Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

air–liquid interfaces

1-butyl-3-methylimidazolium
trifluoromethanesulfonate, 151, 151
C–H stretching region, 149
C–N stretching region, 149
Coulombic and chain-chain interactions, 149
numbering scheme and molecular orientation, [C₄mim]+, 148, 148
sum-frequency spectra
[C₄mim][BF₄], 150
[C₄mim][N(CN)₂], 149
surface potential, 150
tetraalkylammonium and 1,1-dialkylpyrrolidinium ionic liquids, 152
vibrational peak assignments, [C₄mim][BF₄], 149, 150
1-alkyl-3-methylimidazolium salts
–CH₂CH₂–, introduction of, 449
[C₄mim][NTf₂], structure of, 450
Coulombic interactions, 449
halide salts, 450
methylene groups, 449
monoclinic and orthorhombic forms, [C₄mim]Cl, 451
room temperature, 450
volume-based thermodynamics approach, 449

amides
bis(fluorosulfonyl)amide, 42, 42
bis[bis(pentafluoroethyl)phosphinoyl]amide, [NDf2]−, 42, 42–43
physical properties, 42, 42
APPLE&P see Atomistic Polarisable Potential for Liquids, Electrolytes and Polymers
Arrhenius expression, 16
Atomistic Polarisable Potential for Liquids, Electrolytes and Polymers, 86
aza-heterocycles, salts of, 383–385
(1,5-dimethoxyl-3-phenyl)-5a,6,7,8,9,9a-hexahydro-1H-1,5-benzodiazepin-5-ium perchlorate, 461, 462
2-acetyl-9-azoniabicyclo[4.2.1]nonan-3-one trifluoroethanoate, 461, 462
5-azonia-2-oxa-spiro[4.4]nonane tetrafluoroborate, 461, 462
1,3-diethyl-3,4,5,6-tetrahydropyrimidinium hexafluorophosphate, 461, 461
3-(3-ethenyl-1,2,4-oxadiazol-5-yl)-1,2,5,6-tetrahydropyridinium trifluoroethanoate, 461, 462
aza-heterocycles, salts of (cont’d)
5-ethoxy-1-ethyl-3,4-dihydro-2-ooxochinoline, hexachloroantimonate, 461, 463
[1-ethyl-1,4-diazabicyclo[2.2.2]octanum][NTf₂], structure of, 460–461
5-hydroxy-1-methyl-3,4-dihydropyrrrolonium chloride, 461, 462
3-hydroxy-1-tert-butyl-1,2-dihydropyrrrolium picrate, 461, 461
3-methyl-2-phenyl-3,4,5,6-tetrahydropryrimidinium trifluoromethanesulfonate, 461, 461
1-(piperidinium-1-ylidene)-3-(piperidin-1-yl)-2-azapropene hexafluorophosphate, 461, 463
2-tert-butyl-3,3,5-trimethyl-1,2-diaza-3-sila-5-cyclopentenium tetrachloroaluminate, 461, 463
volume-based thermodynamics approach, 463

BATIL see Biodegradability and Toxicity of Ionic Liquids

benzene:1,3-dimethylimidazolium hexafluorophosphate aromatic and cation/anion, interactions, 69
molecular dynamics simulations, 68–69
neutron diffraction experiments on [C₄mim][PF₆], 68
spatial probabilities, 68, 68

Biodegradability and Toxicity of Ionic Liquids, 199

biodegradation adverse effects, 197
ammonium, imidazolium, phosphonium and pyridinium compounds, 197
data interpretation CO₂ production, 200
imidazolium and pyridinium-based cations, 201
ISO CO₂ Headspace test procedure, 200–201
developments, 189
nonlinear effects, 203
organic chemicals, 196–197
practical applications, 204
primary, 197–198
‘ready biodegradability’ test procedures, 197, 198
rules of thumb, 198
stability and viscosity, 204
structures and substructures, 190
test procedures, 199–200
transformation products, 202

bis(sulfonyl)amides, [N(SO₂R)₂]⁻, salts of anion conformation ammonium and phosphonium salts, 432–433
imidazolium salts, 428–430
pyridinium salts, 430–431
pyrrolidinium and piperidinium salts, 432
[N(SO₂CF₃)₂]⁻ and [N(SO₂CH₃)₂]⁻, comparisons
[C₄C₁pyr]⁺ and choline salts, 427
dimesylamide salts, 426
higher-melting salts, 426
sulfonyl and phosphonyl amides, 359–362, 425
X-ray diffraction methods, 425–426
[N(SO₂R)₂]⁻ Salts, R = C₂F₅ or C₃F₇, and related ions, 427
Blelomenen, Purcell and Pound theory, 15
Boltzmann’s constant, 14, 26
borates difluoro(oxalato)borate, 43, 44
perfluoralkyltrifluoroborates, 44, 44
tetrafluoroborate anion, 43–44, 44
trifluoro(perfluoroalkyl)borate, 43, 44
boron-centred and cations and carboranes, 382, 459
BPP see Blelomenen, Purcell and Pound theory
Bronsted acidic ionic liquid catalyst system, 118
Brownian motion, 16, 17, 19–20

