediamine), 84
1,4-diaminobenzene (p-phenylenediamine), 84
1,6-diaminohexane, 83
diazotisation reaction, 113, 162
dichlorotriazine reactive dyes, 134
dichlorotriazinyl (DCT), 160
dichromate, 145
diffuse adsorption models, 266
diffuse electrical double layer, 261
diffusion
 activation energy of, 246–247
 coefficient of dyes, 244–246
 concentration gradient, 243
diffusional boundary layer, 233
diffusion coefficient, 243
diketopyrrolopyrrole (DPP), 140
dimethylacetamide, 90
dipeptide formation, 68
dipole-dipole interaction, 251
dipole-induced dipole interaction, 251
directional friction effect, 70
disazo see azo dyes
discharge printing
 common discharging chemicals, 218
 cotton/polyester or wool/polyester, 220
 dischargeability, 219
 illuminated discharge, 219
dispersed phase, 208
disperse dyes, 80
dispersing agents, 41, 138
dispersion forces, 251
displacement reactions, 13
dominant wavelength, 304
Donnan coefficient, 264
Donnan equilibrium, 264
Donnan membrane potential, 266
double-bonded hydrocarbon compounds, 30
drafting, 345
dry-jet wet spinning, 92
dry saturated steam, 216, 217
dry spinning, 90–91
dye(ing)
 adsorption
 chemical adsorption, 252
 isotherms, 252–256
 physical adsorption, 250–251
 specific sites, 272
aggregation
 diffusion coefficients, 246
 dye application classes, behaviour of, 236
 electrolyte presence, 241–242
 molecule hinder aggregation, 236
 overlapping structures, dye molecules, 239
 salt concentration, 241
 solvent, 243
 steric hindrance, 237
 sulphonate groups, 238
 temperature, 242–243
anions, 143
asorbance spectrum of, 241
binders, 107
colorant classification, 107–109
colour, in organic molecules, 110–113
concentration, 240–241
cycle of, 150
dyes classification
 anthraquinone dyes, 115–116
 azo dyes, 113–115
 for cellulosic fibres, 127–137
 methine and polymethine dyes, 116
 nitro dyes, 116–117
 for protein fibres, 117–127
 for synthetic fibres, 137–141
 triarylmethane dyes, 117
kinetics aspects of, 231
diffusional boundary layer, 233
dye/fibre systems, 234
dye molecules into fibrous substrates, 235
transfer of, dye molecules, 232
liquor, 181
loose fibre, 178
machinery
 batchwise dyeing, 177
 coloration, 176
 dyeing loose fibre, 178–179
 latter process, 177
 liquor ratio, 178
molecules, transfer of, 232
naphthalene, 115
process, 16
rate of dyeing, 247–250
studies of, 231
substantivity, 231
textiles, 176
dye-based print paste, 204
dye-based textile printing, 211
dyebath exhaustion, 250
dye–fibre combination, 333
dyeing fibre blends
cotton fibre blends, 174–176
wool fibre blends
wool/acrylic, 174
wool/nylon, 172–173
wool/polyester, 173–174
dye-metal complex, 146
dyestuff industry, 79

elasticity, 56
electrical neutrality, 143
electrolytes, 7
electronic structure, sp3-hybridised carbon atom, 9
electrons, 1
engraved cells, 215
enthalpy, 19
entropy, 20
equalising acid dyes, 118
equilibrium constant, 15
etched grooves, on copper roller, 215
ethene of, polymerisation
ethene see alkene ethene
European Chemicals Agency (ECHA), 43
European standards (ENs), 328
excited state, 110
extra long staple (ELS), 57

fabric dyeing
beam dyeing of fabric, 191–192
jet dyeing, 192–194
jig dyeing, 188–189
winch dyeing, 187–188
false-twist texturing, 345
fast acid dye, 119
fastness testing, 343
to chlorinated water, 341
coloration standards, 328–330
coloured fabric resistance, harmful agencies, 330–331
to dry cleaning, 342
light, 337
light fastness tests
blue wool standards, 336
standard tests, light fastness, 338
multifibre adjacent fabrics, 339
to perspiration, 342
principles
grey scales, 331–334
ISO standards, 331
rubbing fastness, 340–341
to seawater, 341
standard adjacent fabrics, 339
standard tests, wash fastness, 338
washing, 338–340
to water, 341

