Index

a
AlB₂ binary systems
 crystal structure 260, 261
 optimal linker strength and average hybridization percentage 265, 267
α-chymotrypsin 141
amines and trimethyl ammonium surfactants 112
amino acid sequence of ELP–cysteine–ELP block copolymer 225, 226
amphiphile/amphiphilic molecules see also giant surfactants
amphiphile headgroups vs. solute/solvent molecules interactions 106
chemical structures of 101, 102
amphiphile production catalyst configurations 121–123
amphiphilic nanoparticles 34–36
Anderson-C₁₆ giant surfactant 313, 314
angiogenesis, PA scaffolds in 195
antisense cyanine 5 labeled LPA 168, 169
antisense fluorescein labeled LPA (AS-FL-LPA) 168, 169
ascorbic acid 87
asymmetric Janus particles 288–290
azobenzene trimethylammonium bromide (azoTAB) 91, 93

b
basic leucine zipper (bZip) peptide amphiphiles 184, 187, 192
β-sheet forming peptides, drawback of 215
β-sheet protein copolymers 215–219
bioconjugation chemistry 229, 230
biomedical applications, PAMs in diagnostic and therapeutic PAMs 195–199
tissue engineering and regenerative medicine 192–195
biomimetic silaffin R5 peptide 225–226
biomineralization, nanofibrous PAMs in 194, 195
biomolecules 137
biomolecule-surfactant assemblies, control of 84–87
biopolymer synthesis 118
4,4′-bis(trimethylammoniumhexyloxy)azobenzene bromide (BTHA) 90, 92
bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) 78, 84–87
block copolymer micelles
 de Gennes model for 11–13
 formation of 11, 12
 geometrical relations for 19
 mean field model of 17–20
 star polymer model for 15–17
block copolymers 1, 2
 industrial applications 207
bottom-up approach 257
bovine serum albumin
 (BSA)-b-poly(methyl methacrylate) micelles 232
bovine serum albumin (BSA)-PS giant surfactant 316
branched micellar networks 53–55
 entropic networks
 mean-field theory 57, 58
 phase separation 56, 58, 60
 statistical associating fluid theory 58, 59
 statistical mechanical theory 60
 topological defects 57
 Zilman-Safran theory 60
examples of 41–43
shape and free energy
 curvature dependence 61
 electrostatic contribution 63
 endcap (junction) 61, 62, 64
 equilibrium aggregate free energy 65
 numerical minimization technique 61, 63
 total aggregation free energy 63
 swollen polyelectrolyte corona 64, 65
 theoretical studies of 44

c
 carbon contents of carbonaceous chrondrite meteorites 103
 carboxyfluorescein 125
 carboxylic acid-functionalized polyhedral oligomeric silsesquioxane–polystyrene (APOSS-PSs) giant surfactant 316, 317
catalysis compartmentalization, with SCAs 116–118
 enclosed protocell models 118–120
 interfacial protocell models 120–123
 membranes as energy transduction systems 124–126
charged SCAs, mixtures of 112–113
chemical gradients, formation of 125
cholesterol 113–114
classical Odijk-Skolnick-Fixman (OSF) theory 52, 53
click chemistry 311
coarse-grained model 257, 258
coiled-coils 191, 209, 214, 215
 coil-like protein copolymers 223–229
 corona crosslinked micelles 225
critical aggregate concentration (CAC) 106, 107
critical micelle concentration (CMC) 181
critical packing parameter 182
Cr$_3$Si binary systems
 crystal structure 260, 261
 optimal linker strength and average hybridization percentage 265, 267
cryo-transmission electron microscopy (cryo-TEM) 26, 43
CsCl binary systems
 crystal structure 260, 261
 optimal linker strength and average hybridization percentage 265, 267
cyclic peptides (CPs)
 CP–polymer conjugates 221–223
 from d-alt-l linear peptides 220
 nanotubes 221
 N-methylation 223
 solid-phase synthesis 221
cyclic protein copolymers 220–223
cylindrical micelles, formation of 9
cysteine–arginine–glutamic
acid–lysine–alanine (CREKA) 195, 196

