Contents

Foreword xiii
Introduction xv
About the Contributors xix

Part I Challenges Specific to Macrocycles 1

1 Contemporary Macrocyclization Technologies 3
Serge Zaretsky and Andrei K. Yudin
1.1 Introduction 3
1.2 Challenges Inherent to the Synthesis of Macrocycles 3
1.3 Challenges in Macrocycle Characterization 6
1.4 Macrocyclization Methods 8
1.5 Cyclization on the Solid Phase 14
1.6 Summary 17
References 18

2 A Practical Guide to Structural Aspects of Macrocycles (NMR, X‐Ray, and Modeling) 25
David J. Craik, Quentin Kaas and Conan K. Wang
2.1 Background 25
2.1.1 Classes of Macrocycles Covered 25
2.1.2 Applications of Macrocycles in Drug Design and Agriculture and the Role of Structural Information in These Applications 25
2.1.3 Experimental Techniques (NMR and X‐Ray) 30
2.1.4 Modeling Studies 30
2.2 Experimental Studies of Macrocycles 31
2.2.1 NMR Experiments and Parameters That Yield Structural Information 31
2.2.2 Protocols for 3D Structural Determination Using NMR 33
2.2.3 Dynamic Aspects of Structures (NMR Relaxation) 35
2.2.4 X‐Ray Studies of Macrocycles 36
2.2.5 Macrocycle–Receptor Interactions (NMR and X‐Ray) 37
2.3 Molecular Modeling of Macroyclic Peptides 38
2.3.1 Methods and Challenges in Modeling Cyclic Peptides 39
2.3.1.1 Quantum Mechanics 39
2.3.1.2 Molecular Mechanics 40
2.3.2 Conformation, Dynamics, and Electrostatics of Cyclic Peptides 42
2.3.2.1 NMR Spectroscopy Combined with MD Simulations 42
2.3.2.2 Studying Large Conformational Ensembles and Folding 43
2.3.2.3 Electrostatic Characteristics of Cyclic Peptides 43
2.3.3 Modeling the Activity of Cyclic Peptides 44
2.3.3.1 Cyclic Peptide Interactions with Molecular Targets 44
2.3.3.2 Cyclic Peptide Nanotubes 45
2.3.3.3 Membrane Permeation and Diffusion 46
2.3.4 Engineering Cyclic Peptides as Grafting Scaffolds 46
2.4 Summary 46
Acknowledgments 47
References 47

3 Designing Orally Bioavailable Peptide and Peptoid Macrocycles 59
David A. Price, Alan M. Mathiowetz and Spiros Liras
3.1 Introduction 59
3.2 Improving Peptide Plasma Half-Life 60
3.3 Absorption, Bioavailability, and Methods for Predicting Absorption 61
3.3.1 In Vitro Assays 61
3.3.2 Paracellular Absorption 61
3.3.3 Tight Junction Modifiers to Improve Paracellular Absorption 62
3.3.4 Transcellular Absorption of Macrocycles 63
3.3.4.1 Cyclization 63
3.3.4.2 N-Methylation 65
3.3.4.3 Cyclosporine A (CSA) 66
3.3.4.4 Conformational Interconversion and H-Bond Networks 67
3.3.4.5 Shielding 68
3.3.4.6 Additional Strategies for Managing Hydrogen Bond Donors 69
3.4 In Silico Modeling 70
3.5 Future Directions 71
References 72

Part II Classes of Macrocycles and Their Potential for Drug Discovery 77

4 Natural and Nature-Inspired Macrocycles: A Chemoinformatic Overview and Relevant Examples 79
Ludger A. Wessjohann, Richard Bartelt and Wolfgang Brandt
4.1 Introduction to Natural Macrocycles as Drugs and Drug Leads 79
4.2 Biosynthetic Pathways, Natural Role, and Biotechnological Access 79
4.3 QSAR and Chemoinformatic Analyses of Common Features 84
4.4 Case Studies: Selected Natural Macrocycles of Special Relevance in Medicinal Chemistry 88
References 91

