INDEX

A
abutment scour, 836
accurate method, 584
acoustic impedance, 153
active retaining walls, 716–717
active zone, 478, 597
activity (soil parameter), 57
adobe, 88
adsorbed water layer, 29
aeolian soil, 88
aggregate columns, 946
air
 air entry value, 270
 air permeability test (for unsaturated soils), 214–215
 flow of, in unsaturated soil, 382–388
 in situ air sparging (ISAS), 888
allowable stress design (ASD), 490
alluvial fans, 20
alluvium, 20, 88
American Society for Testing and Materials (ASTM), 49
anchor bond length, 741
anchored walls, 735–746, 805
anchoring length, 919
anchors, retaining walls and, 740–742
angle of repose, 651
antennas, 162
anticlines, 19
approach velocity, 842
aquifer, 22
area ratio factors, 253–254
artesian pressure, 21
artificial neural network (ANN) method, 314–315
associated displacement retaining walls, 716–717
associated flow rule, 352
ASTM Procedure, 884–885
atomic absorption spectrophotometry (AAS), 876
at-rest earth pressure, 724–725
attenuation relationship, 790
Atterberg, Albert, 53
Atterberg limits, 49, 53–56
augercast piles, 557
automatic hammers, 104
Avogrado, Amadeo, 874
Avogrado number, 874
axisymmetric heat propagation, 474–475

B
backward erosion, 852
band drains, 943
Barcelona Basic Model (BBM), 355–357
Barentsen, Pieter, 107
base grouting, 555
base instability, retaining walls and, 738
bathymetry, 94
battered piles, 553
BCD test, 126–127, 184
bearing capacity, 918
bells, 555
bender elements, 180–181
bentonite, 88
Bessel correction, 306
Biaud-Tucker SPT method, for driven piles in coarse-grained soils, 580
bioremediation (BR), 889–890
Bishop simplified method, 664–665
block analysis, 654
block failure, 588–589
body wave magnitude, 784
Boltzmann, Ludwig, 349
bored piles, 553, 555–558. See also pile installation borehole in situ tests, 127–129
borehole shear test (BST), 117–119
borings
 field identification and boring logs, 87–88
 site investigation, drilling, and sampling, 80–81
bottom barriers, 886–887
bottom-up retaining walls, defined, 716
bottom-up slopes, manmade, 918
boundary element method (BEM), 304
Boussinesq, Joseph, 2
Boutwell, Gordon, 131
bracketed duration, 789
Brazos River meander case history, 845–847
breaking the soil, 909
bridge scour
 case history, 841–844
 defined, 831
 explained, 831–841
Buckingham theorem, 315–316
bulbs of pressure, 509
bulk modulus, 346
buoyancy, underwater foundations and, 582
buoyancy force, 33
burping the tremie, 555

C
calcareous sands, 88
calcium oxide, 952
caliche, 88
California bearing ratio test (CBR), 122
Cam Clay model, 354–355
cantilever, 727
cantilever edge distance, 518
cantilever gravity, 727
cantilever retaining walls, 805
cantilever top-down walls, 732–735
capillary zone, 423
CAPWAP method, 570
Case Method, 568–569
Cassagrande, Arthur, 58, 185, 186
cations, 28
Celsius, 6, 472
Celsius, Anders, 472
cement, 949
cementation, 403
centrifuge model, similitude laws application, 317–318
characteristics, 281
characteristic site period, 793
characteristic value, 491
chart approach, 506–507
chemical grouting, 950
chilled mirror psychrometers, 176–177
classification parameters, soil, 56–57, 58
clastic rocks, 68
clay composition, 27–28
clay liners, geosynthetic, 910–911
clear water scour, 831
cliff, 19
code approach, earthquake geotechnical engineering, 795–797
Code of Federal Regulations, 873
cohesive soils, 453
collapse deformation behavior, 424–425
collapse test, 193
collapsible soils, 19, 88
colluvial fans, 20
colluvium, 88
combined piled raft foundation (CPRF), 609–612
compaction
 dynamic or drop-weight compaction, 707–710
 earth pressure retaining walls due to, 725–726
 field tests, 700
 generally, 698
 impact roller compaction, 706–707
 intelligent roller compaction, 701–706
 laboratory tests, 698–700
 soil improvement and, 938
 soil type and, 701
compaction control tests
 BCD test, 126–127
 field oven test, 125–126
 generally, 124
 lightweight deflectometer (LWD) test, 126
 nuclear density/water content test, 125
 rubber balloon test (RBT), 124–125
 sand cone test (SCT), 124
See also compaction test
compaction grouting, 950
compaction test
 dry unit weight, 181–184
 soil modulus, 184–185
compensation grouting, 950
Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 874
compressible inclusions, 922
compression index, 407–408
compressive strength, 443
concentrated leak, 852
concrete
 shear strength properties and, 448
 soil improvement and, 949
 conduction, 472
cone penetration test (CPT), 107–111
cone penetrometer dissipation test (CPDT), 129
confinement effect, 403
conservation of mass, 370
consolidated undrained direct shear test (CUDS), 450–451
consolidated undrained simple shear test (UUSS), 450–451
consolidation settlement
 magnitude, 510–511
 time rate, 511
consolidation test
 compression index, recompression index, and secondary
 compression index from, 407–408
 defined, 185–190
 preconsolidation pressure and overconsolidation ratio
 from, 413–416
 time effect from, 416–418
constant gradient procedure, 188
constant head permeameter test, 209–212
constant rate of strain procedure, 188
constitutive laws, 280
constrained modulus, 346
contaminants, types of, 872–873. See also geoenvironmental engineering
continuous bridge, 522
continuous control compaction, 701
contractile skin, 256, 257–258
contraction scour, 835
contractive soil, 30, 129
convection, 472
conventional compaction, 698
coring, of rock, 73
Coulomb, Charles, 2, 717
Coulomb earth pressure theory, 717–719
course-grained soils, shear strength properties and, 448–449, 451–452
covers, for landfills, 893
covers, geosynthetics, 913–915
crack openings, 676
creep, 348, 407–408
creep compliance function, 348–349
creep settlement, 511–513
critical circle, 667
critical damping, 787
critical hydraulic gradient, 374–375
critical plane, 652
cross hole sonic logging, 558
cross hole test, 155–156
cross-plane, 907
cryosuction process, 479
Culman, Carl, 2
cumulative distribution function, 306
cyclic loading effect, 583, 604–605
cyclic modulus, 401
cyclic stress ratio (CSR), 797
cylindrical coordinates, 250–251