d
decanoic acid bilayers 115, 123
decyl trimethylammonium bromide
(DTAB) 112–113
de Gennes model, for block copolymer
micelles 11–13
dehydration–rehydration method
119
dendritic amphiphiles
aggregation behavior of 26, 27
headgroups and tailgroups of 25
steric repulsions 26
Derjaguin approximation 272
dexamethasone 196
diblock copolymers 1–3 see also
block copolymers
ELP–ELP
schematic representation and
amino acid sequence 226, 227
spherical and cylindrical micelles
of 224, 225
ELP–PEG 228–229
PAA-VG2 229
poly(benzyl-L-glutamate)-coil 209,
210
dipalmitoylphosphatidylcholine
(DPPC) membranes 283
dissipative particle dynamics (DPD)
advantageous features of 278
conservative force 279
drag force 280
hydrodynamic behavior 280
random force 280
DNA amphiphiles 27–29
DNA-functionalized anisotropic
nanoparticles 258
DNA-mediated nanoparticle
crystallization, in Wulff
polyhedra 268–272
DNA nanotechnology 153
DNA–polymer amphiphiles
categories 159
DNA-brush copolymers 163, 164
dNA micelle formation 160
endonuclease resistance 165, 167
fluorescence studies 163, 165
positional ordering along DNA
nanotubes 171
preparation 165, 166
ss-DNA-b-PPO micelles
hybridization 161, 162
DNA-programmable nanoparticle
assembly
schematic illustration 263
thermally active hybridization
263–268
DNA-programmed micelle systems
151, 153–154
DNA–polymer amphiphiles
159–171
lipid-like DNA amphiphiles
154–159
dynamical micellar branching 68

e
elastin-like polypeptides (ELP) 223
sharp solubility transition 224
transition temperature 224
elastin-mimetic hybrid copolymers 229
electrostatic interactions 188
electrostatic persistence length, of
wormlike micelles 53, 54
ELP–ELP diblock copolymers
schematic representation and amino
acid sequence 226, 227
spherical and cylindrical micelles of
224, 225
ELP-PEG diblock copolymers 228–229
emulsion compartments 108–109
enclosed protocell models 118–120
enhanced green fluorescent protein (EGFP) 84, 316
entangled wormlike micelles, viscoelasticity of 44–50
breaking time 45
characteristic lengths 46, 48
Cole–Cole plot 46, 48, 49
concentration dependence 50
contour length 45, 49
for dilute and semidilute solutions 44
Maxwell model 46
reptation model 45
storage and loss moduli, frequency dependence of 46, 47
terminal relaxation time 50
entropic networks, branched micelles
mean-field theory 57, 58
phase separation 56, 58, 60
statistical associating fluid theory 58, 59
statistical mechanical theory 60
topological defects 57
Zilman-Safran theory 60
enzyme catalyzed dephosphorylation reaction, of Fmoc-FpY 139, 140
enzyme-triggered degradation, of PEG-peptide micelle 141
enzyme-triggered PA hydrogel formation 191
ethyl(hydroxyethyl) cellulose (EHEC) 83
ethylene oxide (EO) linkers 184, 187

bulk solution properties 82
molecular structure 78
11-ferrocenylundecyltrimethylammonium bromide (FTMA)
excess surface concentration 79
globular micelles with hydrodynamic diameter 82
Marangoni flow generation 87
molecular structure 78
surface tensions 79, 80
fibronectin-mimetic peptide amphiphiles 193
fluorinated polyhedral oligomeric silsesquioxane (FPOSS)-polystyrene-block-polyethylene oxide (PS-b-PEO)
giant surfactants 323
Fourier transform pulsed field gradient spin-echo NMR 43
fusion proteins 227, 235
fusogenic GALA peptide 197

f
ferrocenyl surfactants 77–78
11-ferrocenylundecylammonium bromide (11-FAB)

g
gemini surfactants 187, 320, 321
genetic engineering 217
geometrical relations
for block copolymer aggregates 19
for spherical and cylindrical micelles and bilayers 4, 5
giant surfactants 35
with block copolymer tails 321–324
gemini surfactants 320, 321
molecular architecture of 311–312
with multiheads and multitails 319–321
phase behaviors and self-assembled morphologies of 318
with short nonpolymeric tails 312–315
with single head and polymer tail 315–319
globular protein-based giant surfactants 316
globular protein copolymers 229–236

