Index

Note: Italicized page locators indicate a figure/photo; tables are noted with a t.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia gum</td>
<td>221</td>
</tr>
<tr>
<td>Acacia senegal trees, gum arabic from</td>
<td>221, 223</td>
</tr>
<tr>
<td>Acacia seyal trees, gum arabic from</td>
<td>221, 222</td>
</tr>
<tr>
<td>Acid degradation, processing conditions for bakery fillings and</td>
<td>84</td>
</tr>
<tr>
<td>Acidity, low, salad dressings and</td>
<td>31–32</td>
</tr>
<tr>
<td>Acids</td>
<td>180t</td>
</tr>
<tr>
<td>food-grade</td>
<td>180t</td>
</tr>
<tr>
<td>restructured foods and</td>
<td>179–180</td>
</tr>
<tr>
<td>Actomyosin, meat proteins and</td>
<td>37</td>
</tr>
<tr>
<td>Acylation, gellan gum and</td>
<td>100</td>
</tr>
<tr>
<td>Adaptability, future, supplier evaluation and</td>
<td>304–305</td>
</tr>
<tr>
<td>Added ingredient (AI) cured pork, carrageenan and</td>
<td>40, 41</td>
</tr>
<tr>
<td>Additives, functional hydrocolloid blend and</td>
<td>264–265</td>
</tr>
<tr>
<td>Adipic acid, restructured foods and</td>
<td>180, 180t</td>
</tr>
<tr>
<td>Aerated crème fillings</td>
<td>94–95</td>
</tr>
<tr>
<td>carboxymethylcellulose in</td>
<td>94–95</td>
</tr>
<tr>
<td>foam stability and structure for</td>
<td>68</td>
</tr>
<tr>
<td>Aerated yogurts</td>
<td>148</td>
</tr>
<tr>
<td>Agar</td>
<td>2</td>
</tr>
<tr>
<td>in bakery fillings</td>
<td>99–100</td>
</tr>
<tr>
<td>commercial sources of</td>
<td>99</td>
</tr>
<tr>
<td>flavor protection and</td>
<td>216</td>
</tr>
<tr>
<td>heat treatment, bakery fillings and</td>
<td>85</td>
</tr>
<tr>
<td>high cost of</td>
<td>99</td>
</tr>
<tr>
<td>in low protein cheese</td>
<td>163</td>
</tr>
<tr>
<td>temperature and</td>
<td>3</td>
</tr>
<tr>
<td>Aging bath, for restructured pimiento strip formulation</td>
<td>187t</td>
</tr>
<tr>
<td>Air incorporation, avoiding, in salad dressings</td>
<td>21</td>
</tr>
<tr>
<td>Albumin, flavor protection and</td>
<td>216</td>
</tr>
<tr>
<td>Alginate gelation</td>
<td>175</td>
</tr>
<tr>
<td>egg box model for</td>
<td>175, 175</td>
</tr>
<tr>
<td>restructured foods and</td>
<td>180–186</td>
</tr>
<tr>
<td>combination setting</td>
<td>184–196</td>
</tr>
<tr>
<td>diffusion setting</td>
<td>180–182</td>
</tr>
<tr>
<td>internal setting</td>
<td>182–184</td>
</tr>
<tr>
<td>techniques, summary of</td>
<td>213</td>
</tr>
<tr>
<td>Alginate gum, in pizza dough</td>
<td>66</td>
</tr>
<tr>
<td>Alginate(s)</td>
<td>3</td>
</tr>
<tr>
<td>in acid pH gel system</td>
<td>204t</td>
</tr>
<tr>
<td>in bakery fillings</td>
<td>90–92</td>
</tr>
<tr>
<td>propylene glycol alginate</td>
<td>92</td>
</tr>
<tr>
<td>sodium alginate</td>
<td>90–92</td>
</tr>
</tbody>
</table>
Index

Alginates, (Cont.)
- chemical structure differences with, 258
- coacervation and, 235
- concentration/viscosity curves for, 174
- in cream fillings, 79
- flavor stabilization and, 223
- in muscle foods, 47–48
- in restructured foods
 - blackcurrants formulation, 192
 - brawn formulation, 198
 - carrot formulation, 196
 - cherry formulation, 209
 - chicken pieces formulation, 195
 - fish formulation, 190
 - internal set peach formulation, 206
 - meat burger formulation, 199
 - onion ring formulation, 189
 - pimiento strip formulation, 187
 - potato formulations, 203
 - salmon formulation, 195
 - source, chemistry, and properties of, 171–174
- starch vs., in pie fillings, 12
- Alginate solution, shear
 - rate/viscosity curves for, 174
- Alginate solution viscosity, degree of polymerization and its effect on, 173
- Algin-based stabilizers, in frozen dairy desserts, 111
- Algic acid
 - structure of, 172
 - structure of alginate segments containing, 171
- Alkaline phosphates, addition of, to meat products, 36–37
- Amidation, gelling properties of pectins and, 144
- Amorphophallus spp., 95
- Amorphous silicas, for flavor protection, 226
- Amylopectin, 144, 217, 218
- Amylose, 217, 218
 - high, components and properties of, 219
- Analogue cheese, 163
- Animal fat, availability of, across regions, 35
- Anticompetitive practices, 281
- Apparent viscosity, 258
- Appearance
 - grade differentiation and properties of, 262
 - gums substituted for starches and, 13
- hydrocolloid functionality and, 7–8
- Application hydrocolloid blend, 263, 269, 270
- Aqueous syneresis, gum levels and increase of, 7
- Ascophyllum nodosum, M/G
 - contents and ratios for alignates from, 172
- Ash content, in carrageenan, 39
- Asian companies, semicompetitive era of hydrocolloid history and, 249
- Atkins diet, 105
- Baked goods, instant, flavor coacervates and, 235
- Bakery fillings
 - cellulose derivatives in, 92–101
 - agar, 99–100
 - carboxymethylcellulose or cellulose gum, 94–95
 - carrageenan, 98–99
 - gellan gum, 100–101
 - konjac gum, 95–96
 - methylcellulose, 93–94
Index

microcrystalline cellulose, 95
xanthan gum, 96–98
commercial, processing and quality attributes of, 71–74
cream-based, 67
crème, 78–80
formulation for, 79
procedure, 79–80
uses for, 78–79
egg-based, 67
factors affecting filling stabilization, 81–85
pH, 82–83
water activity, 81–82
water and solids content, 83–84
fat-based, 67
filling types, 69–70, 74–81
bakery crème fillings, 78–80
custard filling, 76–77
fruit fillings, 69–70, 74–75
key lime pie filling, 78
lemon custard filling, 77–78
nut pie fillings, 78
pumpkin pie fillings, 75–76
toaster pastry and snack bar fillings, 80–81
fruit-based, 67
gums used in, 86–101
alginites, 90–92
guar gum, 87–88
locust bean gum, 86–87
pectin, 88–90
hydocolloids in, 67–105
processing techniques and, 67
shelf life requirements and, 68
problems with, 101–105
boil out, 102–103
cracking, 101–102
emulsion separation, 104
freeze/thaw stability, 104
shrinkage, 103
sogginess of pastry, 104–105
processing conditions, 84–85
available shear, 84–85
heat treatment, 85
proper balance of ingredients in, 68–69
research need, 105
storage time/conditions, 85
unstabilized and stabilized with locust bean gum, 101
Bakery products
hydocolloids in, 51–66
gums in bread, 53–55
gums in cake, 55–56
gums in cornbread muffins, 63–65
gums in egg pasta, 58–60
gums in flour tortillas, 56–58
gums in pancakes, 60–63
gums in pizza dough, 66
gums in reduced oil flour tortillas, 58
optional nonbaked fried cornbread, 65–66
Batch freezing, of frozen dessert mixes, 139
Batch pasteurization
for frozen dessert mixes, 135
HTST pasteurization vs., 136–137
Bater, B., 39
Beef, internal set, 200, 200t. See also Meat; Muscle foods
Beeswax, flavor protection and, 216
Beginnings era of hydocolloid history, 245–246
pricing and, 274
Benchtop product development, hydocolloids and, 13–14
Berries. See also Blackcurrants; Cherries
solid and liquid-centered, 190–191
apparatus for, 191
Index

Bidding for accounts, 285
Bid pricing, advantages/disadvantages of, 283–284
Biopolymers, characterization of, on basis of degree of activity, 37

Blackcurrants
solid and liquid-centered, 191
restructured formulation, 192

Blends, grade differentiation and, 262–263
Boil out, bakery fillings and, reasons for, 102–103
Bovine spongiform encephalopathy, gelatin concerns and, 147
Brabender extruder, 238
Bread
basic formulation for, 54
gums in, 53–55
preparation of, 54–55
Brie, 141
Brown seaweed
alginates and alginic acid in, 171
M/G contents and ratios for alginates from, 172
worldwide harvesting of, 172
Burger-type products, restructured, 199–200
Buttermilk, cultured, 152–154
Buttermilk for baking, defined, 152
Buyouts, 284