Cambridge Crystalloptographic Data Centre, 235
Cambridge Structural Database, 235
Canongia Lopes and Pádua force field, 84–85
carbon-centred and related cations, 382, 458–459
carborates, 44–45
carboxylates
 1-butyl-1-methylazepanium trifluoroethanoate, 436, 436–437
crystal structures, 365–366, 436
 lowest-melting (protonic or non-protonic) carboxylate salt, 436
catalytic applications, acidic ionic liquids see halometallate ionic liquids
CCDC see Cambridge Crystallographic Data Centre
chemical engineering
 added value, 110
catalytic applications see halometallate ionic liquids
cost per kilogram, 111
immobilisation, transition metal catalysts
 organic-ionic liquid biphasic catalysis, 120–122
 ‘solid catalyst with ionic liquid layer’ system, 125–129
 ‘supported ionic liquid phase’ catalysis, 122–124
ionic liquid amount, 110
properties of ionic liquids, 108, 109
separation processes
 absorption, 132
 distillation/rectification, 130
 extraction, 131–132
 extractive distillation, 131
 membrane processes, 132–133
 stabilisation and immobilisation, nanoparticles, 129–130
stability, 111
technical performance, 108
chiral ionic liquids
 1-(cis-2-hydroxy-cyclo-pentyl)-3-benzylimidazolium bromide, 403, 403–404
 Coulombic and directional hydrogen bonding, 403
 enantiomer separation, 402–403
[(1-methyl-3-[(2S)-2-methylbutyl]imidazolium][bis[(2S)-2-oxy-3-methylbutanoato-\(O\)O']borate, 405, 405
N-(1-O-methyl-2,3,4-tri-O-acetyl-á-d-glucopyranos-6-yl)pyridinium nitrate, 404, 404
racemic mixture, 403
6,6’-spiro(1-methyl-1,5,6,7-tetrahydropyrrolo[1,2-a]imidazol-4-ium bistriflamide, 403, 403
structurally characterised, 404–405
(−)-trans-3-acetoxy-1-methylthiane perchlorate, 404, 404
3(R),4(S),5(R),6(S)-3,4,5-trihydroxy-cis-1-thionabicyclo[4.3.0]nonane perchlorate, 404, 404
chiral salts, 477
chloroaluminate(III) ionic liquids, 112, 112, 113
CL&P force field see Canongia Lopes and Pádua force field
component anions and cations
 anions, 293–299, 320
cations, 300–317, 321
CSD refcode or CCDC deposition number, 292
‘frustration’ of crystallisation, 291
methylmagnesium salts, 319
room-temperature ionic liquids + ionic liquids, 319–321
single-crystal X-ray crystallography, 299
structures of, 318, 318–319
volume-based thermodynamics approach, 292, 299
cracking reactions, 117
crystal lattice energy
 cation : anion ratio for salts, 284–285
 electrostatic interactions, 284
 low-melting ionic liquids, 285
 volume-based thermodynamics approach, 285
crystallography
 aza-heterocycles, salts of, 383–385, 460–463
 boron-centred and cations, 382, 459
crystallography (cont’d)
carbon-centred and cations, 382, 458–459
carboxylates, 365–366, 436–437
checkCIF software, 280
chiral see chiral ionic liquids
component anions and cations, 291–292
crystal and molecular structures, 234
crystal lattice energy, 284–285
databases and searching methods, 235
data mining software, 281
data quality, 280
differential scanning calorimetry, 233
energetic see energetic ionic liquids
[ER₄]⁺ and [E’R₃]⁺ see [ER₄]⁺ and [E’R₃]⁺
[EX₆]⁻, 357–358, 422–425
halides and pseudohalides see halides
halogen-centred cations, 459–460
Hirshfeld surface analysis, 289–291
hydrogen bonding, role of, 281
hydrogen-bond networks, 235
imidazolium salts see imidazolium salts
interhalides and polyhalides, 413–414
ionic liquid phases, 235
ionic liquids: 30°C < m.pt. > 100°C, 235, 240–268, 276
lattice potential energy (Uₓ/kJ mol⁻¹) vs. melting point, 465–467, 468–471
melting phenomena, 232–233, 276–280
metal-containing see metal-containing ionic liquids
microheterogeneity, 232
multiply charged ions see multiply charged anions and cations
(S)-N-acetyl-2-methoxycarbonyl-2-(3-methylpyridinium-1-yl)-N-propylsulfamate, 234, 234
Optical Heating and Crystallisation Device, 280–281
organic molten salts, study of, 231
o xoanions, 350–352, 416–417
phase behaviour, studies of, 233
‘plastic’ phases, 232
pnictogen-centred cations, 460
polymorphism, 281–284
‘pre-freezing’ behaviour, 232
protonic see protonic ionic liquids
pyridinium salts, 372–373, 445–448
room-temperature ionic liquids, 235, 236–239, 276
salts of bis(sulfonyl)amides,
[N(SO₂R)₃]⁻ see bis(sulfonyl) amides, [N(SO₂R)₃]⁻, salts of
salts with m.pt. 100°C to ca. 110°C, 235, 269–275, 276
silicon-, sulfur- and arsenic-containing heterocycles, salts of, 383, 385, 463–465
single-crystal X-ray diffraction studies, 234–235
solidification phenomena, 233–234
volume-based thermodynamics approach, 285–289
CSD see Cambridge Structural Database
Diels–Alder reactions, 221–222
differential scanning calorimetry, 233
1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl] amide
[C₄mim][NTf₂], crystal structure, 61
neutron diffraction and MD study, [C₄mim][NTf₂], 60–61
spatial probability distributions, 61, 61
1,3-dimethylimidazolium chloride
[C₄mim]Cl, classical simulation studies, 58–59
empirical potential structure refinement procedures, 57
ion–ion RDFs, 58, 58
Monte Carlo simulation of system, 57
reverse Monte Carlo, 57
spatial probabilities, 58, 58
1,3-dimethylimidazolium hexafluorophosphate
[C₄mim][PF₆], classical simulation studies, 60
complex cation–anion interaction, 59
neutron diffraction, 59
spatial probabilities, 59, 59–60
distillation, extractive, 131
double stimulated-echo pulse sequence, 24
DSC see differential scanning calorimetry
DSTE pulse sequence see double stimulated-echo pulse sequence