5 Bioactive and Membrane-Permeable Cyclic Peptide Natural Products 101
Andrew T. Bockus and R. Scott Lokey
5.1 Introduction 101
5.2 Structural Motifs and Permeability of Cyclic Peptide Natural Products 101
5.3 Conformations of Passively Permeable Bioactive Cyclic Peptide Natural Products 103
5.3.1 Flexible Scaffolds 103
5.3.2 Structural Analogues 105
5.3.3 Lipophilic (AlogP>3) Peptides and Reported Bioactivities 107
5.4 Recently Discovered Bioactive Cyclic Peptide Natural Products 108
5.4.1 Midsized Macrocycles 109
5.4.1.1 Cytotoxics 109
5.4.1.2 Antibacterials 114
5.4.1.3 Antivirals 116
5.4.1.4 Antiparasitics 116
5.4.1.5 Antifungals 117
5.4.1.6 Protease Inhibitors 117
5.4.1.7 Other Bioactivities 118
5.4.2 Large/Complex Peptides 120
5.4.2.1 Cystine Knots 120
5.4.2.2 Lantibiotics 124
6 Chemical Approaches to Macrocycle Libraries 133
Ziqing Qian, Patrick G. Dougherty and Dehua Pei
6.1 Introduction 133
6.2 Challenges Associated with Macrocyclic One-Bead-One-Compound Libraries 134
6.3 Deconvolution of Macrocyclic Libraries 134
6.4 Peptide-Encoded Macrocyclic Libraries 136
6.5 DNA-Encoded Macrocyclic Libraries 142
6.6 Parallel Synthesis of Macrocyclic Libraries 142
6.7 Diversity-Oriented Synthesis 145
6.8 Perspective 147
6.9 Conclusion 149
References 150

7 Biological and Hybrid Biological/Chemical Strategies in Diversity Generation of Peptidic Macrocyces 155
Francesca Vitali and Rudi Fasan
7.1 Introduction 155
7.2 Cyclic Peptide Libraries on Phage Particles 155
7.2.1 Disulfide-Bridged Cyclic Peptide Libraries 156
7.2.2 From Phage Display to Peptide Macrocyle Design 160
7.2.3 Bicyclic Peptide Libraries on Phage 162
7.3 Macrocyclic Peptide Libraries via In Vitro Translation 166
7.3.1 In Vitro Cyclic Peptide Libraries Via Chemical Cross-Linking 166
7.3.2 In Vitro Macrocyclic Peptide Libraries Via the FIT and RaPID System 168
7.4 Emerging Strategies for the Combinatorial Synthesis of Hybrid Macrocyces In Vitro and in Cells 171
7.4.1 Macrocyclic Organo-Peptide Hybrids (MORPHs) 171
7.4.2 Synthesis of Macrocyclic Peptides in Living Cells 173
7.5 Comparative Analysis of Technologies 175
7.6 Conclusions 178
References 178

8 Macrocycles for Protein–Protein Interactions 185
Eilidh Leitch and Ali Tavassoli
8.1 Introduction 185
8.2 Library Approaches to Macrocyclic PPI Inhibitors 186
8.2.1 SICLOPPS 186
8.2.2 FIT and RaPID 190
8.3 Structural Mimicry 192
8.3.1 β-Strands 192
8.3.2 α-Helices 194
8.4 Multi-Cycles for PPIs 197
8.5 The Future for Targeting PPIs with Macrocycles 197
References 200

Part III The Synthetic Toolbox for Macrocycles 205

9 Synthetic Strategies for Macrocyclic Peptides 207
Éric Biron, Simon Vézina-Dawod and François Bédard
9.1 Introduction to Peptide Macrocyclization 207
9.1.1 Cyclic Peptide Topologies 207
9.1.2 Solution-Phase Versus Solid-Supported Macrocyclization 208
9.2 One Size Does Not Fit All: Factors to Consider During Synthesis Design

9.2.1 Ring Size 209
9.2.2 Incorporation of Turn-Inducing Elements 209
9.2.3 C-Terminal Epimerization 211
9.2.4 Choosing the Right Macrocyclization Site 211

9.3 Peptide Macrocyclization in Solution

9.3.1 Ring Contraction Strategies 213
9.3.2 Sulfur-Mediated Macrocyclizations 215
9.3.3 Cyclic Depsipeptides and Peptoids 219

9.4 Peptide Macrocyclization on Solid Support

9.4.1 Side-Chain Anchoring 221
9.4.2 Backbone Amide Anchoring 222
9.4.3 Safety-Catch Resin Anchoring and Cyclative Cleavage 225