Cake
basic formulation for, 56
gums in, 55, 55
preparation of, 56
Calcium
in restructured brawn formulation, 198
in restructured carrot formulation, 196
in restructured chicken pieces formulation, 195
in restructured meat burger formulation, 199
in restructured potato formulations, 203
sequestrants and, 3
Calcium acetate, 5
Calcium alginate, 171, 175
Calcium carbonate, gel set time, solubility and, 48
Calcium chloride, 5
gel set time, solubility and, 48
Calcium salts
acid pH system and choice of, 181
internal setting systems, 181
restructured foods and formula, molecular weight, solubility g/100mL, and pH, 177
types of, 176
Calcium sequestrants, restructured foods and, 178–179
Calcium sulphate, in neutral pH internal setting systems, 192
Calcium sulphate dehydrate in internal set beef formulation, 200
in restructured egg formulation, 193
Calcium sulphate dihydrate, in neutral pH systems, 182
Calorie reduction, bakery fillings and, research needs, 105
Calories, limiting, hydrocolloid dressing stabilizers and, 24–25
Canada
cheese standards in, 162
cottage cheese regulations in, 157
cream cheese regulations in, 158
Index

reduced fat sour creams in, 155
salad dressings marketed in, 19
sour cream regulations in, 154
Canned fruit fillings, 68
Canned pie fillings, processing and
quality attributes of, 71–74
Capric acid, flavor protection and,
216
Carboxymethylcellulose
in bakery fillings, 94–95
for flavor protection, 224
grades of, 94
structure of, 94
viscosity of
at different concentrations in
water viscosity, 260
range for, 260
Caring, supplier evaluation and,
303–304
Carnauba wax, flavor protection and,
216
Carpenter, R. N., 163
Carrageenan, 3
in application blends, 269
ash content in, 39
in bakery fillings, 98–99
benefits of, in meat products, 40
in buttermilk, 153
in cheeses, 162
chemical structure differences,
258
commercial sources of, 98
composition of, in meat
processing, 38–39
cook yield as affected by
concentration of, 42
in cottage cheese, 158
cracking prevention in bakery
fillings with, 101
in cream fillings, 79
cured pork and, 40, 41
in custard filling, 77
derivation of functionality with, 41
for flavor protection, 224
for flavor protection and, 216
flavor stabilization and, 223
gelling characteristics of, 39–40
in ham, 45
heat treatment, bakery fillings and,
85
in meat products, 42–43
types of, 38
micrograph of, in cooked meat and
fully hydrated in water, 41
moisture retention as affected by,
44
moisture to protein ratios and, 43
potassium chloride addition and
effect on functionality of, 40
in process cheese products, 160,
161
process yields as affected by, 43
in Ricotta cheese, 159
in roast beef, 45–46
in seafood, 46–47
in sour cream, 155, 156
for stabilizing pumpkin pie, 76
structure of, 98
temperature and, 2
ten percent fat ice cream, with
MCC/CMC stabilizer with,
122
transparent versions of, 7
in turkey breast, 44–45
types of, 98
in yogurt, 144
Carrageenan gum blend, in egg
pasta, 59
Carrots, restructured, 196–187, 196
Carver Laboratory Press, 227
Casein, flavor protection and, 216
Cations
dissolving hydrocolloids and
influence of, 2–3
Cations (Cont.)
gelling hydrocolloids and
influence of, 4–5
gum functionality and control of, 13, 14
Caviar, artificial, 191
Cellulose
abundance of, 92
derivatizing, 92–93
flavor protection and, 216
Cellulose derivatives
in bakery fillings, 92–101
agar, 99–100
carboxymethylcellulose or
 cellulose gum, 94–95
carrageenan, 98–99
gellan gum, 100–101
konjac gum, 95–96
methylcellulose, 93–94
microcrystalline cellulose, 95
xanthan gum, 96–98
flavor stabilization and, 223
Cellulose gum
in bakery fillings, 94–95
in coacervation, 235
in frozen dairy desserts, 111
Ceratonia siliqua, 86
Cereals, flavor coacervates and, 235
Certification
supplier evaluation and, 293–294
three-point scale for, 294
CFR. See Code of Federal
Regulations
Cheddar cheese, 160, 161, 162
Cheese
alternatives, 163
cheddar, 160, 161, 162
cold pack cheese food, 161, 162
 t
cottage cheese, 156–157, 158
 t
cream cheese and Neufchatel
 cheese, 158–159
imitation or analogue, 163
melting properties of, 160
Mozzarella, 161, 163
nacho cheese sauce, 161, 162
nonstandardized soft unripened,
 159–160
pasteurized process spread, 161,
 162
process products, 160–161
reduced fat, hydrocolloids in, 162
shredded, 163
slices on chill roll, 163
texture in, 141–142
varieties of, 161–164
Cheese sauces, 161
Cheese spread, pasteurized process,
 142
Chelators, in salad dressings, 20
“Chemical” emulsifiers, in salad
dressings, 21
Chemical structure
grade differentiation and, 257–258
selected hydrocolloid chemical
structure differences, 258
Cherries, restructured, 208–210
Chewing gum, flavor coacervates
and, 235
Chicken pieces, restructured,
 194–195
China
 competitive era of hydrocolloid
history and, 251–253
 as major hydrocolloid supplier,
 251
Citrates, 3
Citric acid, 180
restructured foods and, 179
Citrus oils, extrusion process and,
 234
Clarity of communications
supplier evaluation and, 294–296
failure to keep logistical,
technical service, and
Index

product quality commitments, 295
lack of experience and organizational skills, 295
ingrating, 296
spoken language skills, 294–295
written language skills, 295
Clean in place (CIP) system, hydrocolloids use and, 17
“Clean labeling,” 213
CMC. See Carboxymethylcellulose
CMC gum, 52
in bread, 53
in cake, 55
in flour tortillas, 56
in pancakes, 60, 61
in pizza dough, 66
Coacervation
defined, 234
process of, 234–235
Code of Federal Regulations, 219
Cold pack cheese food, 142
example formulas for, 162
Colloid mills, for making salad dressings, 21
Color(s)
hydrocolloid functionality and, 7–8
maintain/impart, hydrocolloid dressing stabilizers and, 24
in salad dressings, 20
Combination setting
for restructuring food using alginates, 184–186
acid conditions, 185–186, 186
neutral conditions, 185, 185
Combination setting–acid pH, 208–210
restructured cherries, 208–210
Combination setting–neutral pH, 206–208
restructured petfood chunks
formulation, 206–207
system for, 207–208
Commodity, defined, 253
Commodity era of hydrocolloid history, 253
pricing and, 274
Commodity-type ingredients, supplier selection and, 244
Communication with supplier
clarity of, 294–296
ease of, 296
Competitive era of hydrocolloid history, 251–253
pricing and, 274
Compounded flavors, 216
Confidentiality agreements, 300
Conventional continuous freezing, of frozen dessert mix, 139
Cookie fillings, processing and quality attributes of, 73–74
Coprocessed combinations of hydrocolloids, 268
Corn
common, components and properties of, 219
in meat products, 38
waxy, components and properties of, 219
Cornbread muffins, fried gums in, 63–65, 64
basic formulation, 64
preparation of, 64–65
Cornbread muffins, nonbaked fried gums in, 65, 65–66
preparation of, 66
Costs
gums substituted for starches and, 13
multiple gums in formulation and, 10
viscosity grades of hydrocolloids and, 11
Index

Cottage cheese, 142, 156–157
dressing formulas in, 157
dressing of nonfat and 4% fat,
example formulas for, 158t
dry curd, standard of identity for,
157
production of, 156–157
Course emulsion dressings,
assembling salad dressings
and, 22
Crab leg analogues, carrageenan and,
46
Cracking, of bakery fillings, 101,
101–102
Cream cheese, 142, 158–159
production methods for, 158–159
regulations for, 158
spreadable, 141, 159
Cream fillings, pH and, 83
Cross-linking, yogurt and, 145
Cryogenic freezing, frozen dessert
mix, 140
Crystallization of fat, frozen dairy
desserts and, 139
Cultured buttermilk, 152–154
low-fat and, example formulas for,
153t
related products, 153–154
viscosity of, 153
Cultured dairy products. See also
Frozen dairy desserts
formulas for cultured low-fat
buttermilk and cultured
buttermilk, 153t
formulas for nonfat, light, and
regular sour cream, 156t
formulation and processing
parameters for drinkable and
spoonable low-fat yogurts,
152t
hydrocolloids in, 141–164
cottage cheese, 156–157
cream cheese and Neufchatel
cheese, 158–159
cultured buttermilk, 152–154
drinkable yogurt and smoothies,
149–151
nonstandardized soft unripened
cheeses, 159–160
other cheese varieties, 161–164
process cheeses products,
160–161
sour cream, 154–156
yogurt, 142–149
range of, 141
Cultures, contribution of, in cultured
dairy products, 141
Curd manufacture, for cottage
cheese, 157
Custard filling, 76–77
formulation for, 77
French, 76
preventing curdling in, 76
procedure, 77
Customer control, supplier control
vs., composite factors in
hydrocolloid pricing and, 276
Customers
hydrocolloid pricing and what is
known by, 279–280
not intentionally antagonizing
suppliers and losing out on
best prices, 284–286
single most important lesson of
hydrocolloid history and, 275
supplier
caring/responsiveness/respect
toward, 303–304
supplier costs and influence of,
286
supplier gimmicks, price increases
and, 280–281
technical support for, 297–299
Cyamopsis tetragonoloba, 87
Index