(eco)toxicology
antagonistic effects, 191
cations and anions, 190–191
developments, 189
electrostatic properties, 191
endocrine disruption properties, 196
environmental legislation, 193
environmental risk, 203
genotoxic effects, 195
hazard and risk assessment, 190
hydrophobicity, 192
in vitro assays, 195, 196
imidazolium, 191, 195
literature data, 191–192
modes of action, 193, 194, 203
molecular and cellular level, 193, 194
narcosis, 192
nonlinear effects, 203
1-octyl-3-methylimidazolium bromide, 195
persistency, 193, 203
salt concentrations and pH values, 195
side-chain effect, 192–193
strategies and techniques, 189–190, 203
SVHC, 193, 195, 196
synergistic effects, 193, 195
EF-CG method see effective force coarse-graining method
effective force coarse-graining method, 86, 87
Eigenschaften/Seishitsu/properties
aromatic compounds, 98
dipolar solutes, 98
molecular simulation studies, 97
nanostructured nature, ionic liquids, 97
non-polar molecules, 98
physico-chemical properties, 97
polarisable force fields, 99
solubility experiments, 97
solvation of toluene, 99
transport properties, 98
volatilities and melting points, 99
EIS see electrochemical impedance spectroscopy
electrochemical impedance spectroscopy, 156
electron transfer reactions, 223–224
empirical potential structure refinement models, 57, 85
energetic ionic liquids
additional anions and cations, structure of, 398
azolates, 401–402
guanidinium salts, 398–399
hydrazinium and hydroxylammonium salts, 397
structural characterisation, 337–339, 396–397
triazolium and tetrazolium salts, 399–400
energetic salts, 477
EPSR see empirical potential structure refinement models
[ER4]+ and [E′R3]+, 367–371
alicyclic quaternary ammonium compounds
anion–anion cross-linking, 442
hydrogen bonding, 443
N-alkylation, consequences of, 442
N,N-dialkyl salts, 442
N,N-dimethylaziridinium iodides, 441, 441–442
piperidinium ionic liquids, 443
pyrrolidinium–piperidinium–morpholinium trio of salts, 443
replacing CH3 by CF3, consequences of, 442
phosphonium salts, 443–444
protonated alkylammonium salts, 437–438
sulfonium and other group 16 salts, 444–445
tetraalkylammonium salts
[Al(OR)4]−, 438–439
anions, acesulfamate and saccharinate, 440, 441
cholinium chloride, 438
[NMe3(CH2CH2OH)]Cl, 440–441
lowest-melting tetraalkylammonium halide, 438
melting and crystallisation temperature, 439–440
[N2222][A] salts, 439
[ER₅]+ and [E′R₃]+ (cont’d)
[N₃₃₃₃][CuBr₂], 439
[N₃₄₄₄][2,4-dinitroimidazolate], 440
[N₁₁₁₁][N(SO₂CF₂),]₂, 439
plastic crystals, 438
tetramethylammonium ionic liquids, 438
tripod pattern, 441

1-ethyl-3-methylimidazolium ethanoate anions and cations, distributions of, 63
empirical potential structure refinement models, 63
high probability of ethanoate anions, 63–64
ion–ion RDFs, 62, 62
molecular dynamics simulations, 63
spatial probability distributions, 62–63
structure of [C₂mim] [O₂CCH₃], 61–62

