CONTENTS

Preface xi
Acknowledgments xiii
About the Companion Website xv

1 Introduction to Analog and Mixed-Signal Electronics 1
 1.1 Introduction, 1
 1.2 Organization of the Book, 3
 1.2.1 Chapter 2: Basics of Electronic Components and Devices, 3
 1.2.2 Chapter 3: Linear System Analysis, 3
 1.2.3 Chapter 4: Nonlinearities in Analog Electronics, 3
 1.2.4 Chapter 5: Op Amp Circuits in Analog Electronics, 4
 1.2.5 Chapter 6: The High-Gain Analog Filter Amplifier, 4
 1.2.6 Chapter 7: Waveform Generation, 4
 1.2.7 Chapter 8: Analog-to-Digital and Digital-to-Analog Conversion, 4
 1.2.8 Chapter 9: Phase-Locked Loops, 4
 1.2.9 Chapter 10: Power Electronics, 5
 1.2.10 Chapter 11: High-Frequency (Radio-Frequency) Electronics, 5
 1.2.11 Chapter 12: Electromagnetic Compatibility, 6
Bibliography, 6
Problems, 6

2 Basics of Electronic Components and Devices 8
 2.1 Introduction, 8
 2.2 Passive Devices, 9
 2.2.1 Resistors, 9
3 Linear Systems Analysis

3.1 Basics of Linear Systems, 33
 3.1.1 Two-Terminal Component Models, 34
 3.1.2 Two-Port Matrix Analysis, 42

3.2 Noise and Linear Systems, 48
 3.2.1 Sources of Noise, 49
 3.2.2 Noise in Designs, 53

Bibliography, 56
Problems, 56
Project Problem: Measurement of Inductor Characteristics, 59
Equipment and Supplies, 59
Description, 59

4 Nonlinearities in Analog Electronics

4.1 Why All Amplifiers Are Nonlinear, 62
4.2 Effects of Small Nonlinearity, 63
 4.2.1 Second-Order Nonlinearity, 63
 4.2.2 Third-Order Nonlinearity, 67
4.3 Large-Scale Nonlinearity: Clipping, 69
4.4 The Big Picture: Dynamic Range, 74

Bibliography, 76
Problems, 76

5 Op Amp Circuits in Analog Electronics

5.1 Introduction, 78
5.2 The Modern Op Amp, 80
 5.2.1 Ideal Equivalent-Circuit Model, 80
 5.2.2 Internal Block Diagram of Typical Op Amp, 81
 5.2.3 Op Amp Characteristics, 85
5.3 Analog Circuits Using Op Amps, 88
 5.3.1 Linear Op Amp Circuits, 92
 5.3.2 Nonlinear Op Amp Circuits, 105
CONTENTS

Bibliography, 115
Problems, 115

6 The High-Gain Analog Filter Amplifier 124

6.1 Applications of High-Gain Filter Amplifiers, 124
 6.1.1 Audio-Frequency Applications, 125
 6.1.2 Sensor Applications, 126

6.2 Issues in High-Gain Amplifier Design, 130
 6.2.1 Dynamic-Range Problems, 130
 6.2.2 Oscillation Problems, 131

6.3 Poles, Zeroes, Transfer Functions, and All That, 134

6.4 Passive Analog Filters, 137
 6.4.1 One-Pole Lowpass Filter, 137
 6.4.2 One-Pole, One-Zero Highpass Filter, 141
 6.4.3 Complex-Pole Bandpass Filter, 143
 6.4.4 Bandstop Filters, 149

6.5 Active Analog Filters, 149
 6.5.1 Sallen–Key Lowpass Filter with Butterworth Response, 150
 6.5.2 Biquad Filter with Lowpass, Bandpass, or Highpass Response, 158
 6.5.3 Switched-Capacitor Filters, 162

6.6 Design Example: Electric Guitar Preamp, 164

Bibliography, 169
Problems, 169

7 Waveform Generation 175

7.1 Introduction, 175

7.2 “Linear” Sine-Wave Oscillators and Stability Analysis, 176
 7.2.1 Stable and Unstable Circuits: An Example, 176
 7.2.2 Poles and Stability, 180
 7.2.3 Nyquist Stability Criterion, 181
 7.2.4 The Barkhausen Criterion, 186
 7.2.5 Noise in Oscillators, 189

7.3 Types of Feedback-Loop Quasilinear Oscillators, 193
 7.3.1 R–C Oscillators, 195
 7.3.2 Quartz-Crystal Resonators and Oscillators, 198
 7.3.3 MEMS Resonators and Oscillators, 202

7.4 Types of Two-State or Relaxation Oscillators, 204
 7.4.1 Astable Multivibrator, 205
 7.4.2 555 Timer, 207

7.5 Design Aid: Single-Frequency Series–Parallel and Parallel–Series Conversion Formulas, 209

7.6 Design Example: BJT Quartz-Crystal Oscillator, 211

Bibliography, 219
Problems, 219
8 Analog-to-Digital and Digital-to-Analog Conversion 225