h

helical protein copolymers
coiled-coils 209, 214, 215
helix-to-sheet transitions 213
N-carboxy anhydride (NCA) polymerization 209
PBLG-oligostyrene conjugates 211, 212
poly(carbobenzoxy-L-lysine) (PZLLys) 211
poly(benzyl-L-glutamate)-coil diblock copolymer 209, 210
rod-coil block copolymers, phase diagrams of 210
rod–rod polymers 211–212
short helix-alkyl chain diblock system 213
helix-to-sheet transitions 213
horseradish peroxidase (HRP)-polyethylene oxide-block-polystyrene (PEO-b-PS) giant surfactants 322
hydrophobic effect 105

i

interfacial protocell models 120–123
ionic micelles
growth of 51–52
persistence length of 52–53
ionic surfactants, spherical micelles from 8–9
ion-specific effect, on micellar growth and branching 55–56

j

Janus particles
asymmetric 288–290
deposition on patterned surface
step trench 295–298
sticky stripe 301–303
wedge trench 298–301
and lipid vesicles (see lipid vesicles-Janus nanoparticle interaction)
symmetric 285–288

k

Keggin POM-based giant surfactants 313
KLAK PA 189, 198

l
light energy harvesting and chemical conversion 124
phosphate-chemicals high-energy bond conversion 125–126
light-responsive surfactants
azobenzene 90
biomolecule-surfactant interactions 91–93
bulk solution properties 90–91
interfacial properties 90
spatial control of 93
light-reversible transition, of NaOA and C0AZOC2IMB binary mixtures 91, 94
Lindqvist POM-based giant surfactants 313
lipase-PS giant surfactant 315, 316
lipid-like DNA amphiphiles 154–159
lipid membranes 101
lipid vesicles-Janus nanoparticle interaction
adhesive interactions 282–283
asymmetric Janus particles 288–290
dissipative particle dynamics 278, 279
advantageous features of 278
conservative force 279
drag force 280
l lipid vesicles-Janus nanoparticle interaction (contd.)
 hydrodynamic behavior 280
 random force 280
 multiple Janus particles 291–294
 on patterned surfaces
 step trench 295–298
 sticky stripe 301–303
 wedge trench 298–301
 Peclet number 284
 shear flow 283
 spherical amphiphilic Janus nanoparticles 278
 composition 280–281
 deposition on patterned surfaces 295–303
 face-centered cubic lattice structure 280
 symmetric Janus particles 285–288
 locked nucleic acid (LNA)-polymer amphiphile-based micelles (LPA) 166, 168