[EX₄]−, 357–358, 422
E = P, X = F
hydrogen bonding, 423–424
for imidazolium ionic liquids, 423
N-hydroxy, alkoxy and amino salts, 424
[PF₆]−ionic liquids, 422
volume-based thermodynamics methods, 423
E = Sb, As, Nb or Ta; X = F or Cl, 424–425
E = Sb, X = N₃, 425
[PF₆(C₂F₅)₃]−, 424
[EX₄]− or [EX₂Y₂]−, 353–356
E = As, X = N₃, 421
E = B, Al, Ga or In; X = Cl, 417–418, 418
E = B, X = CN, 421
E = B, X = F, 420–421
E = B, X = H, 421
[EO(OR)₃]−, E = Al or B, 419–420
[EX₄]− and [EX₂Y₂]−salts, 421
organoauminate and organoborate anions, 419, 419

eXtraction, 131–132

Felder/Hatake paddocks
ab initio methods, 87
Atomistic Polarisable Potential for Liquids, Electrolytes and Polymers, 86
Canongia Lopes and Pádua force field, 84–85
chronology, force field models types, 88
COIL-1 model, 85
effective force coarse-graining method, 86, 87
empirical potential structure refinement models, 85
self-consistent mean field theory, 86
self-diffusion coefficients, 87
transferability, 88
united-atom or all-atom parameterisations, 85, 87
Fick’s first law of diffusion, 27
fluorinated species, 19, 39, 42
fluoroalkoxyaluminates, 45
fluoroalkoxyborates, 44–46
force field development see Felder/Hatake paddocks
Fourier analysis, 16
Friedel–Crafts reactions
acylation, 115
alkylation, 114–115
aromatic carbonylation, 115–116
Fuoss–Kraus equation, 3
glucose: 1-alkyl-3-methylimidazolium ionic liquids
cation–anion RDF, 70
glucose-glucose RDF peak, 69
hydrogen bonding, 71
neutron diffraction and molecular dynamics simulations, 69
RDFs and three-dimensional probability distributions, 71
spatial probability distributions, 70, 70
Gouy–Chapman–Stern model, 156