Federal Trade Commission (FTC), 49
fibre blends
benefits, of producing, 98
dyeing procedure, 98
fibre crimping methods, 97
fibre cross-sectional shapes, 92–93
fibre filaments, 90
fibre fineness
microfibres, 55
nanofibres, 55
yarns and fabrics, properties, 54
fibre-forming polymers
amorphous and crystalline regions, 52
degree of orientation, 52
head-to-tail arrangement, 51
fibre length, 54
fibre properties, 54
fibre strength, 56
fibre types
bast fibres, 65
cellulosic fibres, 57–65
Fick’s first law of diffusion, 243
Fick’s second law of diffusion, 244
filament yarn, 345
first law of thermodynamics, 19–20
fixed-temperature measurements, 247
flat planar ring structure, 59
flat screen printing, 221
flavanthrone, 140
floats, 345
flocking, 96
fluorescent lamps, 286
classification, 290
forward reaction, 13
Freundlich adsorption isotherm, 253
Freundlich isotherm equation, 268
full back-tan, 168
functional groups, 32
 aliphatic compounds
 alcohols, 33–34
 aldehydes and ketones, 36
 amines, 36–37
 carboxylic acids, 34–35
 cyano and nitro groups, 38
 esters, 35–36
 ethers, 36
 halides, 32–33
 aromatic compounds, 38–39
fused ring system, 110
galvano rotary screens, 213
garment dyeing
 casual wear and leisurewear, 194
 rotating drum machines, 196–197
 side-paddle machines, 195–196
general chemistry, textiles
 acids and bases, 23
 atomic structure, 1–4
 buffer solutions, 25
 chemical reactions
 catalysts, 17–18
 chemical equilibria, 14–15
 effect of temperature, rate of reaction, 16–17
 rates of, 14–15
 thermodynamics, 19–23
 types, 13–14
organic chemistry
 functional groups, 32
 hydrocarbons, 27–32
 periodic table, of elements, 4–6
 pH scale, 23–24
 redox reactions, 26–27
 salts and salt hydrolysis, 24–25
 valency and bonding, 6–12
generic names, 49
geometric metamerism, 316
German Deutsche Institut fur Normung (DIN) system, 284
Gibbs free energy, 21
glass transition temperature (T_g), 52, 164
Glauber’s salt, 143
Globally Harmonised System of Classification and Labelling of Chemicals (GHS), 44
Global Organic Textile Standard (GOTS), 64, 343
Gossypium spp., 57
Gouy–Chapman model, 262
grey scales
 colour-difference values, 333
 qualitative description, of colour, 333
 standard depths, 334–336
 ground state, 110
Haber process, 15
hair fibres, 74
half-dyeing, of direct dyes, 248
hank dyeing
 cabinet type, 186–187
 Hussong Type, 185–186
 space dyeing, 187
 spray dyeing machines, 187
heat of reaction, 19
Helmholtz model, 262
hetero-bifunctional reactive dyes, 132
hexamethylenediamine, 83
high-pressure jig dyeing machine, 190
high-tenacity nylon, 56
Hilfstypen series, of standard depths, 334
Hill’s equation, 245
hollow spindle spinning, 346
homo-bifunctional reactive dyes, 132
hook and eye chain, 82
horizontal loading package dyeing machine, 184
hue, 278
Hussong hank dyeing machine, 185
hybridisation, 10
hydrogen bonding, 251
hydrogen ions adsorption, 144
hydrolysis, 73
hydrophilic charged groups, 236
illuminant metamerism, 316
indanthrone, 140
industrial coloration methods
 dye application processes
 acrylic fibre dyeing, 171–172
 cellulosic fibre dyeing, 151–162
 dyeing fibre blends, 172–176
 nylon fibre dyeing, 167–169
polyester fibre dyeing, 162–167
polypropylene fibre dyeing, 172
reactive dyes, 170
wool dyeing, 143–151
dyeing machinery
continuous dyeing, 197–199
dyeing loose fibre, 178–179
fabric dyeing, 187–194
garment dyeing, 194–197
top dyeing, 179–180
yarn dyeing, 180–187
supercritical fluid dyeing, 199–201
infinite dyebath, 244
ink jet printing
continuous ink jet technology, 226
CYMK, 225
non-contact printing system, 225
piezo ink jet printing, 227
vs. screen printing, 228–229
thermal ink jet printing, 226–227
intermediate or activated state, 17
intermolecular attractions, 52
intermolecular hydrogen bonds, 12
International Committee on Illumination (ICI), 288
International Federation of Organic Agriculture Movements (IFOAM), 64
International Organisation for Standardisation (ISO), 49, 327
ionic attractions, 251
ionic bond formation
electronic arrangements, sodium and chlorine atoms, 6
sodium and chloride reaction, 6
ionic bonds, 251
ISO 105-A series of standards, 331
isoelectric point, 70
isolan dyes (DyStar), 148
isomer of butane, 28
isotopes, 2
jet dyeing machines, 193
jig machine, 188
Kekule structure, 31
Kelvin, 19
keratin chain, 66
Kevlar®, 84
knitted fabrics, 103–105
Kubelka–Munk equation, 307
lambswool, 66
Langmuir adsorption isotherm, 254, 276
lap, 346
law of conservation of energy, 19
law of mass action, 14
Le Chatelier’s principle, 15, 16
levelling and retarding agents, 41
lightemitting diodes (LEDs), 285
light sources
colour temperature, of light sources, 288
eye
 horizontal cross section, of human eye, 296
 rods and cones, 296
LED, 285
reflection
 neutral colours, 292
 perfect reflecting diffuser (prd), 290
standard illuminants, 288–290
viewing geometry, 286
liquor ratio, 178
localised dyeing, 203
localised pigmentation, 203
loose stock/pack dyeing, 178
lyocell fibres, 77–78
macroscopic motion, 232
man-made fibres, 92
codes, 51
regenerated fibres, 49
synthetic and inorganic fibres, 49
m-aramids, 84
marl yarn, 346
mass pigmentation, 172, 176
mechanical resist printing, 220
melting temperature (T_m), 52
melt spinning, 90
mercerisation, 63
merino wool, 66
metal-containing azo pigments, 140
metamerism, 287
metameric index, 317
metameric pair, grey colours, 317
types, 316
methine and polymethine dyes, 116
methyl acrylate, 89
Index

