Contents

Acknowledgments xiii

1 *The New Life Sciences* 1
 The Challenges We Face in Teaching the New Biology 2
 Visions of Change 5
 Need for Structural Change 6
 Conceptual Organization of Introductory Biology 8
 Learning and Mastering 10
 Further Reading 13

2 *Changing Goals and Outcomes in Introductory Life Science Course Laboratories* 15
 The Introductory Science Course Experience That We Have 15
 How Science is Actually Done 15
 Challenges to Successful Science Teaching 18
 Pre-College Preparation Disparities 18
 Avoiding the Textbook as the Organizer of Your Course 18
 Weaning Away from Content-Heavy Lectures 20
 The Elements of Successful Science Learning 21
 Student Autonomy 21
 Relevance 21
 Student Investment 21
 Sustained Engagement 22
 Understanding Through Teaching 23
 Two Re-organizational Schemes for an Introductory Biology Course 23
 Re-organizational Scheme 1: Putting the Classroom First 23
 Re-organizational Scheme 2: Putting the Laboratory First 26
 Example Topic: Biological Arms Races (Conceptual Areas: Structure and Function, Information Storage and Transfer, Evolution, Systems) 27
3 Incorporating Discovery-Based Laboratory Experiences at the Introductory Level
The Reality of Introductory Biology Laboratories 33
Converting the Survey Approach to Biology Techniques into Discovery-Based Experiences that Emphasize Concepts 38
Module I: What are the Effects of Different Aspects of Climate Change or Other Anthropogenic Changes on Plant Primary Productivity? 41
Weeks 1 and 2: Observing Plant Cells and Measuring Plant Primary Productivity – Two Laboratory Weeks 42
Simple Assays of Photosynthesis/Primary Productivity 44
Week 3: Designing Independent Experiments to Explore the Effects of Climate Change on Primary Productivity in Green Plants 46
Week 4 and 5: Student-designed Discovery-based Experiments and Data Analysis 46
Week 6: Field Observations of Plant Communities in Areas Exposed to Fertilizer Run-off or Other Human Activity such as Road Salt Application in the Winter 47
Assessments 47
Module 2: How Does Antibiotic Resistance Develop? 48
Week 1: Observing cell division; Measuring bacterial Growth and Introduction to Sterile Techniques 49
Week 2: Plate Assay or Turbidity Measurements to Examine Antibiotic Resistance, Design of Selection Experiments 50
Weeks 3–5: Independent Experiments Examining Antibiotic Resistance 52
Week 6–7: Continued Experiments if Time Permits 54
Assessments 54
Module 3: Self-Discovery Explorations of Human Diseases Caused by Single Nucleotide Polymorphisms 54
Week 1: Student Investigation Specific Aims and Goals – Use of Bioinformatics to Explore Genetic Diseases Associated with SNPs 56
4 The Constraints and Realities of Discovery-Based Laboratories

Instructor Expertise

Time

- Preparation Time
- Student Time In and Out of the Laboratory
- Time for Class and Laboratory – the Schedule of Classes
- Time of Academic Year

The Physical Arrangement of the Teaching Laboratory

Class Size

- Number of Laboratory Sections

Resources for Discovery-Based Laboratories

Organisms

Equipment

Safety Considerations for Independent Projects

Transportation for Field-Based Studies

Preparatory Staff

Student Interns/TAs

Summary

Further Reading

5 A Model Introductory Biology Course

Instructor Group Meetings

Shared Course Materials

Flexible Design Allows for the Introduction of New Modules

Overall Conceptual Organization

Laboratory Modules for the First Edition of “Introduction to Biological Investigation”

- Module 1: Caenorhabditis elegans: From Genes to Behavior
- Module 2: Cyanogenic Clover: Genetic Variation and Natural Selection
- Module 3: Biodiversity and Soil Microbial Ecology

Additional Laboratory Modules

- Module 4: Personal Genomics: Understanding Individual Genetic Variation
- Module 5: Behavioral Variations Within a Species
Assessment of Learning of Core Concepts and Skills 99
Student Evaluation of the Course 99
Faculty Concerns and Discomforts 100
Further Reading 101

6 Two Model Scenarios for an Intermediate-Level Life Science Course 103
Model 1: Exploration of Gerontogenes and Behavior 105
Assessment of Skills and Student Learning 107
Model 2: How do Common Lawn Chemicals Affect the Behavior and the Nervous System of *C. elegans*? 107
Summary of the Format 110
Assessment of Student Learning 110
Goal 1: Achieve a Solid Foundation in the Experimental Approaches to a Variety of Current Research Questions in Neuroscience and Behavior 111
Goal 2: Achieve a Sophisticated Ability to Read and Interpret the Primary Experimental Literature 111
Goal 3: Formulate a Hypothesis, Design and Conduct a Multilevel Experimental Project Over Several Weeks to Discover New Information About the Relationship Between Genes and Behavior 111
Goal 4: Perform and Understand Appropriate Statistical Analysis of Behavioral Data, Gain Confidence in the Use and Limitations of Model Organisms, Computational and Bioinformatics Approaches to Examining Complex Relationships Between Genes and Behavior 112
Goal 5: Become Facile in the “Language” of Neuroscience and Behavior, with a Thorough Mastery of our Chosen Subtopics, as Well as a Keen Ability to Speak and Write on the Discipline 112
Further Reading 113

7 Assessments and Why They Are Important 115
What is Assessment? 115
Student Learning Assessments 116
Course-Based Assessments 120
Example 1: Assessment of Discovery-Based Introductory Biology Course 122
Example 2: Assessment of a Redesigned Introductory Cell Biology Course Using Pretesting and Post-Testing 124
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Fully Incorporating Vision and Change</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>The Anthropocene and the Importance of Biology Literacy</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Limited Resources Constrain the Discovery Laboratory for All</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Alternative Approaches</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Envisioning Introductory Biology for the Science-Literate Citizen</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Introductory Life Sciences: The Discovery-Based Classroom</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Organizing the Discovery-Based Classroom: An Introductory Life Science Course for All Students</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Unit One: Food and Energy</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Unit Two: Climate Change and Other Human Impacts</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Unit Three: Health and Disease</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Summary of This Chapter</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Combining Science Literacy Training with Science Career Training</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Concluding Thoughts</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>146</td>
</tr>
</tbody>
</table>

Appendix A: Laboratory Instructions for Behavioral Experiments Using *Caenorhabditis elegans*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Goals and Expectations</td>
<td>150</td>
</tr>
<tr>
<td>Part 1: Initial Behavioral Observations of Wild-Type and Mutant Worms</td>
<td>150</td>
</tr>
<tr>
<td>Workshop 1A: Mechanosensory Behavior Experiments and Statistical Analysis</td>
<td>150</td>
</tr>
<tr>
<td>Workshop 1B: Chemosensory Behavioral Experiment and Statistical Analysis</td>
<td>153</td>
</tr>
</tbody>
</table>

Appendix B: Instructions for Microscopy Workshop

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment for Workshop 2</td>
<td>158</td>
</tr>
<tr>
<td>Procedure for Preparing Wet Mounts of C. elegans</td>
<td>158</td>
</tr>
</tbody>
</table>

Index | 161