Dairy flavors, 216
DE. See Degree of estrification
Deception, 301
Degree of estrification, pectin and, 89
Dessert yogurts, 148
Dextrose, for plating flavors, 223
Diabetes, bakery fillings and, research needs, 105
Dicalcium phosphates, 5
Diffusion set products, 186–192
advantages and disadvantages of, 192
restructured fish, 189–190
restructured onion rings, 188–189
restructured pimiento strip, 186–188
solid and liquid-centered cherries, 190–191
summary of settings, 191–192
Diffusion setting method
for restructuring food using alginites, 180–182
in acid conditions, 181–182, 182
in neutral conditions, 180, 181
Diglycerides, flavor protection and, 216
Dipotassium phosphate, 3
Direct set processing, for sour cream, 156
Disodium phosphate, 178t, 179
Dispersing/hydrating equipment, frozen dairy desserts and
dispersion of stabilizer without, 131
Dispersion funnel, frozen dairy desserts and dispersion of
stabilizer, 132
Dissolving hydrocolloids
cations and, 2–3
mesh size and, 1–2
temperature and, 2
Dixie agitated premix tank, 21
Doughnut fillings, 68, 78–80
Drake, M. A., 162
Dressing formulas, cottage cheese, 157
Drinkable yogurts, 148, 149–151
ingredient statements in, 151
low-fat, formulation and
processing parameters for, 152
standards related to, 149
viscosities of, 149
Dry blending, of stabilizer for frozen dairy desserts, 131
Dry mix salad dressings, 19, 23
DSP. See Disodium phosphate
Dusting problems, checking,
hydrocolloids use and, 17
Ease of communication, supplier evaluation and, 296
Ecklonia cava, M/G contents and ratios for alignates from, 172
Economic conditions, meat products and, 35
EDTA. See Ethylenediaminetetraacetic acid
Egg box model, for alginate gelation, 175, 175
Egg pasta
basic formulation for, 60
 gums in, 58, 58–59
preparation of, 60
Egg products, restructured, 193–194
Emulsifiers
in buttermilk, 153
in cottage cheese, 158
in frozen dairy desserts
appropriate use of, 111–112
overuse of, 113, 114
Index

Emulsifiers (Cont.)
stabilizers used with, 109
typical use levels in, 113
in salad dressings, 20
in sour cream, 156
Emulsifying salts, in cheeses, 162
Emulsion separation, in bakery fillings, 104
English language skills, clarity of communications, supplier evaluation and, 294–295
Escherichia coli, 286
Essential oils, 215
Ethics, supplier evaluation and, 301–302
Ethylenediaminetetraacetic acid, in salad dressing, 21
European companies, semicompetitive era of hydrocolloid history and, 249, 250
Extracts, 215
Extruded novelty freezing, frozen dessert mix, 139
Extrusion for flavor encapsulation, 232–234 examples, 238–240 controlled release encapsulation compositions, 238 encapsulation composition, 240 encapsulation matrix composition, 238 fixation of volatiles in extruded glass substrates, 238 particulate flavor compositions and process to prepare same, 239 preparation of solid essential oil flavor composition, 238 process for preparation of granules for controlled release of volatile compounds, 240 solid delivery systems for aroma ingredients, 239 solid essential oil flavor encapsulation, 238 Fat destabilization technique, for ice cream and frozen desserts, 117–118 Fat percent, for ice cream and frozen desserts, 115 Fats and fatty acids, flavor protection and, 216 Fenugreek gum, 52 in bread, 53 in cake, 55 in egg pasta, 58, 59 in flour tortillas, 56, 57 in fried cornbread muffins, 63 in nonbaked fried cornbread, 65 in pancakes, 60, 61 in reduced oil flour tortillas, 58 Fiber, dietary, in yogurt, 148 Fish, restructured, 189–190 Fish eggs, artificial, 191 Fisheyes, frozen desserts, defined, 129 Flavor encapsulation formulations, 237 spray-dried flavors, 237 spray-dried orange drink mix, 237 spray-dried orange oil formula, 237 Flavorings in salad dressings, 20 in yogurt, 142 Flavor matrix, correct choice of, 216 Flavor modifiers and enhancers, 216 Flavor(s) classification of, 215–216
Index

321

Index

- gums used for protection of, 224–225
- hydrocolloid functionality and, 8
- hydrocolloids and protection of, 216
- web sites, 235, 236
- hydrocolloids used for, 217–223
- gums and modified gums, 221–223
- modified starches, 217–219, 221
- ingredient groups for protecting, 216
- methods of stabilizing and protecting, 223–235
 - coacervation, 234–235
 - encapsulation through spray drying, 227–231
 - extrusion, 232–234
 - plating, 223, 226–227
- stabilizing and protecting, 215–240
- challenges related to, 215

Flour tortillas
- basic formulation for, 57
- gums in, 56, 57
- preparation of, 58
- reduced oil, gums in, 58

Foam generation, frozen dairy desserts and, low fat/nonfat mixes, 128–129

Food applications
- defined, 299
- semicompetitive era of hydrocolloid history and, 250

Food application tests, product quality and, 293

Food safety concerns, meat products and, 35

Formula descriptors, for ice cream and frozen desserts, 115–119

Formula development, for ice cream and frozen desserts, 119–120

Formula examples, for ice cream and frozen desserts, 120–127

Formulation, 195
- process of, 196

France, yogurt standards in, 142

Free-fat method, fat destabilization technique vs., in ice cream and frozen desserts, 117

Free fat percent, for ice cream and frozen desserts, 117

Freeze/thaw stability, in bakery fillings, 104

Freezing methods, for high quality frozen desserts, 139–140

Freezing point, for ice cream and frozen desserts, 116

Freezing point depression index, 116

French custard filling, 76

French fries, 201

French salad dressing, 20
- formula/procedure for, 27–28
- typical pourable, 27

Frozen dairy desserts. See also Cultured dairy products
- 5.71% fat no sugar added light ice cream galactomannan stabilizer with emulsifier, 124

- formula descriptors, 115–119
 - destabilization %, 117-118
 - fat %, 115
 - free fat %, 117
 - freezing point, 116
 - milk solids %, 116
 - mix viscosity, 119
 - MSNF or NMS %, 116
 - natural serum solids %, 116
 - overrun %, 118
 - relative sweetness, 118
 - solid fat index, 118
Index

Frozen dairy desserts (Cont.)
- soy solids not fat, 118
- sucrose equivalence, 116–117
- total solids %, 116
- total soy solids, 119
- whey solids %, 116
- formula development, 119–120
- formula examples, 120–127
- freezing methods, 139–140
- hydrocolloids in, 109–140
- role of, 109–112
- ingredient system suppliers for, 114
- lactose-free soy frozen desserts, 126
- limiting amount of unfrozen water in, 110
- multicomponent systems, stability of price and supply, 114
- processing, 127–140
- checklist for dispersion and hydration of stabilizers in mixes, 134–140
- dispersion of stabilizer in liquifier/blender, 133–134
- dispersion of stabilizer using dispersion funnel, 132
- dispersion of stabilizer using tri-blender, 132–133
- dispersion of stabilizer without dispersing/hydrating equipment, 131
- product handling problems, 110
- representative levels of hydrocolloids and emulsifiers in categories of stabilizer blends, 112
- sequencing of dry ingredient incorporation into water, milk, skim milk, soymilk, or condensed milk for, 129–130
- soft serve side of, exception to normal aging process, 139
- stabilizers used with emulsifiers in, 109
- ten percent fat ice cream with MCC/CMC stabilizer with carrageenan, 122
- total raw mix preparation for HTST system, idealized example, 130–131
- 12.25% fat low net carb ice cream, galactomannan stabilizer with emulsifier, 125
- twelve percent fat ice cream with sodium alginate stabilizer, 121
- two percent fat soft serve frozen yogurt, galactomannan stabilizer with emulsifier, 123
- typical use levels for selected hydrocolloids and emulsifiers in, 113
- Frozen dessert, use of term in text, 114
- Frozen dessert mixes
- checklist for dispersion/hydration of stabilizers in, 134–135
- freezing process, methods of, 139–140
- pasteurization and homogenization methods and, 135
- reconstituted, 139
- Frozen pies and desserts, processing and quality attributes of, 73
- Frozen yogurt, two percent fat soft serve, galactomannan stabilizer with emulsifier, 123
- Fructose, for plating flavors, 223
Index 323