D
damper, 347–348
Daniel, David, 130
Darcy, Henry, 2, 371
Darcy’s Law, 130, 318, 371–372, 880
dashpot, 347–348
Da Vinci, Leonardo, 2
deconvolution, 794
deep cement mixing, 951
deep foundations
 combined piled raft foundation (CPRF), 609–612
 design strategy, 553–555
 downdrag, 592–597
 horizontal load and moment, pile group, 606–609
 horizontal load and moment, single pile, 598–606
 pile installation, 555–575
 piles in shrink-swell soils, 597–598
 seismic design, 806–807
 types of, 553
 vertical load, pile group, 587–591
 vertical load, single pile, 575–587
deep soil mixing, 951
deep water, 833
deformation properties
 collapse deformation behavior, 424–425
 common values of Young’s modulus and Poisson’s ratio, 406–407
 compression index, recompression index, and secondary
 compression index from consolidation test, 407–408
 correlations with other tests, 408
 deformation problems, solving, 283–286
 generally, 401
 initial tangent modulus \((G_{max}) \), 411–412
 modulus, defining, 402
 modulus, modulus of subgrade reactions, and stiffness, 405–406
 modulus, time effect, and cyclic effect from pressuremeter test, 418–419
 modulus and differences between fields of application, 405
 modulus and influence of loading factors, 403–405
 modulus and influence of state factors, 402–403
 modulus as comprehensive model, 408–411
 modulus of deformation, generally, 401–402
deformation properties (continued)
 preconsolidation pressure and overconsolidation ratio
 from consolidation test, 413–416
 reduction of G_{max} with strain (G/G_{max} curve), 412–413
 resilient modulus for pavements, 419–420
 shrink-swell deformation behavior, shrink-swell modulus, 422–424
 time effect from consolidation test, 416–418
 unsaturated soils and effect of drying and wetting on the
 modulus, 420–422
dense nonaqueous phase liquids (DNAPLs), 877
depth of compaction, 709
design methods, prediction methods versus, 583–584
deterministic analysis, 312
diagenetic bonds, 453
dielectric constant, 162
diesel hammers, 560
diffusivity, 473
dikes, erosion and, 847–850
dilatancy test, 87
dilatant, 129
dilatant structure, of soil, 30
 dilatometer test (DMT), 114–115
 dimensional analysis, 315–316
dip, 19
direct current differential transformer (DCDT), 179
direct shear test, 193–195
direct strength equations, 491–494
discharge velocity, 211, 370
discounted anchor length, 741
discrete element method (DEM), 304–305
dispersed structure, of soil, 30
dispersion curve, 159
dispersive clays, 88
displacement-replacement technique, for soil improvement, 941
displacements, 249
downdrag, 592–597
drainage, geosynthetics and, 907, 919
 drained analysis, 463, 669
drawing, to scale, 280
drilled piers, 553, 555
 drilled shafts, 553, 555
 drilling
 hollow stem auger drilling method, 82–83
 wet rotary drilling method, 81–82
 See also site investigation, drilling, and sampling
 Drucker-Prager criterion, 351
dry soil, 26
dry strength test, 87
dry unit weight, 31, 181–184
 Duncan-Chang model (DC model), 353–354
dunes, 20
durability, 72–73
dynamic compaction, 698
dynamic finite element analysis, 676
dynamic replacement (DR), 948
dynamic soil properties, earthquake geoengineering, 786