9.5 Peptide Macrocyclization by Disulfide Bond Formation

9.5.1 Disulfide Bond Formation in Solution 226
9.5.2 Disulfide Bond Formation on Solid Support 228

9.6 Conclusion 229

References 230

10 Ring-Closing Metathesis-Based Methods in Chemical Biology: Building a Natural Product-Inspired Macrocyclic Toolbox to Tackle Protein–Protein Interactions

Jagan Gaddam, Naveen Kumar Mallurwar, Saidulu Konda, Mahender Khatravath, Madhu Aeluri, Prasenjit Mitra and Prabhat Arya

10.1 Introduction 243
10.2 Protein–Protein Interactions: Challenges and Opportunities 243
10.3 Natural Products as Modulators of Protein–Protein Interactions 243
10.4 Introduction to Ring-Closing Metathesis 244
10.4.1 Ring-Closing Olefin Metathesis 245
10.4.2 Z-Selective Ring-Closing Metathesis 245
10.5 Selected Examples of Synthetic Macrocyclic Probes Using RCM-Based Approaches 246
10.5.1 Identification of Sonic Hedgehog Inhibitor from the RCM Library 246
10.5.2 Identification of Antimalarial Compounds from the RCM Library 248
10.5.3 Synthesis of Natural Product-Like Molecules Using RCM as the Key Strategy 249
10.5.4 Alkaloid Natural Product-Inspired Macrocyclic Chemical Probes 249
10.5.5 Indole Alkaloid-Inspired Macrocyclic Chemical Probes 249
10.5.6 Tetrahydroquinoline Alkaloid-Like Macrocyclic Chemical Probes 251
10.5.7 Enantio-enriched Benzofuran-Based Macrocyclic Toolbox 252
10.5.8 Building a Diverse 14-Membered Ring-Based Chemical Toolbox 253
10.5.9 Building a Diverse C-Linked Glyco-Based Macrocyclic Toolbox 256
10.5.10 Evaluation of the Chemical Toolbox in Search for Anti-angiogenesis Agents 256
10.6 Summary 259

References 259

11 The Synthesis of Peptide-Based Macrocycles by Huisgen Cycloaddition

Ashok D. Pehere and Andrew D. Abell

11.1 Introduction 265
11.2 Dipolar Cycloaddition Reactions 266
11.3 Macrocyclic Peptidomimetics 267
11.3.1 Macrocyclic Antagonists for the Treatment of Cancer 267
11.3.2 Dimeric Macrocyclic Antagonists of Apoptosis Proteins 268
11.3.3 Macrocyclic Grb2 SH2 Domain Inhibitor 268
11.3.4 STAT3 Inhibitors 269
11.3.5 Histone Deacetylase Inhibitors 269
11.3.6 Somatostatin Modulators 273
11.4 Macrocyclic β-Strand Mimetics as Cysteine Protease Inhibitors 273
11.5 Conclusion 275
References 277

12 Palladium-Catalyzed Synthesis of Macrocycles 281
Thomas O. Ronson, William P. Unsworth and Ian J. S. Fairlamb
12.1 Introduction 281
12.2 Stille Reaction 281
12.3 Suzuki–Miyaura Reaction 285
12.4 Heck Reaction 288
12.5 Sonogashira Reaction 290
12.6 Tsuji–Trost Reaction 293
12.7 Other Reactions 295
12.8 Conclusion 298
References 298

13 Alternative Strategies for the Construction of Macrocycles 307
Jeffrey Santandrea, Anne-Catherine Bédard, Mylène de Léséleuc, Michaël Raymond and Shawn K. Collins
13.1 Introduction 307
13.2 Alternative Methods for Macrocyclization Involving Carbon–Carbon Bond Formation 307
13.2.1 Alkylation 307
13.2.2 Glaser–Hay Coupling 309
13.2.3 Nickel/Ruthenium/Copper-Catalyzed Couplings 311
13.2.4 Wittig and Other Olefinations 315
13.2.5 Cyclopropanation 316
13.2.6 Oxidative Coupling of Arenes 317
13.2.7 Gold Catalysis 319
13.3 Alternative Methods for Macrocyclization Involving Carbon–Carbon Bond Formation: Ring Expansion and Photochemical Methods 320
13.3.1 Ring Expansion 320
13.3.2 Photochemical Methods 322
13.4 Alternative Methods for Macrocyclization Involving Carbon–Oxygen Bond Formation 322
13.4.1 Chan–Lam–Evans Coupling 322
13.4.2 Alkylation 323
13.4.3 Nucleophilic Aromatic Substitution 324
13.4.4 Ullmann Coupling 325
13.4.5 C–H Activation 326
13.5 Alternative Methods for Macrocyclization Involving Carbon–Nitrogen Bond Formation 327
13.5.1 Alkylation 327
13.5.2 Nucleophilic Aromatic Substitution 327
13.5.3 Ullmann Coupling 328
13.6 Alternative Methods for Macrocyclization Involving Carbon–Sulfur Bond Formation 328
13.6.1 Ramberg–Bäcklund Reaction 329
13.6.2 Thiol–Ene Reaction 329
13.7 Conclusion and Summary 331
References 332