2-methylpropane, 28
microfibres, 55
milling process, 70
millitex (mtex), 55
modacrylic, 90
moisture regain value, 56, 57
molecular diffusion, 232
monoazo see azo dyes
monochlorobenzene, 38
monochlorotriazinyl (MCT), 157
monofilament, 346
monofunctional reactive dyes, 132
monomer polymers, 51
multifibre strip, 339
multifilament yarn, 346
Munsell book of color, 283
Munsell hue circle, 284
nanofibres, 55
natural fibres
 cellulosic fibres, 47
 protein fibres, 47
natural logarithms, 246
neps, 62
Nernst adsorption isotherm, 252, 276
neutral dyeing acid dye, 119
neutrons, 1
nitro dyes, 116–117
2-nitro-p-toluidine, 39
N-methylmorpholine-N-oxide (NMMO), 77
Nomex®, 84
non-ionic aromatic organic compounds, 42
non-renewable resource, 81
non-steady-state diffusion, 244
normal and skewed distributions, molecular masses, 52
normal distribution, 51
nucleophilic addition or nucleophilic substitution, 123, 124
nucleophilic substitution reaction, 125
nucleus, 1
nylon fibre dyeing
 acid dyes
 amino groups, 168
 group 1, group 2 and group 3, 167, 168
 disperse dyes, 167
 reactive dyes, 170
 nylon 6.6 formation, 83, 84
observer metamerism, 316
Oeko-Tex®, 121
on-tone build-up, of trichromatic mixture, 153
orbitals, 2
organic chemistry
 functional groups, 32
 hydrocarbons
 aliphatic, 28–30
 aromatic, 30–32
 organic compounds, 27
orthocortex and paracortex, distribution of, 72
orthophosphoric acid, 25
overdyeing, 275
oxidation–reduction reactions see redox reactions
oxidising agent, 26
package dyeing, 180–183
 cheese packages, 181
 high-bulk acrylic yarns, 180
 non-textured filament nylon, 182
 radio-frequency drying, 183
pad-dry-bake process, 160
pad-dry-steam process, 160
pad-Thermosol dyeing, 165, 166
p-aminoazobenzene, 112
p-aramids, 84
percentage reflectance, 291
‘performance apparel’ market, 47
phase diagram, for carbon dioxide, 199
π–H bonding, 12, 251
phenol, 38
phenylazobenzene, 114
phenyl chloride see monochlorobenzene
phenylene group, 39
physical adsorption, 250–251
pick, 346
piezo ink jet printing, 227
pigment-based print paste, 204–205
pigment prints, 217
pigments
 commercial naming of dyes and, 141
 dyebath exhaustion, 140
plain weave, 101, 102
Planck’s constant, 111
Planck’s equation, 281
Planck’s radiation law, 286
ply, 346
polar forces of attraction, 251
polyester/cotton, 174–176
polyester fibre dyeing
correlation of dyeing behaviour, 164