Fruit
 internal set–acid pH, system for, 205
 internal set–neutral pH, system for, 197
 in internal set peach formulation, 206t
 in restructured blackcurrants formulation, 192t
 in restructured cherry formulation, 209t
Fruit fillings, 69–70, 74–75
 favorite types of, 69
 formulation for, 75
 procedure for, 75
 sugar-starch stabilizer systems and, 74
Fruit flavors, 216
Fruit pies
 fillings for, 68
 restructured fruit in, 169
Fruit roll, 166
Functional blend hydrocolloid category, 263t, 264–267, 269
Future adaptability, supplier evaluation and, 304–305
Galactomannan-based stabilizer/emulsifier, in frozen dairy desserts, 112
Galactomannans
 in buttermilk, 153t
 in cheeses, 162t
 in cottage cheese, 157, 158t
 flavor protection and, 216
 flavor stabilization and, 223
 in sour cream, 156t
Galactomannan stabilizer with emulsifier
 5.71% fat no sugar added light ice cream with, 124t
 12.25% fat low net carb ice cream with, 125t
 two percent fat soft serve frozen yogurt with, 123t
Galactose content, of locust bean gum, 87
G-blocks, alginate in muscle foods and, 47
GDL. See Glucono-delta-lactone
Gelatin
 in cheeses, 162t
 coacervation and, 234
 commercial sources of, 146
 for flavor protection, 216, 224t
 flavor stabilization and, 223
 in frozen dairy desserts, 111
 gel strengths of, 147
 in sour cream, 155, 156t
 in spoonable yogurts, 146–147
 temperature and, 3
 in yogurt, 143
Gelidium agar, gel strength for, 99
Gellan gum, 3
 acylation and, 100
 in bakery fillings, 100–101
Gelling agents, restructured foods and, choice of, 170
Gelling characteristics, of carrageenan, 39–40
Gelling gums, bakery fillings and, 85
Gelling hydrocolloids
 cations and, 4–5
 temperature and, 3–4
Gel properties, grade differentiation and, 259–261
Gel set time, alginate and, control of, 48
Gel strength, 260, 270
 upper and lower levels in specifications for, 261
 verification of, 292
Index

Genetically modified organisms
- bakery fillings and, 86
- gum acacia product free of, 223

Glossiness in foods, gums and, 8

Glucono-delta-lactone, 48
- restructured foods and, 180, 180

Gluluronic acid, 257

Glycemic index, bakery fillings and, research needs, 105

GMOs. See Genetically modified organisms

GMP. See Good manufacturing practices

GMP type certifications, as standard for hydrocolloids manufacturers, 254

Good manufacturing practices, 286, 293

Gossip, industry knowledge and, 306

Gracilaria agar, gel strength for, 99

Grade differentiation
- key items used in, 257–263
- blends, 262–263
- chemical structure, 257–258
- gel properties, 259–261
- mesh size of particles, 261–262
- organoleptic and appearance properties, 262
- special stabilities, 262
- viscosity, 258–259

Grades
- hydrocolloid functionality and basis of, 256–257
- specific, hydrocolloids divided into, 255–256

Granola-type bars, restructured fruit in, 169

GRAS approval
- future of pricing and, 288
- gum acacia product, 223
- restructured foods and, 213

Greek-style yogurt, 149

Guar gum, 2, 52, 87–88
- in application blends, 269
- in bakery fillings, 87–88
- benefits/liabilities in salad dressings, 27
- in cake, 55
- in egg pasta, 58, 59
- for flavor protection, 224
- in fried cornbread muffins, 63
- in frozen dairy desserts, 111
- minor drawback with, 88
- in nonbaked fried cornbread, 65
- in nut pie fillings, 78
- in pizza dough, 66
- processing conditions for bakery fillings and, 84
- in reduced oil flour tortillas, 58
- in Ricotta cheese, 159
- sale of, as commodity, 254
- in sour cream, 155
- special stabilities, grade differentiation and, 262
- synergistic hydrocolloid blends and, 267, 268
- in toaster pastry and snack bar fillings, 80
- usefulness and popularity of, 88
- viscosity and, 258
- at different concentrations in water viscosity, 260
- range for, 260

Gum arabic, 218
- coacervation and, 234
- for flavor encapsulation, 229
- for flavor protection, 216, 221, 224
- grades of, 222
- lemon oil encapsulated in, photomicrograph, 232
- manufacture of, 222
- modified, for flavor protection, 224
Index

molecular weight, 221–222
sale of, as commodity, 254
viscosity of, at various percentages of solids, OSA
starch vs., 220

Gums
in bakery fillings, 86–92
alginites, 90–92
guar gum, 87–88
locust bean gum, 86–87
pectin, 88–90
in bakery products
beneficial properties of, 51–52
stand-alone or in combination, 52–53
in bread, 53–55
in cake, 55–56
in cornbread muffins, 63–65
in egg pasta, 58–60
in flour tortillas, 56–58
functionality of, benchtop product development and, 13–14
glossiness and sheen in foods with, 8
hydrocolloids, scale-up to plant production and incorporation of, 15
modified gums and, flavor protection with, 221–223
in nonbaked fried cornbread, 65–66
in pancakes, 60–63
in pizza dough, 66
in reduced oil flour tortillas, 58
transparent versions of, 7
variation in ratios, 53
Gum tragacanth, hydrocolloid dressing stabilizers and, 23

Halal certification, gelatin concerns and, 146

Ham
carrageenan in, 45
cured, suggested formulations for, 46t

Heating
benchtop product development and, 13–14
dissolving hydrocolloids and, 2
Heat treatment, bakery fillings and, 85
HFCS. See High fructose corn syrup
High agitation mixing, small particle size hydrocolloids and, 1
High fructose corn syrup, fruit fillings and, 70
High temperature short time systems
frozen dairy desserts and, 128
pasteurization for frozen dessert mixes and, 136
total raw mix preparation for, idealized example, 130–131
Hispanic style cheese, 159
HM pectins, gelation of, 89–90
Holding, hydrocolloids, scale-up to plant production and, 15
Homogenization
for frozen dessert mixes, 135, 137–138
for sour cream, 154
Hoof and mouth disease, gelatin concerns and, 146
HTST systems. See High temperature short time systems
Hydrocolloid dressing stabilizers,
typical functions of, 23–25
Hydrocolloid functionality
color or appearance, 7–8
effects on flavor, 8
stabilization, 6–7
texture, 5–6
Index

Hydrocolloid history
beginnings era of, 245–246
commodity era of, 253
competitive era of, 251–253
monopoly era of, 246–249
pricing and, 274–275
semicompetitive era of, 249–251
stages of, caveats, 245

Hydrocolloid product categories,
263–269
application blends, 263t, 269, 270
functional blends, 263t, 264–267, 269
pure hydrocolloid, 263–264, 263t
summary, 269–270
synergistic blends, 263t, 267–268, 269–270

Hydrocolloids. See also Purchasing
hydrocolloids; Suppliers of hydrocolloids
categories of, 263t
dissolving
cations and, 2–3
mesh size and, 1–2
temperature and, 2
fifteen practical tips related to, 1–17
flavor protection and, 216
functionality of
color or appearance and, 7–8
flavor and, 8
stabilization and, 6–7
texture and, 5–6
gelling
cations and, 4–5
temperature and, 3–4
procurement, difficulties in, 243–244
product selection: three levels of
classification of, 263, 263t
salad dressings, type and level of, 32–33

Hydrocolloid stabilizers
hydrating, in assembling salad
dressings, 22
in salad dressings, 20
Hydroxypropylcellulose, for flavor
protection, 225t
Hydroxypropylmethylcellulose
for flavor protection, 225t
gel, in cheese mixture, 163

Ice cream
light, 5.7% fat no sugar added,
galactomannan stabilizer with emulsifier, 124t
restructured fruit in, 169
ten % fat, with MCC/CMC
stabilizer with carrageenan, 122t
12.25 % fat low net carb,
galactomannan stabilizer with emulsifier, 125t
twelve % fat, with sodium alginate
stabilizer, 121t
use of term in text, 114

small particle size, reducing
lumping in, 1–2
successful purchasing of, three
keys to, 244
typical viscosity ranges of, 260t
using
basic tests, 9
benchtop product development, 13–14
plant troubleshooting, 16–17
scale-up to plant production, 15–16
single gum vs. multiple gums, 9–11
substitution of gums for starch, 12–13

Hydrocolloid stabilizers
hydrating, in assembling salad
dressings, 22
in salad dressings, 20
Hydroxypropylcellulose, for flavor
protection, 225t
Hydroxypropylmethylcellulose
for flavor protection, 225t
gel, in cheese mixture, 163

Ice cream
light, 5.7% fat no sugar added,
galactomannan stabilizer with emulsifier, 124t
restructured fruit in, 169
ten % fat, with MCC/CMC
stabilizer with carrageenan, 122t
12.25 % fat low net carb,
galactomannan stabilizer with emulsifier, 125t
twelve % fat, with sodium alginate
stabilizer, 121t
use of term in text, 114

Hydrocolloid history
beginnings era of, 245–246
commodity era of, 253
competitive era of, 251–253
monopoly era of, 246–249
pricing and, 274–275
semicompetitive era of, 249–251
stages of, caveats, 245