m
 Marangoni flows 87, 93, 95, 96
 matrix metalloproteinases-7-mediated hydrogelation 139, 140
 matrix metalloproteinases-responsive fluorescent micellar nanoparticles 148
 Matrixyl 195
 mCherry-b-PNIPAM block copolymers 232, 233
 mCherry-ELP fusion block copolymers 234, 235
 mean field model, of block copolymer micelles 17–20
 medium-hydrocarbon-chain fatty acid (MCFA) 111, 119, 120
 membrane proteins 234–236
 membrane scaffold proteins (MSPs) 236
micelles, 2 see also protein analogous micelles (PAMs)
 corona crosslinked 225
 cylindrical micelles, formation of 9
 ionic 51–53
 nonionic micelles, growth of 50–51
 PEO–PPO block copolymer 19, 20
 shell-crosslinked 225
 wormlike (see wormlike micelles)
 mixed phospholipids/oleic acid bilayers 113
molecular beacon micelle flares (MBMFs) 158–159
molecular dynamics (MD) simulations
 advantages 259
 DNA-mediated nanoparticle crystallization using 260, 261, 263
 of scale-accurate coarse-grained model with DNA chains 259–263
molecular nanoparticles 35
molecular packing parameter 3, 7
molecular thermodynamic models 63, 68
Monte Carlo (MC) method 259
multiheaded/multitailed giant surfactants 319–321 see also giant surfactants
myoglobin-b-polystyrene-block-poly(ethylene glycol) (Mb-PS-b-PEG) triblocks 230, 231
n
 nanofiber-based PA system 197
 nanocarriers 277
 nanoscopic lipid vesicles 277 see also
 lipid vesicles-Janus nanoparticle interaction
 N-carboxy anhydride (NCA)
 polymerization 209
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurite-promoting laminin epitope</td>
<td>194</td>
</tr>
<tr>
<td>N-methylation, of cyclic peptides</td>
<td>223</td>
</tr>
<tr>
<td>Nonclassical amphiphiles</td>
<td></td>
</tr>
<tr>
<td>Amphiphilic nanoparticles</td>
<td>34–36</td>
</tr>
<tr>
<td>Dendritic amphiphiles</td>
<td>25–27</td>
</tr>
<tr>
<td>DNA amphiphiles</td>
<td>27–29</td>
</tr>
<tr>
<td>Peptide amphiphiles</td>
<td>29–31</td>
</tr>
<tr>
<td>Protein–polymer conjugates</td>
<td>31–34</td>
</tr>
<tr>
<td>Nonionic micelles, growth of</td>
<td>50–51</td>
</tr>
<tr>
<td>Nonionic surfactants, spherical micelles</td>
<td>8</td>
</tr>
<tr>
<td>Nonsense fluorescein labeled LPA (NS-FL-LPA)</td>
<td>168, 169</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>151, 153</td>
</tr>
<tr>
<td>PAA-VG2 diblock copolymers</td>
<td>229</td>
</tr>
<tr>
<td>Packing parameter</td>
<td>106, 108–109</td>
</tr>
<tr>
<td>Peclet number</td>
<td>284</td>
</tr>
<tr>
<td>PEG-peptide micelle, enzyme-triggered degradation of</td>
<td>141</td>
</tr>
<tr>
<td>PEO–PPO block copolymer micelles</td>
<td>19, 20</td>
</tr>
<tr>
<td>PEO–PPO–PPO triblock copolymers</td>
<td>23</td>
</tr>
<tr>
<td>Peptide amphiphiles (PAs)</td>
<td>139–141, 179</td>
</tr>
<tr>
<td>In anti-aging skin creams</td>
<td>195</td>
</tr>
<tr>
<td>In aqueous solutions</td>
<td>30</td>
</tr>
<tr>
<td>Basic leucine zipper (bZip)</td>
<td>184, 187, 192</td>
</tr>
<tr>
<td>β-sheet secondary structure</td>
<td>183–185</td>
</tr>
<tr>
<td>Biomimetic assemblies</td>
<td>180</td>
</tr>
<tr>
<td>Fibronectin-mimetic</td>
<td>193</td>
</tr>
<tr>
<td>Hydrophobic tails, role of</td>
<td>185, 186</td>
</tr>
<tr>
<td>IKVAV neurite-promoting laminin epitope</td>
<td>194</td>
</tr>
<tr>
<td>For materials design applications</td>
<td>29–30</td>
</tr>
<tr>
<td>Molecular structure and chain conformation</td>
<td>31</td>
</tr>
<tr>
<td>Nanofiber-based system</td>
<td>197</td>
</tr>
<tr>
<td>Photocleavable nitrobenzyl group</td>
<td>191, 192</td>
</tr>
<tr>
<td>Physicochemical properties of</td>
<td>181–192</td>
</tr>
<tr>
<td>Prodan drug addition</td>
<td>196</td>
</tr>
<tr>
<td>Randomly and flow aligned</td>
<td>193</td>
</tr>
<tr>
<td>Thermodynamic behavior</td>
<td>181</td>
</tr>
<tr>
<td>Peptide-containing micelles</td>
<td>138</td>
</tr>
<tr>
<td>Peptide amphiphiles</td>
<td>139–141</td>
</tr>
<tr>
<td>Peptide–polymer amphiphiles</td>
<td>141–151</td>
</tr>
<tr>
<td>Peptide–polymer amphiphiles (PPAs)</td>
<td></td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>141</td>
</tr>
<tr>
<td>Cancer-associated enzymes</td>
<td>142</td>
</tr>
<tr>
<td>Fluorogenic micellar nanoparticles</td>
<td>145, 146</td>
</tr>
<tr>
<td>FRET-active species</td>
<td>146, 147</td>
</tr>
<tr>
<td>FRET signal</td>
<td>148–151</td>
</tr>
<tr>
<td>MMP-responsive fluorescent micellar nanoparticles</td>
<td>148</td>
</tr>
<tr>
<td>Phosphorylation/dephosphorylation reactions</td>
<td>142, 143</td>
</tr>
<tr>
<td>Polymer properties, structure, and characterization</td>
<td>142, 143</td>
</tr>
<tr>
<td>SEC-MALS</td>
<td>142</td>
</tr>
<tr>
<td>Synthesis of</td>
<td>151, 152</td>
</tr>
<tr>
<td>TEM</td>
<td>146, 147</td>
</tr>
<tr>
<td>Percolating active network</td>
<td>68</td>
</tr>
<tr>
<td>Persistence length, of ionic micelles</td>