14 Macrocycles from Multicomponent Reactions 339
Ludger A. Wessjohann, Ricardo A. W. Neves Filho, Alfredo R. Puentes and Micjel Chávez Morejón
14.1 Introduction 339
14.2 General Aspects of Multicomponent Reactions (MCRs) in Macrocycle Syntheses 344
14.2.1 The MiB Concept 344
14.2.2 Unidirectional Multicomponent Macrocyclizations/Cyclooligomerizations 345
14.2.3 Bidirectional Multicomponent Macrocyclizations 360
14.2.4 Iterative IMCR-Based Macrocyclizations with Multiple Bifunctional Building Blocks 369
14.3 Concluding Remarks and Future Perspectives 369
References 371

15 Synthetic Approaches Used in the Scale-Up of Macrocyclic Clinical Candidates 377
Jongrock Kong
15.1 Introduction 377
15.2 Background 377
15.3 Literature Examples 378
15.3.1 Macrolactonization 378
15.3.2 Macrolactamization 378
15.3.3 Ring-Closing Metathesis 384
15.3.4 Metal-Catalyzed Cross-Coupling 395
15.3.5 Oxidative Disulfide Formation 399
15.3.6 Other Approaches 404
15.4 Conclusions 406
References 406

Part IV Macrocycles in Drug Development: Case Studies 411

16 Overview of Macrocycles in Clinical Development and Clinically Used 413
Silvia Stotani and Fabrizio Giordanetto
16.1 Introduction 413
16.2 Datasets Generation 413
16.3 Marketed Macrocyclic Drugs 414
16.3.1 General Characteristics 414
16.3.2 Cyclic Peptides 414
16.3.3 Macrolides and Ansamycins 416
16.3.4 Bioavailability and Doses of Macrocyclic Drugs 419
16.4 Macrocycles in Clinical Studies 422
16.4.1 General Characteristics 422
16.4.2 Cyclic Peptides 422
16.4.3 Macrolides and Ansamycins 426
16.5 De Novo Designed Macrocycles 429
16.5.1 Protease and Polymerase Inhibitors 429
16.5.2 Kinase Inhibitors 434
16.6 Overview and Conclusions 436
Appendix 16.A 437
16.A.1 Methods 437
References 490

17 The Discovery of Macrocyclic IAP Inhibitors for the Treatment of Cancer 501
Nicholas K. Terrett
17.1 Introduction 501
17.2 DNA-Programmed Chemistry Macrocycle Libraries 502
17.2.1 Initial IAP Screening Macrocycle Hits 502
17.2.2 A Follow-Up DPC Macrocycle Library 503
17.3 A New Macrocycle Ring Structure 504
17.3.1 Functional Caspase-3 Rescue Assay 506
17.4 Design and Profiling of Bivalent Macrocycles 506
17.4.1 In Vitro Antiproliferative Activity 506
17.4.2 Pharmacokinetic Profiling 509
17.4.3 In Vivo Efficacy in a Xenograft Model 509
17.5 Improving the Profile of the Bivalent Macrocycles 510
17.5.1 Replacing Carboxylic Acids 511
17.5.2 Replacing Triazole Linkers 512
17.6 Selection of the Optimal Bivalent Macrocyclic IAP Antagonist 512
17.6.1 Synthesis of the Optimal Bivalent Macrocycle 513
17.6.2 In Vitro Profiling 514
17.6.3 Pharmacokinetic Profiling 515
17.6.4 In Vivo Efficacy in a Xenograft Model 515
17.7 Summary 515
Acknowledgments 515
References 516