Hydrocolloid product categories,
263–269
application blends, 263t, 269, 270
functional blends, 263t, 264–267, 269
pure hydrocolloid, 263–264, 263t
summary, 269–270
synergistic blends, 263t, 267–268, 269–270

Hydrocolloids. See also Purchasing
hydrocolloids; Suppliers of hydrocolloids
categories of, 263t
dissolving
cations and, 2–3
mesh size and, 1–2
temperature and, 2
fifteen practical tips related to, 1–17
flavor protection and, 216
functionality of
color or appearance and, 7–8
flavor and, 8
stabilization and, 6–7
texture and, 5–6
gelling
cations and, 4–5
temperature and, 3–4
procurement, difficulties in, 243–244
product selection: three levels of
classification of, 263, 263t
salad dressings, type and level of, 32–33

small particle size, reducing
lumping in, 1–2
successful purchasing of, three
keys to, 244
typical viscosity ranges of, 260t
using
basic tests, 9
benchtop product development, 13–14
plant troubleshooting, 16–17
scale-up to plant production, 15–16
single gum vs. multiple gums, 9–11
substitution of gums for starch, 12–13

Hydrocolloid stabilizers
hydrating, in assembling salad
dressings, 22
in salad dressings, 20
Hydroxypropylcellulose, for flavor
protection, 225t
Hydroxypropylmethylcellulose
for flavor protection, 225t
gel, in cheese mixture, 163

Ice cream
light, 5.7% fat no sugar added,
galactomannan stabilizer with emulsifier, 124t
restructured fruit in, 169
ten % fat, with MCC/CMC
stabilizer with carrageenan, 122t
12.25 % fat low net carb,
galactomannan stabilizer with emulsifier, 125t
twelve % fat, with sodium alginate
stabilizer, 121t
use of term in text, 114
Index 327

Imitation cheese, 163
Individually quick frozen (IQF) forms, of fruit fillings, 69
Individual quick frozen treatment, restructured food and, 169
Industry knowledge, supplier evaluation and, 306–307
Ingredient system suppliers, for frozen dairy desserts, 114
Innovativeness, supplier evaluation and, 305–306
Insoluble calcium salts, 176
Internal set beef
 formulation for, 200
 process of, 200
Internal set products–acid pH, 203–206
 acid pH model gel system, 204
 internal set peach formulation, 205–206, 206
 process for, 204–205
Internal set products–neutral pH, 192–203
 burger-type products, 199–200
 internal set beef, 200
 petfood brawn, 198–199
 potato products, 201–203
 restructured chicken pieces, 194–195
 restructured egg products, 193–194
 restructured meat, 200–201
 restructured meat products, 197
 restructured neutral pH vegetables, 196–197
 restructured salmon, 195–196
Internal setting process for restructuring food using alginates, 182–183
 in acid conditions, 184, 184
 in neutral conditions, 182–184, 183
International organization for standardization, 286
certifications as standard for hydrocolloids manufacturers, 254
supplier evaluation and, 293, 294
International Specialty Products
 restructured egg products, 193–194
 Restructured Meat System # 2, 213
Inulin, in yogurt, 148
Iota, in meat products, 38
IQF treatment. See Individual quick frozen treatment
ISO. See International organization for standardization
ISP. See International Specialty Products
Italian salad dressing
 low-calorie
 formulae/procedure for, 30
 typical, 30
 separating type
 formulae/procedure for, 29
 typical, 29
Jacobson, M. R., 163
Jansson, P. E., 96
Joint supplier gimmicks, profits sustained with, 281–282
Kappa-carrageenan, 271
 grade strength and, 260
 leaving off specification for, 249
 in meat products, 38
 PSE meat products and, 41
 temperature and, 3, 4
 in yogurt, 144
Kefir, 154
Key lime pie filling, 78
Index

Konjac/konjac gum, 47, 52–53
 in bakery fillings, 95–96
 boilout in bakery fillings and, 103
 in bread, 53
 in cake, 55
 in custard fillings, 77
 in egg pasta, 58, 59
 in flour tortillas, 57
 in fried cornbread muffins, 63
 in muscle foods, 43–44
 in nonbaked fried cornbread, 65
 in nut pie fillings, 78
 in pancakes, 60
 in pizza dough, 66
 processing conditions for bakery fillings and, 84
 in reduced oil flour tortillas, 58
 for stabilizing pumpkin pie, 76
 viscosity and, 258
 at different concentrations in water viscosity, 260
 range for, 260
Kosher certification
gelatin concerns and, 146
supplier evaluation and, 293

Lactic acid bacteria, 141
Lactose, for plating flavors, 223
Lactose-free soy frozen desserts, 126
Laminaria digitata, M/G contents and ratios for alignates from, 172
Laminaria hyperborrea (stipes), M/G contents and ratios for alignates from, 172
Language barriers, supplier evaluation and, 294–295
Large curd cottage cheese, 156
Laurie acid, flavor protection and, 216
Layoffs, 284, 303

LBG. See Locust bean gum
L-carrageenan, temperature and, 3, 4. See also Carrageenan;
Kappa–carrageenan
Leader companies, future
 adaptability of, 305
Lemon custard filling, 77–78
Lemon flavor, plating of, in
 Pure-Dent B730 vs. with maltodextrin and corn syrup solids, 227
Lemon oil
 encapsulated in gum arabic, photomicrograph, 232
 encapsulation of, in dextrinized starch, photomicrograph, 233
Likeability, supplier evaluation and, 307–308
Liquid frozen dessert mixes, homogeneous, processing of, 127–128
Liquid separation, yogurt and, 151
Liquifier, frozen dairy desserts and, dispersion of stabilizer, 133–134
Llanto, M. G., 46
Locust bean gum, 2
 in application blends, 269
 in bakery fillings, 86–87
 in cottage cheese, 157
 in cream cheese, 159
 in custard filling, 77
 for flavor protection, 224
 in frozen dairy desserts, 111
 in nut pie fillings, 78
 preventing cracking in bakery fillings with, 101
 processing conditions for bakery fillings and, 84
 pumpkin pie filling stabilized with, 76
 in Ricotta cheese, 159
Index

in sour cream, 155
stabilized filling with, 101
synergy with xanthan gum, 87
in toaster pastry and snack bar
fillings, 80
viscosity and, 258
range for, 260t
in yogurt, 144
Logistical commitments, suppliers
failing to keep, 295
Logistical facility, supplier
evaluation and, 297
Low acyl gellan, uses for, 100
Low draw, modified continuous
freezing, of frozen dessert
mix, 139
Lumps, frozen desserts, defined,
129

Macrocystis pyrifera, M/G contents
and ratios for alignates from,
172t
Madison Ice Cream Short Course
Manual, 126
Maekaji, K., 96
Maltodextrins
extrusion for flavor encapsulation
and, 232
flavor protection and, 216
Mannuronic acid, 257
Manucol JKT alginate blend, in
restructured egg products,
193t, 194
Market prices, for hydrocolloids,
trusted suppliers and, 243
Match products, semicompetitive era
of hydrocolloid history and,
250
Mayonnaise, real, 20
Mayonnaise-type spoonable salad
dressing, 31t
formulae/procedure for, 31–32
M-blocks, alginate in muscle foods
and, 47
MCC. See Microcrystalline cellulose
Meat. See also Muscle foods
cooked, micrograph of
carrageenan in, 41
restructured, 197, 200–201
Meat formulas, differences in, over
time and across regions, 35
Melton, L. D., 96
Mesh hydrocolloids, dry mix salad
dressings and, 23
Mesh size, 270
dissolving hydrocolloids and
influence of, 1–2
for hydrocolloids in salad
dressings, 32
of particles, grade differentiation
and, 261–262
Methylcellulose
in bakery fillings, 93–94
gelling property, 93
preventing cracking in bakery
fillings with, 102
synergistic hydrocolloid blends
and, 267
viscosity grades, 93
Methyl ethyl cellulose, for flavor
protection, 225t
Meuser, F., 226
M/G contents and ratios, for
alginites from different
brown seaweed species, 172t
Microcrystalline cellulose, 32
in bakery fillings, 95
benefits/liabilities of, in salad
dressings, 26
in frozen dairy desserts, 111
hydrocolloid dressing stabilizers
and, 23, 25
in lowfat cheese, 162
Microsoft Excel, 126
Index