<td>52–53</td>
</tr>
<tr>
<td>Phosphatases</td>
<td>139</td>
</tr>
<tr>
<td>Photoresponsive surfactants</td>
<td>91, 93, 96</td>
</tr>
<tr>
<td>Physicochemical properties of peptide amphiphiles</td>
<td>181–192</td>
</tr>
<tr>
<td>Poly(carbobenzoxy-L-lysine) (PZL Lys)</td>
<td>211</td>
</tr>
<tr>
<td>Poly(benzyl-L-glutamate)-coil diblock copolymer</td>
<td>209, 210</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons (PAHs)</td>
<td>114</td>
</tr>
</tbody>
</table>
poly(ethylene glycol)-DNA polymer
structure 170
poly(benzyl-L-glutamate)
(PBLG)-oligostyrene conjugates 211, 212
polyoxometalate (POM) amphiphiles 34, 35
polyoxometalate (POM)-based giant
surfactants 313, 318–319
protein analogous micelles (PAMs) see
also peptide amphiphiles (PAs)
advantages 198
β-sheet formation 182, 183
in biomedical applications 192–199
cell penetration and internalization 197
for controlled drug release 196
description 179
electrostatic interactions 188
in immunotherapeutic applications 198
inhibition of cancer cell proliferation 196
mixed micelles 188–189
multiple headgroups, role of 186–187
pH 190
properties of 181
protein resembling dendrimer
templated nanospheres 187–188
scaffolds 192
secondary structures, role of 182–185
spherical and cylindrical 179, 180
stabilizing spherical structure 187–188
stimuli-responsive 190–192
for tissue engineering applications 198–199
protein–polymer conjugates
aggregation patterns 34
headgroup repulsions 33
schematic representations 31, 32
shapes of 208, 209
protein resembling dendrimer
templated nanospheres
(PRTNs) 187–188
proteins 208
protocells 103
designs 116, 117
development 118
energy uptake and transduction 118
redox-active surfactants
biomolecule-surfactant assemblies,
control of 84–87
bulk solution properties, reversible
changes in 82–84
ferrocenyl surfactants 77–78
interfacial properties, reversible
changes in 78–82
Marangoni flows 87
micelle concentration, spatial
gradients in 87
microfluidic channels 89
RGD-based nanofibers 192–193
rhombic dodecahedra (RD)
microcrystals formation 268
rod-coil block copolymers, phase
diagrams 210
rod–rod polymers 211–212
SCAs see single-hydrocarbon-chain
amphiphiles (SCAs)
self-assembled recombinant triblock
polypeptide 219
semi-synthetic, biohybrid
supramolecular systems 137
shell-crosslinked micelles 225
short helix-alkyl chain diblock system 213
silk-elastin-like protein polymers (SELPs) 217–219
silk-mimetic block copolymers 217
silk-mimetic hybrid nanostructures 217
silk-to-elastin block ratio 219
single-head/single-tail giant surfactants 315–319 see also giant surfactants
single-hydrocarbon-chain amphiphiles (SCAs)
amphiphile headgroups vs. solute/solvent molecules interactions 106
catalysis compartmentalization with 116–126
critical aggregate concentration 106, 107
dynamism 126–127
headgroup-to-headgroup interactions 105–106
interaction with solid surfaces 116
membrane formation in prebiotic context 104
mixtures of charged species 112–113
and lipids 113–114
and neutral co-surfactants 111–112
and nucleobases 114, 115
and polycyclic aromatic hydrocarbons 114
with same functional headgroups 111
packing parameter 106, 108–109
self-assembly on surfaces 115–116
single species of 109–110
van der Waals forces and hydrophobic effect 104–105
slow-cooling method 268, 269
small-molecule surfactants 309
sodium dodecyl sulfate (SDS) 90
sodium (11-ferrocenylnundecyl) sulfonate (SFS)
critical aggregation concentration (CAC) 81
globular micelles with hydrodynamic diameter 82
molecular structure 78
surface tension 81, 82
solution self-assembly, of giant surfactants see giant surfactants
spherical amphiphilic Janus nanoparticles 278 see also lipid vesicles-Janus nanoparticle interaction
composition 280–281
deposition on patterned surfaces 295–303
face-centered cubic lattice structure 280
spherical bilayer vesicles, formation of 9–10
spherical micelles from ionic surfactants 8–9
from nonionic surfactants 8
from zwitterionic surfactants 8
spherical nucleic acids (SNAs) 272
star polymer model, for block copolymer micelles 15–17
statistical associating fluid theory (SAFT) 58
step trench, vesicle-particle assembly behavior 295–298
sticky stripe, vesicle-particle assembly behavior 301–303
stimuli-responsive PAMs 190–192
strain promoted azide–alkyne cycloaddition (SPAAC) 225
surface energy ratios 268
surface tension-driven (Marangoni) flows 87
surfactant micelles/aggregates
dodecyl alkane tail effects on shape transitions 20–22
surfactant micelles/aggregates (contd.)
 schematic representation of 4
 Tanford model for 4–11
 surfactant molecules 1
 surfactant self-assembly model 13–15
 switchable aptamer micelle flares
 (SAMFs) 155–157
 symmetric Janus particle-lipid vesicles
 interaction 285–288