8.1 Introduction, 225
8.2 Analog and Digital Signals, 226
 8.2.1 Analog Signals and Measurements, 226
 8.2.2 Accuracy, Precision, and Resolution, 227
 8.2.3 Digital Signals and Concepts: The Sampling Theorem, 230
 8.2.4 Signal Measurements and Quantum Limits, 234
8.3 Basics of Analog-to-Digital Conversion, 235
 8.3.1 Quantization Error, 235
 8.3.2 Output Filtering and Oversampling, 237
 8.3.3 Resolution and Speed of ADCs, 239
8.4 Examples of ADC Circuits, 242
 8.4.1 Flash Converter, 242
 8.4.2 Successive-Approximation Converter, 244
 8.4.3 Delta-Sigma ADC, 245
 8.4.4 Dual-Slope Integration ADC, 250
 8.4.5 Other ADC Approaches, 252
8.5 Examples of DAC Circuits, 253
 8.5.1 R–2R Ladder DAC, 255
 8.5.2 Switched-Capacitor DAC, 256
 8.5.3 One-Bit DAC, 258
8.6 System-Level ADC and DAC Operations, 259
Bibliography, 262
Problems, 262

9 Phase-Locked Loops 269

9.1 Introduction, 269
9.2 Basics of PLLs, 270
9.3 Control Theory for PLLs, 271
 9.3.1 First-Order PLL, 273
 9.3.2 Second-Order PLL, 274
9.4 The CD4046B PLL IC, 280
 9.4.1 Phase Detector 1: Exclusive-OR, 280
 9.4.2 Phase Detector 2: Charge Pump, 282
 9.4.3 VCO Circuit, 285
9.5 Loop Locking, Tuning, and Related Issues, 286
9.6 PLLs in Frequency Synthesizers, 288
9.7 Design Example Using CD4046B PLL IC, 289
Bibliography, 294
Problems, 294

10 Power Electronics 298

10.1 Introduction, 298
10.2 Applications of Power Electronics, 300
10.3 Power Supplies, 300
 10.3.1 Power-Supply Characteristics and Definitions, 300
 10.3.2 Primary Power Sources, 303
 10.3.3 AC-to-DC Conversion in Power Supplies, 306
 10.3.4 Linear Voltage Regulators for Power Supplies, 309
 10.3.5 Switching Power Supplies and Regulators, 318
10.4 Power Amplifiers, 337
 10.4.1 Class A Power Amplifier, 338
 10.4.2 Class B Power Amplifier, 346
 10.4.3 Class AB Power Amplifier, 347
 10.4.4 Class D Power Amplifier, 355
10.5 Devices for Power Electronics: Speed and Switching Efficiency, 360
 10.5.1 BJTs, 361
 10.5.2 Power FETs, 361
 10.5.3 IGBTs, 361
 10.5.4 Thyristors, 362
 10.5.5 Vacuum Tubes, 362
Bibliography, 363
Problems, 363

11 High-Frequency (RF) Electronics 370
11.1 Circuits at Radio Frequencies, 370
11.2 RF Ranges and Uses, 372
11.3 Special Characteristics of RF Circuits, 375
11.4 RF Transmission Lines, Filters, and Impedance-Matching Circuits, 376
 11.4.1 RF Transmission Lines, 376
 11.4.2 Filters for Radio-Frequency Interference Prevention, 385
 11.4.3 Transmitter and Receiver Filters, 387
 11.4.4 Impedance-Matching Circuits, 389
11.5 RF Amplifiers, 400
 11.5.1 RF Amplifiers for Transmitters, 400
 11.5.2 RF Amplifiers for Receivers, 406
11.6 Other RF Circuits and Systems, 416
 11.6.1 Mixers, 417
 11.6.2 Phase Shifters and Modulators, 420
 11.6.3 RF Switches, 423
 11.6.4 Oscillators and Multipliers, 423
 11.6.5 Transducers for Photonics and Other Applications, 426
 11.6.6 Antennas, 428
11.7 RF Design Tools, 433
Bibliography, 435
Problems, 435
12 Electromagnetic Compatibility 446

12.1 What is Electromagnetic Compatibility?, 446
12.2 Types of EMI Problems, 448
 12.2.1 Communications EMI, 448
 12.2.2 Noncommunications EMI, 453
12.3 Modes of EMI Transfer, 454
 12.3.1 Conduction, 454
 12.3.2 Electric Fields (Capacitive EMI), 456
 12.3.3 Magnetic Fields (Inductive EMI), 458
 12.3.4 Electromagnetic Fields (Radiation EMI), 461
12.4 Ways to Reduce EMI, 465
 12.4.1 Bypassing and Filtering, 465
 12.4.2 Grounding, 470
 12.4.3 Shielding, 474
12.5 Designing with EMI and EMC in Mind, 479
 12.5.1 EMC Regulators and Regulations, 479
 12.5.2 Including EMC in Designs, 479

Bibliography, 481
Problems, 481

Appendix: Test Equipment for Analog and Mixed-Signal Electronics 489

A.1 Introduction, 489
A.2 Laboratory Power Supplies, 490
A.3 Digital Volt-Ohm-Milliammeters, 492
A.4 Function Generators, 494
A.5 Oscilloscopes, 496
A.6 Arbitrary Waveform Generators, 499
A.7 Other Types of Analog and Mixed-Signal Test Equipment, 500
 A.7.1 Spectrum Analyzers, 500
 A.7.2 Logic Analyzers, 501
 A.7.3 Network Analyzers, 501

Index 503