18 Discovery and Pharmacokinetic–Pharmacodynamic Evaluation of an Orally Available Novel Macrocyclic Inhibitor of Anaplastic Lymphoma Kinase and c-Ros Oncogene 1 519
Shinji Yamazaki, Justine L. Lam and Ted W. Johnson
18.1 Introduction 519
18.2 Discovery and Synthesis 520
18.2.1 Background—Macrocyclic Kinase Inhibitors 520
18.2.2 Crizotinib Discovery and SAR 520
18.2.3 Resistance Mechanisms to Crizotinib 520
18.2.4 Program Goals and Lab Objectives 521
18.2.5 Structural Data, Potency, ADME—Crizotinib and PF-06439015 521
18.2.6 Acyclic ALK Inhibitors 522
18.2.7 Design from Acyclic Structural Data 522
18.2.8 Macrocyclic ALK Inhibitors 524
18.2.9 Selectivity Strategy 526
18.2.10 Structural Analysis of PF-06463922 (4q) 530
18.2.11 Overlapping Potency and Selectivity 530
18.2.12 Synthesis of PF-06463922 (4q) 530
18.2.13 Summary of Discovery and Synthesis 531
18.3 Evaluation of Pharmacokinetic Properties Including CNS Penetration 531
18.3.1 Background 531
18.3.2 Lab Objectives and In Vitro Screening for CNS Penetration 532
18.3.3 ADME Evaluation 532
18.3.4 In Vivo Assessment of Brain Penetration in Rats Measuring Brain Homogenate and CSF 532
18.3.5 In Vivo Assessment of Brain Penetration in Rats Using Quantitative Autoradiography 533
18.3.6 In Vivo Assessment of Spatial Brain Distribution in Mice Using Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS) 533
18.3.7 In Vivo Efficacy Assessment of Orthotopic Brain Tumor Model Using Magnetic Resonance Imaging 534
18.3.8 PK and Brain Penetration Summary 536
18.4 Evaluation of Pharmacokinetic–Pharmacodynamic (PKPD) Profiles 536
18.4.1 Background 536
18.4.2 In Vivo Nonclinical Studies 536
18.4.3 PK Modeling 537
18.4.4 PKPD Modeling for Target Modulation 537
18.4.5 PKDZ Modeling for Antitumor Efficacy 537
18.4.6 Quantitative Comparison of Exposure–Response Relationships 538
18.4.7 PKPD Summary 538
19 Optimization of a Macrocyclic Ghrelin Receptor Agonist (Part II): Development of TZP-102
Hamid R. Hoveyda, Graeme L. Fraser, Eric Marsault, René Gagnon and Mark L. Peterson
19.1 Introduction
19.2 Advanced AA₃ and Tether SAR
19.2.1 AA₃ Options for Improved CYP3A4 Profile
19.2.2 Additional Tether SAR Explorations: Reduction of the Aromatic Content and Additional Conformational Constraints through Methyl Substitution
19.3 Structural Studies
19.4 Conclusions
Acknowledgments
References

20 Solithromycin: Fourth-Generation Macrolide Antibiotic
David Pereira, Sara Wu, Shingai Majuru, Stephen E. Schneider and Lovy Pradeep
20.1 Introduction
20.2 Structure–Activity Relationship (SAR) of Ketolides and Selection of Solithromycin
20.2.1 MIC Testing of Triazole Analogues
20.2.2 Importance of 2-Fluorine for Activity
20.2.3 In Vitro Genotoxicity Studies on Solithromycin
20.2.4 Mouse PK and Protection Studies
20.3 Mechanism of Action
20.3.1 Ribosome Binding of Antibiotics
20.3.2 Ribosome Binding of Solithromycin
20.3.3 Solithromycin Protein Inhibition
20.4 Overcoming the Ketek Effect
20.5 Manufacture of Solithromycin
20.6 Polymorphism
20.7 Pharmaceutical Development
20.7.1 Capsule Development
20.7.1.1 Capsule Formulation Development
20.7.1.2 Capsule Manufacturing Process
20.7.1.3 Capsule Dissolution
20.7.2 Powder for Oral Suspension
20.7.3 Solithromycin for Injection
20.7.3.1 The Challenge of Solithromycin IV Formulation Development
20.8 Clinical Data
20.8.1 Phase 1 PK and Bioavailability
20.8.2 Phases 2 and 3 Trials
20.9 Summary
References

Index