halides
ammonium, phosphonium and sulfonium salts, 407–409
fluoride ion-containing ionic liquid, 408–409
heterocyclic bases, 344–349, 407
homologous series and side-chain effects, 411–413
in situ zone-melting technique, 408
imidazolium salts: effect of halide, 409–411
interhalides and polyhalides, 413–414
pseudohalides, 415–416
quaternary ammonium halide hydrates, 408
quaternary ammonium (and pyridinium) halides, use of, 408
rotator phases, 408
halogen-centred cations, 459–460
halometallate ionic liquids
acidic ionic liquid-catalysed cracking, hydrocarbons, 119
characteristic properties
chloroaluminate(III) ionic liquids, 112, 112, 112
formation, 111–112
Friedel–Crafts reactions, 114–116
industrial use, 113
oligomerisation and polymerisation carbocation formation, 118
cation formation, olefins, 118
Lewis acidic chloroaluminate(III) ionic liquids, 118
olefin, 118
polyisobutene synthesis, 118
synthetic lubricating oils, 119
refinery alkylation
acidic chloroaluminate(III) ionic liquids, 117
alkylates, 116
Bronsted acidic ionic liquid catalyst system, 118
cracking reactions, 117
isobutane alkylation, 117
isobutene/2-butene alkylation, 117
heterogeneity
alkyl chain-alkyl chain van der Waals interactions, 75, 76
neutron scattering data, 75
non-polar, non-charge bearing functional groups, 74
X-ray scattering, 75
heteronuclear Overhauser effect spectroscopy, 18–19
Hirshfeld surface analysis
cation–anion interactions, 290
[C₂mim][NMes₂], 289, 289
CrystalExplorer software, 290
1,5-dimethylbiguanide, 291
global intermolecular interactions, analysis of, 289
interionic interaction, 290
phosphonium salts, structures of, 291
HOESY experiment see heteronuclear Overhauser effect spectroscopy
imidazolium salts
alkylimidazolium salts, structure of, 448
1-alkyl-3-methylimidazolium salts, 449–451
cations, 374–381
C(2)–H by C(2)–CH₃, replacement of acidic 2-proton, 453
hydrogen bonding, role of, 453
iodide salts of 1-CₙH₂ₙ₋₁-2-methyl-3-benzylimidazolium, 454–455
methylene group, 454
X-ray crystallographic studies, 453–454
functionalised alkyl groups, 455–456
imidazolium ring, substitution in, 456–457
isomeric N-alkyl groups, 451
N-amino and N-hydroxyimidazolium salts, 457
N-silylated imidazolium salt, 457
phenyl group into side chain, introduction of, 451–452, 452
symmetrical dialkylimidazolium salts, 455
unsaturation into side chain, introduction of, 452–453
immobilisation, transition metal catalysts
organic-ionic liquid biphasic catalysis, 120–122
’solid catalyst with ionic liquid layer’ system, 125–129
’supported ionic liquid phase’ catalysis, 122–124
inorganic ionic liquids, 49–50
ionicity, 92
ionic liquid modelling see Eigenschaften/Seishitsu/properties
ionic liquids
charge transport processes, 2, 2, 10
classification, 1
dihydrogen, 45–46
dilute aqueous solutions
electrolyte concentrations, 3–4
Fuoss–Kraus equation, 3
ion pairing, effect, 3, 10
Nernst–Einstein relation, 2
Stokes–Einstein relation, 3
fundamental properties, 39
gas-like model, 5
high-temperature systems, 1, 5
hole-hopping mechanism, 10
hydrodynamic or Stokes’ radius, 7
ideal Walden plot, 5
imidazolium-based ionic liquids, 9, 9
molar conductivity of electrolytes, 4, 4–5, 7
molten salts, extension, 1
properties, variables, 40
and solutes, structure of benzene:1,3-dimethylimidazolium hexafluorophosphate, 68–69
glucose:1-alkyl-3-methylimidazolium ionic liquids, 69–71
heterogeneity in ionic liquid structure, 74–76
hydrogen-bonding molecules, 67
ionic liquid–solute interactions, 67
Lewis donor/acceptor ability, 66–67
‘liquid clathrate,’ 67
liquid–solute structural investigations, 67–68
1-methylnaphthalene:1-methyl-4-cyanopyridinium bis[(trifluoromethyl)-sulfonyl]amide, 72–74
PCl3/POCl3:1,3-dimethylimidazolium bis[(trifluoromethyl) sulfonyl]amide, 71–72
Stokes–Einstein equation, 7–9, 8
structurally characterised, 472–475
structures, 475–476
tetrakis(hexafluoroisopropoxy) aluminate(III), 45–46, 46, 47
theoretical diffusion coefficients, 6–7
viscosity effect, 4
Walden plots, 5, 6, 7
Walden rule, 5, 7
lanthanides, 48–49, 49
Larmor frequency, 14, 16, 17, 29
lattice potential energy ($U/kJ mol^{-1}$) vs. melting point
crystallographic data for 1:1 halide salts, 467, 468–471
crystallographic data for 1:1 salts, 465–467, 466–467
L-cystine, low-frequency Raman spectrum, 169, 169
Lewis acidic chloroaluminate(III) ionic liquids, 118
Lewis acidic ionic liquid $[C_3$ mim$]$[BF$_4$], 124, 124
linear solvation energy relationships, 213, 215
liquid–solid surfaces, 154
$[C_4$ mim$]$[BF$_4$] and $[C_4$ mim$]$[PF$_6$], 154–155, 157
$[C_4$ mim$]$[BF$_4$] interaction, silver surfaces, 158, 159
$[C_4$ mim$]$[PF$_6$], SFG spectra, 155, 155
surface orientation changes, cation and anion, 156, 156
electrochemical impedance spectroscopy, 156
hydrophilic surfaces, 155
$[NTf_2]$ anion, Al$_2$O$_3$/NiAl(110), 157, 158
silver NPs, 158
time-resolved IRAS and XPS, 157
vibrational Stark shift, 156
LSER see linear solvation energy relationships
magnetic ionic liquids
lanthanides in ionic liquids, 48–49, 49
multiply charged anions, 47–48
transition metal-based anions, 46–47, 47
magnetic resonance imaging
chemical shift contrast, 30
Larmor frequency, 29
motional contrast, 30
MR microimaging, 29–30
Rheo-NMR, 31
spin density contrast, 30
T_1 and T_2 relaxation times, 30
melting phenomena
 classical (high-melting) inorganic salts, 278
 computational methods and simulations, 279
 congruent process, 277
 enthalpy and entropy changes, 278
 Gibbs free energy, 278
 incongruent melting, 277
 liquid and crystalline state, 278
 melting points, comparison, 232–233
 model of bonding, 278–279
 non-congruent melting, 278
 polymorphism, 279–280
 pre-freezing, 277
 pre-melting phenomena, 276
 salts, stoichiometric composition, 277–278
 solid–solid phase changes, 279
 van der Waals or London dispersion forces, 279
 melting point estimation and prediction, 477–478
metal-containing ionic liquids
 anions
 five coordination, 395
 four coordination, 394–395
 metalloanionic ionic liquids, 334–336
 other complex anions, 396
 six coordination, 395–396
 three coordination, 393–394
 two coordination, 393
 complex cations, 332, 390–392
 group 1 metals
 melting points, 389
 structural characterisation, 331, 389–390
 lanthanide-and actinide, 333, 392–393
 wholly inorganic ionic liquids
 crystal structure, 330, 388
 lowest-melting entry, 387–388
 oxonium dihydrate nitrate salt, 388
 potassium and caesium salts, 388–389
1-methyl-4-cyanopyridinium
 bis[(trifluoromethyl)sulfonyl] amide
atom-specific partial RDFs, 65
ionic liquid-forming salts, 64
ion–ion partial radial distributions, 64, 64–65
neutron diffraction data and molecular dynamics simulations, 65–66
spatial probability distributions, 65
1-methylnaphthalene:1-methyl-4-cyanopyridinium
 bis[(trifluoromethyl)–sulfonyl] amide
cyanopyridinium ionic liquids, 72–73
neutron diffraction data, 73, 73
molecular dynamics, 55, 57
molecular modelling
 fluid-phase organisation see Struktur/Kōzō/structure
 force field development see Felder/Hatake paddocks
 ionic liquid modelling see Eigenschaften/Seishitsu/properties
Monte Carlo techniques, 55, 57
MRI see magnetic resonance imaging
 multiply charged anions and cations, 47–48, 340–343
 1,4-bis(1-butylimidazolium-3-ylmethyl)benzene bis(trifluoromethanesulfonate), 407, 407
 bis(4-amino-1,2,4-triazolium) 4-(carboxylatomethyl)–5-nitroiminotetrazolate, 406, 406
 3,3,5,5,7,7-hexaphenyltricyclo[2.2.1.02,6]heptaphosphan-3,5,7-trium tri(heptachlorodigallate), 407, 407
 lithium and silver, salts of, 405–406
 polyhalides, 405
 room-temperature ionic liquids, 405, 406
 tris(dimethylamino)sulfonium salt, 406, 406
Nernst–Einstein equation, 2, 26, 27
NMR see nuclear magnetic resonance spectroscopy
NOE see nuclear Overhauser effect
nuclear magnetic resonance spectroscopy
aprotonic ionic liquids, 13
gyromagnetic ratio, 14
kinetic data, 13
magnetic data imaging, 29–31
nuclear Overhauser effect, 17–19
nuclei-specific manipulation, 14
pulsed field-gradient see pulsed field-gradient NMR spectroscopy
quantitative spectroscopy, 13
relaxation, 14–17
structural determination technique, 13–14
variable multichannel potentiostat, 28–29
nuclear Overhauser effect chloroaalaminate ionic liquids, 18
2D NMR experiment, 18
fluorinated domains, 19
heteronuclear Overhauser effect spectroscopy, 18–19
liquid structure of macromolecules, determination of, 17–18
rotating-frame Overhauser effect spectroscopy, 18