Milk solids percent, for ice cream and frozen desserts, 116
Mills, E. W., 40
Mixing colloids, benchtop product development and, 13
Mix viscosity, for ice cream and frozen desserts, 119
Modified food starches
benefits/liabilities of, in salad dressings, 26
for flavor protection, 217–219, 217t, 221
low cost of, 12
pumpkin pie stabilizing and, 76
in sour cream, 155
Moisture migration, in bakery fillings, delaying, 105
Moisture retention, in meat, 36
Monoglycerides, flavor protection and, 216
Monopoly era of hydrocolloid history, 246–249
pricing and, 274
Monosodium glutamate, restructured foods and, 169
Motzer, E. A., 41
Mousse process, frozen dessert mix, 140
Mouthfeel, hydrocolloid dressing stabilizers and, 25
Mozzarella cheese, 161
alternatives for, 163
low-fat, 142
MSG. See Monosodium glutamate
MSNF percent, for ice cream and frozen desserts, 116
Multiple gums, single gums vs., hydrocolloids and, 9–11
Muscle foods
hydrocolloids in, 35–48
alginate, 47–48
carrageenan and, 38–43
characterization of biopolymers on basis of degree of activity, 37t
ham, 45
konjac, 43–44
moisture retention and, 36
postpackaging pasteurization and, 35
roast beef, 45–46
salt and chloride and, 36
seafood, 46–47
starches and, 37–38
synergies, 44
turkey breast, 44–45
potassium chloride and functionality of carrageenan in, 40t
synergies between hydrocolloids in, 44
Mushrooms, restructured, 197
Nacho cheese sauces, 161
d案例 formulas for, 162t
National Register Company, 234
“Natural” emulsifiers, in salad dressings, 21
Natural serum solids percent, for ice cream and frozen desserts, 116
NCR. See No-carbon-required paper
Neufchatel cheese, 158–159
production methods for, 158–159
regulations for, 158
Niche suppliers, pricing and, 288
Niemann, C., 226
NMS percent, for ice cream and frozen desserts, 116
No-carbon-required paper, 234
dextrinized
n-octenyl succinic anhydride, 218
effect of addition of maltodextrin on particle size
Index

of lemon emulsion stabilized by, 230
emulsifying properties of, 221
er esterification of starch and, 220
flavor encapsulation and, 229
flavor protection, choice of, 221
stability of lemon oil in, with fiber and maltodextrin compared with pure OSAn starch, 231
viscosity of gum arabic vs., 220
Nut pie fillings, 78
Nutritionally modified yogurts, 148

Obesity control, bakery fillings and, research needs, 105
Oil, in salad dressings, 20
Oleoresins, 215
Onion rings, restructured, 188–189
Opacity
hydrocolloid functionality and, 7
increased air incorporation and, 8
Orange drink mix, spray-dried formula for, 237
Orange oil formula, spray-dried, 237
Organic acid, meat product food safety and, 35
Organoleptic properties, grade differentiation and, 262
Orientation of supplier, supplier evaluation and, 302–303
OSAn. See n-octenyl succinic anhydride
Overrun percent index, for ice cream and frozen desserts, 118
Overstabilization, 6–7
Packaging, hydrocolloids, scale-up to plant production and, 15
Pale, soft, and exudative (PSE) raw material, kappa-carrageenan and, 41
Palmitic acid, flavor protection and, 216
Pancakes
gums in, 60–63, 61, 62
basic formulation for, 62
preparation of, 63
Parmesan cheese, 141
Particle size
flavor encapsulation and, 229, 229–230
for hydrocolloids in salad dressings, 32
solubility and, 1
Pasteurization
for frozen dessert mixes, 135
postpackaging, meat products and, 35
for sour cream, 154
for yogurt, 143
Pasteurized process cheese products, 160
Pasteurized process cheese spread, example formulas for, 162
Peach formulation
internal set, 205–206
formulation for, 206
process for, 205–206
Pectin, 3, 88–90
in bakery fillings, 89–90
chemical structure differences, 258
flavor protection and, 216
galacturonic acid in, 89
gelling property of, 89
heat treatment, bakery fillings and, 85
production of, 88
in yogurt, 144, 150, 151
Penn State’s Ice Cream Short Course Manual, 126
Index

Petfood brawn, restructured, 198–199
Petfood chunks, restructured, 206–208
PGA. See Propylene glycol alginate
pH
 bakery filling stabilization and, 82–83
 for cultured buttermilk, 153
 of yogurt, 143, 145
Phage, yogurt and, 148
Phosphate, addition of, to meat products, 36, 37
Pie fillings, alginate vs. starch in, 12
Pimiento strips, restructured, 168–169, 186–188
Pizza dough, gums in, 66
Plant production, hydrocolloids and scale-up to, 15–16
Plant troubleshooting, hydrocolloids and, 16–17
Plating
 defined, 223
 of flavors, 223, 226–227
Pollack, surimi and, 46
Polydextrose, 74
Polyethylene glycol, flavor protection and, 216
Polysaccharides, flavor protection and, 216
Pommes noisettes, 201
Popsicles, restructured fruit in, 169
Pork, pale, soft, and exudative (PSE) raw material in, 41
Potassium alginate, for flavor protection, 225
Potassium chloride
 functional blends and, 265
 functionality of carrageenan and addition of, 40
 in meat products, 39
Potato
 components and properties of, 219
 in meat products, 38
Potato products, restructured, 201–203
Pourable salad dressings, 19
Prahbu, G. A., 40
Preblending, small particle size hydrocolloids and, 1, 2
Premix tanks, assembling salad dressings and, 21, 22
Price quotes, asking for, 285
Prices and pricing
 best, how customers can avoid annoying suppliers and lose out on, 284–286
 bid, advantages/disadvantages of, 283–284
 functional blends and, 266
 quote, advantages/disadvantages of, 282
 spot, advantages/disadvantages of, 282–283
 synergistic hydrocolloid blends and, 268
Probiotic cultures, in yogurt, 148
Process cheese products, 160–161
Processing, for ice cream and frozen desserts, 127–131
Processing conditions in bakery fillings, 84–85
 available shear, 84–85
 heat treatment, 85
Product categories and types
 supplier evaluation and, 290–292
 sale of many gums, a few gums, or one gum, 291–292
 sale of other related types of hydrocolloids, 291
 sales of other hydrocolloid product categories, 290
Index

Product grades, summary, 270–271
Product key selection, hydrocolloid history applied to, 255
Product quality
 supplier evaluation and food application tests, 293
testing for, 292–293
verification of viscosity and gel strength, 292
Product quality commitments, suppliers failing to keep, 295
Product selection, correct, importance of, 255–256
Profit mentality, high, of hydrocolloid suppliers, 275–276
Profits
 joint supplier gimmicks and, 281–282
 supplier gimmicks and, 280–281
Propylene glycol alginate, 258, 288
 in bakery fillings, 92
 benefits/liabilities of, in salad dressings, 25–26
 hydrocolloid dressing stabilizers and, 23
 in nut pie fillings, 78
Protein aggregation, controlling, in
 acid yogurts and smoothies, 150
Proteins
 flavor protection and, 216
 moisture retention in meat and, 36
PSE raw material. See Pale, soft, and exudative (PSE) raw material
Pseudogels, 52
Pseudoplasticity, of sodium alginate solutions, 173
Pumpkin pie fillings, 75–76
Purchasing hydrocolloids
 applying hydrocolloid history to product grade selection, 255
 basis of grades: hydrocolloid functionality, 256–257
correct product selection, importance of, 255–256
difficulties with, 243–244
grade differentiation
 blends, 262–263
 chemical structure, 257–258
gel properties, 259–261
 mesh size of particles, 261–262
organoleptic and appearance properties, 262
 special stabilities, 262
viscosity, 258–259
hydrocolloid functionality, 256–257
hydrocolloid history
 beginnings era of hydrocolloid history, 245–246
 commodity era of hydrocolloid history, 253–254
 competitive era of hydrocolloid history, 251–253
 first purchasing key, hydrocolloid history applied to, 255
 monopoly era of hydrocolloid history, 246–249
 semicompetitive era of hydrocolloid history, 249–251
 stages of, 245
pricing, 273–289
 avoiding price increases from suppliers and gaining price decreases from suppliers, 287–288
customer control vs. supplier control of composite factors in, 276–277
customer factors influencing supplier costs, 286
Index

pricing (Cont.)
customer knowledge, 279–280
customers not antagonizing suppliers and forfeiting best prices, 284–286
future of, 288–289
high profit mentality of suppliers, 275–276
hydrocolloid history and, 274–275
joint supplier gimmicks for sustaining high profits, 281–282
spot, quote, and bid: advantages/disadvantages, 282–284
supplier gimmicks for sustaining high prices/profits, 280–281
ture market, 277–279
product categories
application blend, 269
functional hydrocolloid blend, 263t, 264–267
pure hydrocolloid, 263–264, 263t
synergistic hydrocolloid blend, 267–268
product grades
specific, 255–256
summary, 270–271
product selection: levels of hydrocolloid classification, 263
successful, three keys to, 244
supplier screening, 289–290
Pure-Dent B730
lemon flavor plated in, vs. with maltodextrin and corn syrup solids, 227
photomicrograph of starch granules, 226
Pure hydrocolloid category, 263–264, 263t
QA personnel, supplier technical support and, 298
QA tests, product quality and, 293
Quality, multiple gums in formulation and, 10
Quality assurance data, hydrocolloid usage and, 16–17
Queso blanco, 141
Quiescently frozen novelty, frozen dessert mix, 139
Quote prices, advantages/disadvantages of, 282
Raffinose, 119
Ratings
for applications support by supplier, 299–300
for caring/responsiveness/respect shown by supplier, 304
for clarity of communication with supplier, 296
for ease of communications with supplier, 296
for ethics of supplier, 301–302
for future adaptability of supplier, 304
for industry knowledge by supplier, 307
for innovativeness of supplier, 305
for logistical facility with supplier, 297
for sales representative, 307–308
for technical support by supplier, 297–299
Raw frozen dessert mixes, no lump rule for, 127–128
Index