disperse dyes, 162, 163
polyester microfibres, 167
polyethylene polymers, 88
polylactic acid (PLA), 80
polymer chains, 51
polymer molecules, 51
polypeptide chain
degradation of, 73
growth, 68
polypropylene fibre dyeing, 172
polytetrafluoroethylene (PTFE), 291
1 : 1 pre-metallised dyes, 148
primary colours, 278
print paste formulation, 204
print registration, 212
print screen registration, 212
producer dyeing, 176
protein fibres
acid dyes
anionic dyes, 117
characteristics, 120
equalising, 118
milling, 119
neutral dyeing, 117
hair fibres, 74
mordant dyes
chelation, 120
GOTS labelling, 121
pre-metallised dyes
electronic configurations, states of chromium, 121
weakly polar and strongly polar, 122
reactive dyes
cellulosic fibres, 123
chlorodifluoropyrimidine dyes, 125
nucleophilic addition/nucleophilic substitution, 123
silk, 74
wool
chemistry, 66–70
ecological aspects, 74
hair fibre, sheep, 65
morphology of, 70–72
protons, 1
p-toluidine, 39
quinones, 112
radio-frequency drying machine, 184
redox reactions, 26–27
reducing agent, 26
reduction clearing, 166
reflectance factor, 290
reflectance measurement, 292
regenerated fibres
cellulose acetate fibres, 79–80
eye developments, 75–76
lyocell fibres, 77–78
polylactic acid fibres, 80
synthetic fibres, 81–82
viscose, 76–77
Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), 43–44
repeating unit, 83
reserve printing, 220
resist paste, 220
resist printing, 220
resonance, 31, 111
retarding agent, 173
rotary drum garment dyeing machine, 197
rotary screen printing
commercial flat screen printing, 222
cross-sectional diagram of a rotary screen, 223
flat screen printing machine, 222
roving, 346
salt hydrolysis, 25
satin weave, 346
satin woven fabrics, 101, 102
saturated steam, 216
secondary cellulose acetate fibres, 79
secondary colours, 278
secondary forces of attraction
dipolar forces, 11
dispersion forces, 12
hydrogen bonding, 11–12
π–H bonding, 12
second law of thermodynamics, 20–21
segmented polyurethanes, 87
semipermeable membrane, 264
sequestering agents, 40
sett, 346
shade sorting, 320
Index