oligomerisation and polymerisation
 carbocation formation, 118
cation formation, olefins, 118
Lewis acidic chloroaalaminate(III) ionic liquids, 118
polyisobutene synthesis, 118
synthetic lubricating oils, 119
organic–ionic liquid biphasic catalysis continuous, 120, 121
diffusion rate, 121
liquid–liquid biphasic reactions, 121, 122
multiphase reaction systems, 120
suitable catalyst phase properties, 120
organic reaction mechanisms
 activation energy, 210, 211
competing mechanisms
Diels–Alder reactions, 221–222
electron transfer reactions, 223–224
specific ionic liquids, 224–226
substitution/elimination, 220–221
unimolecular/bimolecular substitutions, 219–220
energy difference, equilibrium constant, 209
kinetic control, 210
rate controlling/rate determining step, 211
reaction intermediates, 211, 212
simple reaction energy profile, 210
solvent effects
activated complex,
[4-NO₂C₆H₄S(CH₃)₂]⁺ with dibutylamine reaction, 217
anionic nucleophiles, 214
arenediazonium salts, 218
chloride, 214
chloride (anionic nucleophile) with
[4-NO₂C₆H₄S(CH₃)₂]⁺ reaction, 217
Eyring analysis, 215
Hughes–Ingold rules, 213, 214, 216
hydrogen bonds, 214
Kamlet–Taft LSERs, 216
Kamlet–Taft polarity scales, 213
linear solvation energy relationships, 213, 215, 215, 216
nucleophilic substitution reactions, 213, 213
primary, secondary and tertiary amines, 214
pseudo-first-order conditions, 217–218
unimolecular substitution
reactions, 218
stabilisation changes, energy states, 211, 211, 212
transition state and starting materials, 210, 211
oxoanions, 350–352, 416–417
PCl₃/POCl₃:1,3-dimethylimidazolium bis[(trifluoromethyl) sulfonyl] amide, 71–72
PFG-NMR see pulsed field-gradient NMR spectroscopy
phosphates
 hexafluorophosphate anion, 40–41, 41
[NTf₂]⁻ anion, 41
perfluorinated alkyl chains, 42
tetrafluoro(oxalato)phosphate, 41, 41
tris(pentafluoroethyl)
 trifluorophosphate anion, 41, 41
plastic crystals, 476
pnictogen‐centred cations, 460
polymorphism, 476
active pharmaceutical ingredients (APIs), 282
anion dinitramide, \([N(NO_2)_2]^-\), 283
crystalline structural disorder, 281–282
1,3-dialkylimidazolium halides, 283
2,6-dimethylpiperidinium 2-hydroxythiobenzoate, 283–284
kinetic polymorph, 282
1-methyl-1-propargylpyrrolidinium chloride, 282–283
N-butylimidazolium group, 282, 282
plastic phases, 281
Raman spectroscopy and powder XRD, 283
single-crystal characterisation, 282
solid–solid equilibria, 281
thermochemical and spectroscopic techniques, 284
protonic ionic liquids
in aqueous solution, 330
carboxylic acids, salts from diprotonated piperazinium, 339
non-protonic carboxylate salts, 333
single-crystal studies, 336
2,4,6-trimethylpyridine, 336
(R)-ethanolammonium 3-chloromandelate, 386
ethanolammonium nitrate and ethylammonium nitrate, 381, 386–387
molecular co-crystallisation, 330–331
neutral components or solvates, 329
non-carboxylic weak acids, salts from N-protonation, 352
pseudohalides, energetic salts, 349, 352
proton acceptor and Bronsted acid, 321, 329
proton transfer, 331
recrystallisation, 330
salt formation, 331
strong acids, salts from carboxylic acids and strong protonic acids, phase behaviour, 352, 356, 358
high-melting oxonium salt, 362
[X(HX)_n] (X = Halide), salts of, 362
[Hmim][Br(HBr)_2], composition, 373
hydrogen bonding, 362, 364
pyridinium halide + hydrogen halide, 371
strong cation–anion hydrogen bonding, 373
triethylammonium salt, 362
protonic salts, 477
pulsed field-gradient NMR spectroscopy Brownian motion, 19, 20
3D and 4D experiments, 20
developments, 28–29
diffusion measurement issues convection and RF pulses, 22–23, 23
double stimulated-echo pulse sequence, 24
1H convective flow, 23–24, 25
minimising diffusion time, 23, 24
radiation damping, 24–25
diffusion time, 20
RF pulse, 20, 22
spin echo, 20, 20, 22
Stejskal–Tanner equation, 21, 21
stimulated spin-echo experiment, 20, 21
theories of diffusion Fick’s first law of diffusion, 27
molar conductivity, 25, 27
Nernst–Einstein equation, 26, 27
pyrrolidinium ionic liquids, 28
self-diffusion of ionic liquids, 26
Stokes–Einstein equation, 26
variation of ionicity ratio, 27–28
Walden plot, 26
pure ionic liquids, structure of 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl] amide, 60–61
1,3-dimethylimidazolium chloride, 57–59
1,3-dimethylimidazolium hexafluorophosphate, 59–60
1-ethyl-3-methylimidazolium ethanoate, 61–64
1-methyl-4-cyanopyridinium bis[(trifluoromethyl)sulfonyl] amide
pyridinium salts, 372–373
CN into N-alkyl group, 447
crystal engineering, hydrogen bonding, 445
cyano group and pyridine ring, 448
electron-withdrawing groups, 447
[(HOCH₂CH₂)py]Cl, 446
hydrogen bonding, 447
N-alkyl pyridinium ionic liquid, 445–446
N-substituted pyridinium compounds, 446
volume-based thermodynamics methods, 447
weakly coordinating carboranyl anion, 446