\textbf{t}

Tanford model, for surfactant micelles
 critical micelle concentration 6
 cylindrical micelles formation 9
 equilibrium aggregation behavior 6
 Gibbs equilibrium condition 4
 hydrophobic domain 4
 molecular packing parameter and
 aggregate shape 7
 spherical bilayer vesicles formation
 9–10
 spherical micelles formation
 from ionic surfactants 8–9
 from nonionic/zwitterionic
 surfactants 8
 standard free energy change 5–6
 vesicle interior volume per molecule,
 tail length dependence of 10, 11
 template-directed RNA polymerase
 ribozyme 121
 thermally active hybridization,
 DNA-programmable
 nanoparticle assembly
 263–268
 thermo-responsive micelle conjugates
 322
 tropoelastin 224
 twin-tailed amphiphilic lipid molecules
 280, 281

\textbf{U}

UV light effect, BTHA/SDS mixture
 91–93

\textbf{V}

van der Waals attractive forces
 104–105
 velocity-Verlet algorithm 280
 vesicles 4, 108, 119–120 see also lipid
 vesicles-Janus nanoparticle
 interaction
 azoTAB 91
 decanoic acid 110
 fatty acid vesicle formation and
 stability 110
 formation and disruption 82, 83
 nanoscopic 277, 278
 spherical bilayer vesicles formation
 9–10
 VG2-PAA-VG2 triblock copolymers
 229
 viscoelasticity, of entangled wormlike
 micelles see also wormlike
 micelles
 breaking time 45
 characteristic lengths 46, 48
 Cole–Cole plot 46, 48, 49
 concentration dependence 50
 contour length 45, 49
 for dilute and semidilute solutions
 44
 Maxwell model 46
 reptation model 45
 storage and loss moduli, frequency
 dependence of 46, 47
 terminal relaxation time 50

\textbf{W}

wedge-shaped trench, vesicle-particle
 assembly behavior 298–301
wormlike micelles
 branching 43
 entropic networks 56–60
 shape and free energy 61–66
 entangled, viscoelasticity of 44–50
 rheology and structure of 44–56
 transformation in multiconnected perforated structure 65–66

Wulff polyhedra, DNA-mediated nanoparticle crystallization in 268–272

Z
 Zilman-Safran theory 60, 61, 64
 zwitterionic surfactants, spherical micelles from 8