shear thinning, 205
shin gosen, 346
shoddy, 66
Society of Dyers and Colourists (SDC), 108, 328, 335
soda cellulose, 76
soft-flow jet dyeing machine, 194
soft-flow machine, 193
spectral power distributions (spd), 285, 287
spectral reflectance curves, 293, 294
spectrum locus, 303
specular (gloss) reflectance, 290
sp² hybridisation, 29
spinning, 90
 dry, 90–91
 dry-jet wet, 92
 dual-component fibres, 97
 melt, 90
 wet, 91–92
stable octets, 6
standard adjacent fabrics, 339
standard affinity, 257, 266
 direct dyes, 269
 polycyclic vat dyes, 271
standard chemical potentials, 256
standard depths of shade, 334
standard enthalpies of formation, 19, 20
standard observer, 297–299
staple fibres, 346
steady-state diffusion, 244
steric hindrance, 237
Stern model, 262
stress–strain diagrams, 55
S-twist, 99
sublimation temperature, 165
substances of very high concern (SVHC), 43
subtractive colour mixing, 279–280
sugar β-D-glucose, 58
sulphatoethysulphone (SES), 157
sulphonate group dissociation, 8
sulphur dyes, redox reactions, 27
sulphuric ester formation, 130
supercritical fluid dyeing, 199–200
superheated steam, 216
supermilling dyes see neutral dyeing acid dye
surface-active agents (surfactants)
 anionic and cationic, 41
detergents, 41
 levelling and retarding agents, 41
 lignin sulphonates, 42
 sustainable textile manufacture, test organisations, 343
Swedish Natural Color System (NCS), 284
synergistic effect, 85
syntans, 168
synthesis reaction, 13
synthetic fibres, 92
 basic dyes, 138–139
 disperse dyes, 137–138
 filaments
 draw ratio, 94
 molecular orientation, 95
 polymerisation types, 81
synthetic fibres–polypropylene fibres, 53
synthetic polymers, into fibre filaments, 90–92
synthetic tanning agents, 168
tannic acid, 168
tenacity, 56, 346
Tencel®, 77, 78
terephthaloyl chloride, 84
tex, 346
tex system, 55
textile and clothing industries, supporting functions, 48
textile dyeing
 carriers, 42–43
 sequestering agents, 40
 surface-active agents (surfactants), 41–42
textile fibres
 absorbent fibres, 94
 addition polymers
 acrylic fibres, 89–90
 polyolefin fibres, 87–89
classes, 50
 fibre blends, 97–98
 fibre cross-sectional shapes, 92–93
 fibre-forming polymers
 amorphous regions, 52
 crystalline regions, 52
 degree of orientation, 52
 head-to-tail arrangement, 51
 fibre regeneration
 early developments, 75–76
 lyocell fibres, 77–78
 viscose, 76–77
Index