QSAR see quantitative structure activity relationships
quantitative structure activity relationships, 192, 196

radial distribution functions (RDFs), 56, 56
Raman spectroscopy
fast low-frequency, 167, 168
L-cystine, low-frequency, 169, 169
low-frequency region, 167
low-frequency Stokes/anti-Stokes, 166
microspectroscopy, 167, 168
‘picosecond Raman thermometer,’ 166
Raman scattering, 166
rotational isomerism see rotational isomerism
thermal diffusion dynamics, 175–180
vibrational spectroscopy, 166
water, ionic liquids, 180–184
‘red-edge’ effect, 93
refinery alkylation
acidic chloroaluminate(III) ionic liquids, 117
alkylates, 116
Bronsted acidic ionic liquid catalyst system, 118
cracking reactions, 117
isobutane alkylation, 117
isobutene/2-butene alkylation, 117
relaxation mechanism
Bloembergen, Purcell and Pound theory, 15
¹³C relaxation times, 17
gyromagnetic ratio, 16
interaction, types of, 15
longitudinal or spin-lattice (T₁), 14–15
measurements, 17
transverse or spin-spin (T₂), 14–15
Vogel–Fulcher and Tammann equation, 16
reverse Monte Carlo (RMC), 57
Rheo-NMR, 31
ROESY see rotating-frame Overhauser effect spectroscopy
room-temperature ionic liquid mixtures
ATR-IR absorption and Raman spectroscopy, 154
[C₄mim]⁺ cation reorientation, 153, 153
[C₄mim][PF₆], 152
hydrophobic ionic liquids, 152
non-polar interfacial layer model, 152, 153
water-miscible ionic liquids, 153
rotating-frame Overhauser effect spectroscopy, 18
rotational isomerism
aliphatic interactions, 172
[C₄mim][Cl] crystal, melting process, 172, 173
crystal polymorphs, 170, 171
Raman spectra, 172
trans/gauche intensity ratio, 173, 174
trans/gauche rotational isomerism, 169
trans-trans isomer, 171