Raw material costs, supplier gimmicks, price increases and, 280
Raw material price fluctuations, supplier stocking habits and, 276–277
Reconstituted frozen dessert mix, 139
Rees, D. A., 175
Relative sweetness index, for ice cream and frozen desserts, 118
Rennet casein, in cheese, 163
Restructured foods (Cont.)
solid and liquid-centered
berries, 190–192, 191, 192^t
examples of, 167, 167^t
gelling system for, 167
goal of, 165
hydrocolloids in, 165–213
alginate: source, chemistry,
and properties, 171–174
gelling agent choices, 170
processing process, parts of,
170
internal set products–acid pH,
203–206
acid pH model gel system,
203–205, 204^t
internal set peach formulation,
205–206, 206^t
internal set products–neutral pH,
192–203
burger-type products, 199–200,
199^t
internal set beef, 200
petfood brawn, 198–199, 198^t
potato products, 201–203, 202^t,
203^t
restructured chicken pieces,
194–195
restructured egg products,
193–194
restructured meat products,
197, 200–201, 201^t
restructured neutral pH
vegetables, 196–197
restructured salmon, 195–196
Restructured meat products, 197
formulation for, 201^t
Restructured neutral pH vegetables,
196–197
formulation for, 196^t
process for, 197
Restructured onion rings
formulation for, 189^t
making, 188–189
Restructured petfood brawn
formulation for, 198^t
process for, 198–199
Restructured petfood chunks
combination set, 206–208
system for, 207, 207–208
Restructured pimiento strip,
186–188
formulation for, 187^t
setting bath for, 187–188
Restructured potato products,
201–203
from different ingredients, 202
formulations for, 203^t
novel, 201
process for, 202–203
Restructured salmon, 195–196
Restructuring process, parts of,
170
Reversible sequestrants, 179
Rheology
desired, obtaining for salad
dressings, 32–33
hydrocolloid dressing stabilizers
and, 24
Rice, waxy, components and
properties of, 219^t
Rice starch, in meat products, 38
Ricotta cheese, 159
Roast beef, carrageenan in, 45–46
Romano cheese, 141
Sahardi, 166
Salad dressings
hydrocolloids in, 19–33
assembling, 21–23
determining type and level of,
32–33
major dressing stabilizers–
benefits/liabilities, 25–32
Index

typical functions of hydrocolloid dressing stabilizers, 23–25
marketing of, in U.S. and Canada, 19
structure and texture and, 256
top 12 popular flavors of, 20
typical dressing formulae, 27
typical equipment for making, 21
typical ingredients in, 20–21
Sales representative, supplier evaluation and, 307–308
Salmon, restructured, 195–196
Salmonella, 286
Salt(s)
 - addition of, to meat products, 36, 37
 - alginate, 171
 - in salad dressings, 20
Sample submissions, respectful treatment of, 285
Sauces, instant, flavor coacervates and, 235
Savory flavors, 215
Scale-up to plant production, hydrocolloids use and, 15–16
Scanning electron microscopy, evaluating flavor particles after spray drying with, 230–231
Schallow, S. M., 163
Seafood, imitation products, carrageenan in, 46–47
Seaweeds, carrageenan extracted from, 98
Sebranek, J. G., 40
SEM. See Scanning electron microscopy
Semicompetitive era of hydrocolloid history, 249–251
pricing and, 274
Semi-gelled structures, 4

Separating dressings, assembling salad dressings and, 22
Separation control/prevention, hydrocolloid dressing stabilizers and, 24
Sequestrants, dissolving hydrocolloids and, 3
Serum separation, yogurt and, 151
Setting bath
 - for restructured blackcurrants formulation, 192
 - for restructured cherry formulation, 209
 - for restructured fish formulation, 190
 - for restructured onion ring formulation, 189
 - for restructured pimiento strip formulation, 187
Shear
 - bakery fillings and, 84–85
 - postculture, yogurt and, 147
 - sodium alginate solutions and, 173
Sheen in foods, gums and, 8
Shelf life
 - for bakery fillings, 68
 - for ice cream and frozen desserts, monitoring, 120
 - for restructured foods, 168
Shellac, flavor protection and, 216
Shipping costs, synergistic hydrocolloid blends and, 268
Shrimp analogues, carrageenan and, 46
**Shrinkage, in bakery fillings, 103
Silicas, for flavor protection, 226
Single gums, multiple gums vs., 9–11
Small curd cottage cheese, 157
Smoothies, 149–151
 - formulation and processing for, 151
 - structure and texture of, 256
Snack bar fillings, 80–81
Snack cakes, processing and quality attributes of, 71–72
Sodium alginate, 3, 170, 270
in bakery fillings, 90–92
cations and, 5
chemical structure, grade differentiation and, 257
commercial availability of, 173
commercial sources of, 90
for flavor protection, 225
gelation of, 91
in internal set beef formulation, 200
in muscle foods, 47, 48
in restructured meat formulation, 201
for restructuring, 168
solutions
pseudoplasticity of, 173
shear and, 173–174
stability of, at high baking temperatures, 91
synergistic hydrocolloid blends and, 267
transparent versions of, 7
viscosity and at different concentrations in water viscosity, 260
grades of, 91
range for, 260
Sodium alginate stabilizer, twelve percent fat ice cream with, 121
Sodium carboxymethyl cellulose, 3
Sodium caseinate, cook yield of, carrageenan vs., 40
Sodium chloride in buttermilk, 153
for plating flavors, 223
Sodium citrate in buttermilk, 153
in sour cream, 156
Sodium hexametaphosphate, 3, 178, 179, 183
Sodium phosphates, in sour cream, 156
Sodium polymetaphosphate (Calgon), 179
Soft cheeses, 159–160
Softening, water activity in bakery fillings and, 82
Sogginess of bakery fillings, 104–105
water activity in bakery fillings and, 82
Solid fat index, for ice cream and frozen desserts, 118
Solids content, in bakery fillings, 83–84
Solubility gel set time and, 48
particle or mesh size and, 1
Soluble calcium salts, 176
Soups, instant, flavor coacervates and, 235
Sour cream, 154–156
direct set processing for, 156
nonfat, light, and regular, example formulas for, 156
production of, 154
reduced fat, 155–156
shear and, 155
standards of identity for, 154
South America, semicompetitive era of hydrocolloid history and, 249
Soy, flavor protection and, 216
Soy-based frozen desserts, stabilizer/emulsifier use in, 127
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Index Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Soy solids not fat percent, for ice cream and frozen desserts,</td>
</tr>
<tr>
<td>120</td>
<td>Soy frozen desserts, lactose-free,</td>
</tr>
<tr>
<td>254</td>
<td>Specifications for grades, commodity era of hydrocolloid history and,</td>
</tr>
<tr>
<td>100</td>
<td>Sphyngomonas elodea,</td>
</tr>
<tr>
<td>20</td>
<td>Spices, in salad dressings,</td>
</tr>
<tr>
<td>19</td>
<td>Spoonable salad dressings, assembling salad dressings and,</td>
</tr>
<tr>
<td>22–23</td>
<td>formulae/procedure for,</td>
</tr>
<tr>
<td>28–29</td>
<td>typical,</td>
</tr>
<tr>
<td>151</td>
<td>Spoonable yogurts, ingredient statements in,</td>
</tr>
<tr>
<td>152</td>
<td>low-fat, formulation and processing parameters for,</td>
</tr>
<tr>
<td>282–283</td>
<td>Spot pricing, advantages/disadvantages of,</td>
</tr>
<tr>
<td>237</td>
<td>Spray-dried flavors, National Starch website,</td>
</tr>
<tr>
<td>237</td>
<td>Spray-dried orange drink mix formulation,</td>
</tr>
<tr>
<td>237</td>
<td>Spray-dried orange oil formulation,</td>
</tr>
<tr>
<td>222–231, 228</td>
<td>Spray drying, flavor encapsulation through,</td>
</tr>
<tr>
<td>256</td>
<td>Stabilizers, grades, hydrocolloid functionality and,</td>
</tr>
<tr>
<td>13</td>
<td>gums substituted for starches and,</td>
</tr>
<tr>
<td>6–7</td>
<td>Stabilization of cultured dairy products, hydrocolloid functionality and,</td>
</tr>
<tr>
<td>142</td>
<td>Stable, pourable emulsions, for assembling salad dressings,</td>
</tr>
<tr>
<td>119</td>
<td>Stachyose,</td>
</tr>
<tr>
<td>21</td>
<td>Stainless steel equipment, for making salad dressings,</td>
</tr>
<tr>
<td>265</td>
<td>“Standardized” blends,</td>
</tr>
<tr>
<td>247, 248–249</td>
<td>Standardized-type grades, monopoly era of hydrocolloid history and,</td>
</tr>
<tr>
<td>166, 167–168</td>
<td>Standard of identity, for restructured foods,</td>
</tr>
<tr>
<td>146</td>
<td>Starch cross-linking, effects of shear and, on yogurt white mass viscosity,</td>
</tr>
<tr>
<td>12t</td>
<td>Starches, alginate vs., in pie fillings,</td>
</tr>
<tr>
<td>163</td>
<td>in cheese,</td>
</tr>
<tr>
<td>219t</td>
<td>components and properties of,</td>
</tr>
</tbody>
</table>
Index