imparting texture to synthetic fibres, 96–97
mechanical properties
 fibre fineness, 54–55
 fibre length, 54
 fibre strength, 55–56
microfibres, 93
protein fibres, 65–74
staple fibres, 54
synthetic fibre filaments, 94–95
synthetic polymers, into fibre filaments, 90–92
technical textiles, 47
textile manufacturing
 fabrics, 99–105
 yarns, 99
worldwide production, 51
textile manufacturing
 fabrics
 construction, 99
 knitted fabrics, 103–105
 woven fabrics, 100–102
 twist, 99
 yarns, 99
textile printing
 binders, 209
 dyes, 211
 localised dyeing, 203
 localised pigmentation, 203
methods
 copper roller printing, 223–224
 flat screen printing, 221
 heat transfer printing, 224–225
 ink jet printing, 225–227
 rotary screen printing, 221–222
pigments, 210–211
printing screens
 engraved rollers, 214–215
 flat screens, 212–213
 rotary screens, 213–214
print paste formulation, 204–205
stages
 fixation (dye-based prints), 216–217
 pigment prints, 217
 transport, 215–216
 wash-off (dye-based prints), 217
styles
 direct printing, 218
 discharge printing, 218–220
thickeners
 natural products, 205–207
 shear thinning, 205
 viscoelastic properties, 205
textured yarn, 346
thermal ink jet printing, 226–227
thermodynamics
 first law of thermodynamics, 19–20
 information, 256
 second law of thermodynamics, 19–21
 third law of thermodynamics
 free energy, 21–22
 interpreting thermodynamic data, 22–23
 values
 anthraquinone dyes, 273
 dye/fibre system, 260
thermodynamic values, dye/fibre system
 fibre phase, opposite electrical charge
 Gilbert and Rideal model, 272
 overdyeing, 275
 fibre phase, same electrical charge
 attractive and repulsive forces, 263
 electrical double layer, 261
 Freundlich and Langmuir isotherms, 259
 solution phase, 259–261
thermoplastic, 96
thermosol process, 166
thickeners
 emulsions, 209
 modified natural products, 208
 natural products
 alginites, 206
 starch-based thickeners, 206
 xanthans, 206–207
 synthetic products, 208–209
third law of thermodynamics
 free energy, 21–22
 interpreting thermodynamic data, 22–23
time of half-dyeing, 249
tinctorial strength, 323
tippy dyeing, 148
top dyeing, 179–180
tow, 346
triacetate, 79
triaryl methane dyes, 117
trichromatic dye recipe, 152
tricot knits, 105
trifunctional compounds, 39
trisazo/tetrakisazo see azo dyes

twill weaves, 101, 102
two-colour roller printer, 224
typical light sources, 289

ultraviolet (UV) component, 107
unimolecular adsorption, 266
USDA National Organic Program (NOP), 64

valency and bonding
covalent bond formation, 8–10
ionic bond formation, 6–7
secondary forces of attraction, 10–12
van der Waals forces, 251
of attraction, 122
vat dyes, 128
Van’t Hoff equation, 23
vat dyes reduction, 26
venturi, 192
vinyl acetate, 89
vinyl compounds, 87
vinyl sulphone reactive dyes, 134, 170
viscoelastic properties, 205
viscose fibres, 76–77
and lyocell fibres, manufacture, 78

warping, 100
warp knits, 103–105
warp knitting machine, 103
warp yarns, 100, 101, 346
wash-off (dye-based prints), 217
water-soluble dyes, 7
weft knits, 103–105
weft yarns, 100, 101, 346
wet spinning, 91–92
whiteness index, 321
whiteness measurement, 321
winch dyeing machine, 189
without optical brightener (WOB), 338
wool
chemistry, 66–70
ecological aspects, 74

fibres, properties
acid resistant, 73
keratin chains, 72
hair fibre, sheep, 65
morphology of, 70–72
wool/acrylic blends, 174
wool dyeing
acid dyes
equalising acid dyes, 143–144
milling acid dyes, 144–145
supermilling acid dyes, 145
chrome dyes
chrome mordant method, 145
chroming, 146
pre-metallised dyes
1 : 1, 148
2 : 1, 148–149
metal atoms, 147
reactive dyes, 149–150
types, 151
woollen goods, 73
wool/nylon blends, 172–173
wool/polyester blends, 173–174
woven fabrics, 100

yarn dyeing
beam dyeing, for yarns, 183–185
hank dyeing
cabinet type, 186–187
Hussong Type, 185–186
space dyeing, 187
spray dyeing machines, 187
package dyeing
cheese packages, 181
high-bulk acrylic yarns, 180
non-textured filament nylon, 182
radio-frequency drying, 183

Zero Discharge of Hazardous Chemicals (ZDHC) Programme, 45
zeta potential, 262
Z-twist, 99