SCILL see solid catalyst with ionic liquid layer system
SCMFT model see self-consistent mean field theory model
SE see spin echo
self-consistent mean field theory model, 86
silicon-, sulfur-and arsenic-containing heterocycles, salts of, 383, 385
2-amino-5-butyl-4-methyl-1,3-thiazol-3-ium nitrate, 464, 464
9-aza-9-methyl-1-thionabicyclo[3.3.1] nonane triiodide, 464, 464
1,6-diarsa-2,5,7,10-tetrahtiatricycloc
[5,3.0,15.0,10]decane
di(tetrachlorogallate), 465, 465
1,3-dichloro-1,2,3,4-tetacyclohex-
yltetrathosphetane-1,3-diium
bis(heptachloro digermanate), 464, 465
1,3-dimethyl diaza-2-arsenanium
tetrachlorogallate, 464, 464
1,3-dimethyl-1,3-diaza-2-
phospholidinium
tetrachlorogallate, 464, 465
[(-)-(1S,3S)-trans-
3-acetoxy-1-
methylthiacyclobane][ClO4],
structure of, 463–464
SILP see supported ionic liquid phase
catalysis
simple molten salts, structure of
alkali halides, 56
molten NaCl RDF, 56, 56
neutron diffraction data, 56, 56–57
solid catalyst with ionic liquid layer
system
activity and selectivity, 125
large-scale production and
characterisation, 129
materials, 125
regioselective hydrogenation,
citral, 126
Ru/[Al2O3]/[cation][NTf2], 127
silica-supported platinum
catalysts, 127
vs. SILP, 128
supported palladium catalysts, 126
X-ray absorption spectroscopy
characterisation, 127
X-ray photoelectron spectroscopy
measurements, 126
specific ionic liquids, 224–226
spin echo, 20, 20, 22
STE experiment see
stimulated spin-echo
stimulated spin-echo, 20, 21
Stokes–Einstein equation, 3, 7–9, 8,
10, 26
Struktur/Közö/structure, 89
aromatic cations, 90
charge ordering, 96
charge-transfer complexes, 94
COIL-1, 92
dipolar solutes, 93–94
DLVO-type forces, 95
electroneutrality, 89
heterogeneous liquid-phase
structures, 95
hydrogen-bond or π-interactions,
89–90
immiscible moieties, 90
ionicity, 92
mesoporous nanomaterials, 92
molecular dynamics simulation, 90, 91
nanostructuring, 92
neutron diffraction studies, 92
non-polar alkyl chains, 94
non-polar side chains or moieties, 90
pre-peaks, protic ionic liquids, 95
protic ionic liquids, 93
solvation dynamics, 93
spectroscopic studies, 93
structural heterogeneities, 93, 96
ultrasonic and microwave
spectroscopy, 95
vibrational relaxation, probe
coupling, 95
substance of high concern, 193
substitution/elimination
reactions, 220–221
sulfonates, [-RSO3]−
alkyl- and arylsulfonates, 363–364, 436
fluoroalkysulfonate salts, 435
methanesulfonate salts (R = CH3), 435
trifluoromethanesulfonate salts
(R = CF3), 433–435, 434
supported ionic liquid phase catalysis
advantages, 122
capillary forces and Coulombic
interactions, 122–123
continuous gas-phase processes, 123
ionic liquid film distribution, 123
large-scale production and
characterisation, 129
Lewis acidic ionic liquid [C2mim][Cl–
AlCl3], 124
mass transfer influences, 122
vs. SCILL, 128
silica support materials, 124
SVHC see substance of very high
concern
thermal diffusion dynamics
bulk thermal diffusion, 178
C=C stretch peak position, \(S_1 \) trans-stilbene \(v.s. \) temperature, 175, 175
energy transfer, 175
micro/macro inconsistency, 178
molecular liquids, 176
\(S_1 \) trans-stilbene
cooling kinetics, 179, 179–180
picosecond peak position change, 176, 176
vibrational cooling process, 176, 177
two-step thermal diffusion, 178
transition metal nanoparticles, 130
tris(pentafluoroethyl)trifluorophosphate anion [FAP], 41, 41

unimolecular/bimolecular substitutions, 219–220

variable multichannel potentiostat, 28–29
VBT see volume-based thermodynamics approach
VFT see Vogel–Fulcher and Tammann equation
vibrational spectroscopy
advantage, 146
air-liquid interfaces see air-liquid interfaces
chemical functional groups, 146
energy level transitions, 147
high-resolution electron energy loss spectroscopy, 147
liquid–solid surfaces see liquid–solid surfaces
maximum interaction (absorption), 146
photon-based techniques, 147
room-temperature see room-temperature ionic liquid mixtures
sum-frequency generation spectroscopy, 147, 148
vibrational peaks, 147
viscosity effect, 4
VMP see variable multichannel potentiostat
Vogel–Fulcher and Tammann equation, 16
volume-based thermodynamics approach, 285–289, 471
Coulombic, 286
formalism, 285–286
lattice enthalpy, 287
linear polyatomic ions, 287–288
melting and crystallisation, 285
\(N \)-aminoazolium and \(N,N' \)-diaminoazolium chlorides, 288–289
non-linear polyatomic ions, 287, 288
X-ray crystallographic cell volumes, 286
X-ray crystallographic data, 288

Walden rule, 5, 7
water, ionic liquids
anions, ionic liquid–water interactions, 180
\(1\)-(butylnitrile)-3-methylimidazolium halide, 181
gauche and trans conformation, 182
hydrophilic/hydrophobic nature, 180
\([\text{NCC}_3\text{mim}]\text{Cl.H}_2\text{O}\), 183
NIR Raman spectroscopy, \([\text{NCC}_3\text{mim}]\text{I}\), 181, 181
quantitative analysis, Raman spectra, 183, 184

X-ray absorption spectroscopy characterisation, 127
X-ray photoelectron spectroscopy measurements, 126