Starches (Cont.)
- dextrinized, lemon oil
 encapsulated in, 233
- as flavor carrier, 226
- flavor protection and, 216
- flavor suppression and, 8
- hydrocolloids and substitution of gums for, 12–13
- in meat products, 37–38
- modified
 extrusion for flavor
 encapsulation and, 232
- for flavor protection, 217–219, 221
- low cost of, 12
- in yogurt, 143–144, 145
Starch polymers, amylose and amylpectin, 217, 218
Stearic acids, flavor protection and, 216
Stirred yogurts, 143
Stoke’s law, 150
Storage time/conditions, for bakery fillings, 85
Strained yogurt, 149
Strawberries, in yogurt in North America, 142
“Stretch marks,” in turkey breast, 45
Structure, grades, hydrocolloid functionality and, 256
Structured food, defined, 166
Substitute cheese, 163
Substitution, yogurt and, 145
Sucrose, for plating flavors, 223
Sucrose equivalence, for ice cream and frozen desserts, 116–117
Sugar
- in fruit fillings, 70
- protein content in yogurt and, 150–151
Sugar-starch stabilizer systems, fruit fillings and, 74
Supplier applications support, supplier evaluation and, 299–301
Supplier control, customer control vs., composite factors in hydrocolloid pricing and, 276
Supplier costs, customer influence on, 286
Supplier evaluation form, 308, 309
Supplier evaluation parameters, 289
- applications support, 299–301
- caring/responsiveness/respect, 303–304
- certifications, 293–294
- clarity of communications, 294–296
- ease of communication, 296
- ethics of supplier, 301–302
- future adaptability, 304–305
- industry knowledge, 306–307
- innovativeness, 305–306
- likeability, 307
- logistical facility, 297
- orientation of supplier, 302–303
- product categories and types, 290–292
- product quality, 292–293
- sales representative, 307–308
- technical support, 297–299
Supplier gimmicks, high prices/profits and, 280–281
Suppliers
- avoiding price increases from/gaining price decreases from, 287–288
- high profit mentality of, 275–276
- screening, 289–290
Supply and demand fluctuations, true market price for hydrocolloids and, 278
Surimi, 46
Index 341

Suspending ability, hydrocolloids and, 9

Suspension of particulates/droplets, hydrocolloid dressing stabilizers and, 24

Sweet acidophilus milk, 154

Swiss-style yogurt, 143

Sworn, G., 100

Synergism, defined, 44

Synergistic blend hydrocolloid category, 263r, 267–268, 269–270

Synergy, multiple gums in formulation and, 10

SySNF. See Soy solids not fat percent

Takigami, S., 96

Tapioca components and properties of, 219r

in meat products, 38

Tapioca starch, in yogurt, 144

Tara gum

in cream cheese, 159

in frozen dairy desserts, 111

preventing cracking in bakery fillings with, 102

processing conditions for bakery fillings and, 84

synergy between xanthan gum and, 97

Technical service commitments, suppliers failing to keep, 295

Technical service (or technical support), supplier evaluation and, 297–299

Techwizard, 126

Temperature dissolving hydrocolloids and influence of, 2
gelling hydrocolloids and influence of, 3–4

homogenization, for frozen dessert mixes, 138

Tetrasodium pyrophosphate (Tetron), 3, 178, 178t

in internal set beef formulation, 200t

in neutral pH systems, 183

in restructured burger-type products, 199

Texture in cheese products, 141–142

grades, hydrocolloid functionality and, 256

hydrocolloid functionality and, 5–6

Thermal process flavors, 215

Thermometers, dissolving hydrocolloids and accuracy of, 2

Thixotropic behavior, of microcrystalline cellulose, 95

“Tiger striping,” in turkey breast, 45

Time of suppliers, valuing, 286

Tinctures, 215

Toaster pastry fillings, 80–81

formulation for, 81

procedure for, 81

solids content in, 80

Total solids percent, for ice cream and frozen desserts, 116

Total soy solids percent, for ice cream and frozen desserts, 119

Transparency, of gums, 7

Tri-Blender, frozen dairy desserts and dispersion of stabilizer, 132–133

Tricalcium phosphates, 3, 5

Triggers, in internal setting process for restructured foods, 182

Triglycerides, flavor protection and, 216
Index

Trisodium citrate, 178, 179, 183
Troubleshooting, hydrocolloids use and, 16–17
True market price, for hydrocolloids, 277–279
TSPP. See Tetrosodium pyrophosphate (Tetron)
TSS. See Total soy solids percent
Turkey, pale, soft, and exudative (PSE) raw material in, 41
Turkey breast carrageenan and, 44–45
typical formulation for, 45t
Twin screw cooker extruder, 239
Tzatziki sauce, from yogurt, 149
UHT pasteurization, for frozen dessert mixes, 137
Unfrozen water, limiting amount of, in frozen dairy desserts, 110
United States cheese standards in, 162–163
cheese varieties in, 161
cream cheese regulations in, 158
reduced fat sour creams in, 155
salad dressings marketed in, 19
sour cream regulations in, 154
U.S. Department of Agriculture (USDA), 41

Vat pasteurization, for yogurt, 143
Vat set yogurts, 143
Vegetables internal set–acid pH, system for, 205
internal set–neutral pH, system for, 197
restructured neutral pH, 196–197
Vegetarian diets, gelatin concerns and, 146
Vinegar, in salad dressings, 20, 21
Viscosity alginate solution, degree of polymerization and its effect on, 173t
t of canned fruit filling, 70
defined, 258
at different concentrations in water viscosity, 260t
facts related to, 259
gum arabic vs. OSA starch, 220
hydrocolloid dressing stabilizers and, 23–24
for typical alginates, 173, 174
typical ranges of hydrocolloids, 260t
verification of, 292
Water in bakery fillings, 83–84
bakery filling stabilization and, 81–82
carrageenan fully hydrated in, 41
in salad dressings, 20
Water gels, meat products and synergism in, 40
Water purification system, hydrocolloids use and, 17
Water source, checking, hydrocolloids use and, 17
Waxes, flavor protection and, 216
Waxy corn, components and properties of, 219t
Waxy corn starch micrographs of, showing maximum and lower viscosity, 147
in sour cream, 155
in yogurt, 144
Waxy maize, in yogurt, 143
Waxy potato, components and properties of, 219t
Index

Waxy rice, components and properties of, 219

Welinga, W. C., 87

Wheat
components and properties of, 219
in meat products, 38

Whey, flavor protection and, 216
Whey solids percent, for ice cream and frozen desserts, 116
Whipped yogurts, 148
Written language skills, clarity of communications, supplier evaluation and, 295

Xanthan gum, 2, 32, 53
in application blends, 269
in bakery fillings, 96–98
benefits/liabilities with, in salad dressings, 25
boilout in bakery fillings and, 103
in bread, 53
in cake, 55
in cheeses, 162
competitive era of hydrocolloid history and, 251
in cottage cheese, 157, 158
in cream cheese, 159
in cream fillings, 79
in custard filling, 77
in egg pasta, 59
in fried cornbread muffins, 63
in frozen dairy desserts, 111
hydrocolloid dressing stabilizers and, 23
locust bean synergy with, 87
in nonbaked fried cornbread, 65
in pancakes, 60, 61
in pizza dough, 66
pumpkin pie and stabilizing with, 76
in reduced oil flour tortillas, 58
in Ricotta cheese, 159
solubility of, in cold water, 97
special stabilities, grade differentiation and, 262
superior freeze-thaw ability with, 97
synergistic hydrocolloid blends and, 267, 268
synergy between tara gum and, 97
transparent versions of, 7
viscosity and, 258
range for, 260
wide use of, 52
Xanthomonas campestris, 96
XG. See Xanthan gum

Yamada, T., 226

Yogurt
alternative stabilizers in, 143–144
for children and toddlers, 148
consumption of, 142
cup set, 143
digestive benefits with, 147–148
dips, 148
drinkable, 149–151
low-fat, formulation and processing parameters for, 152
equipment for mixing and packaging, 142–143
freeze-stability for, 145
Greek-style, 149
increasing sales of, 149
inulin in, 148
new products, 148
pasteurization for, 143
pectin in, 150, 151
protein aggregate size and, 150–151
spoonable, 143
gelatin in, 146–147
Index

Yogurt (Cont.)

- low fat, formulation and processing parameters for, 152
- stirred, 143
- Stoke’s law, protein stabilization and, 150
- strawberries in, 142

- textual defects in, 148
- vat set, 143
- viscosity and cross-linking and processing, 145
- effects of shear and starch cross-linking level on, 146