E
earth dams, internal erosion of, 851–854
earth pressure retaining walls
 at-rest earth pressure, 724–725
 defined, 716–717
 due to compaction, 725–726
 earth pressures in shrink-swell soils, 726
 theories, 717–723
 earthquake geoengineering
 design parameters, 794–797
 earthquake, defined, 784
 earthquake magnitude, 784–786
 generally, 784
 ground motion, 786–789
 ground response analysis, 792–794
 liquefaction, 797–801
 seismic design of foundations, 806–807
 seismic design of retaining walls, 802–805
 seismic hazard analysis, 789–792
 seismic slope analysis, 674–676
 seismic slope stability, 801
 seismic waves, 151–153
 edge drop, 518
 edge lift, 518
 effective stress
 analysis, 463
 saturated soils, 253
 unsaturated soils, 252–253
 effective stress analysis, 669
 effective stress cohesion intercept, 451
 effective stress method, for driven piles in fine-grained soil, 580
 effective stress principle, 3
 Eiffel Tower, 5, 528
elastici
y
defined, 345–347
deformation properties and, 401
deformation properties for homogenous soils, shallow
 foundations, 504
elasticity approach for layered soils, shallow foundations, 504–506
 electrical double layer, 29
electrical resistivity techniques, 160–161
electric pulse compaction, 940
electromagnetic methods
electromagnetic waves, 161–162
ground-penetrating radar (GPR), 162
time domain reflectometry (TDR), 162–165
electro-osmosis, 945
end-bearing piles, 553
engineering geology, generally
defined, 15
Earth and universe age, 15
geologic features, 19–20
geologic maps, 20
geologic time, 15–17
groundwater, defined, 20–22
rocks, defined, 17
soil creation, 17–19
Environmental Protection Agency, 873, 882, 883–884
environmental site assessments (ESAs), 877
epicenter, 784
epicentral distance, 784
equilibrium equations, for two-dimensional analysis
(calculating stresses), 246–247
Erdbaumechanik (Terzaghi), 2
erosion control, geosynthetics, 920–921
erosion of soils and scour problems
bridge scour, 831–841
countermeasures for erosion protection, 850–851
erosion function, measuring, 824–825
erosion models, 824
erosion phenomenon, 823–824
internal erosion of earth dams, 851–854
levee overtopping, 847–850
river meandering, 844–847
rock erosion, 826–829
soil erosion categories, 825–826
water velocity, 829–831
Woodrow Wilson Bridge case history, 841–844
erosion test, 215–218
error function, 307
escarpments, 19
excess pore pressure, 286
exit gradient, 380
expansive soils, 88
expected earthquake, 794
explosive compaction, 940
failure problems, solving, 281–283
falling head permeameter test (for saturated soils), 212–213
fate, contaminant transport and, 880
faults, 19, 71, 784
FEM approach, 745–746
FHWA method
for bored piles in coarse-grained soils, 578–580
for bored piles in fine-grained soils, 578
field oven test, 125–126
field values of hydraulic conductivity, lab values versus, 373
fill, preloading using, 941–943
filter paper method, water tension stress, 174–175
filter soil, 854
filtration, 907, 919
fine-grained soils, shear strength properties and, 453–456
finite difference method (FDM), 289–294
finite element method (FEM), 294–304, 674
first load modulus, 401
fissures, 71
fixed-head condition, 602–603
floating foundation, 523
flocculated structure, of soil, 30
floodplain deposits, 19
flow channel, 377
flow field, 377
flow net
calculations for, 379–381
defined, 377
drawing, for homogenous soil, 377–378
flow and, for layered soils, 380–382
for hydraulically anisotropic soil, 380–381
properties of, for homogenous soil, 378
flow of fluid/gas
generally, 370
water and air in unsaturated soil, 382–388
water in saturated soil, 370–382
flow path, 371
flow problems, solving, 286–289
flow rule, 352
folds, 19
foundations. See deep foundations; shallow foundations
foundations, geosynthetic, 918–919
Fourier, Jean Baptiste Joseph, 787
Fourier, Joseph, 473
Fourier acceleration spectrum, 787–789
Fourier’s Law, 473
Fourier spectrum, 787
free span distance, 518
free swell, 55

F
factor of safety, 76
failure (geomembrane), 908
G

- **Gamma-gamma logging**, 558
- *Gas*, generated by landfills, 895
- General bearing capacity equation, 494–496, 499
- Generalized equilibrium method, 665–667
- Geobags, 904
- Geocells, 904
- Geochemistry
 - Background, 874–877
 - Defined, 876
 - See also geoenvironmental engineering
- Geocomposites, 905
- Geoenvironmental engineering
 - Contamination, 877–883
 - Future considerations, 895–896
 - Generally, 872
 - Geochemistry background, 874–877
 - Landfills, 890–895
 - Laws and regulations, 873–874
 - Remediation, 872, 883–890
 - Types of wastes and contaminants, 872–873
 - See also geosynthetics
- Geofoams, 904
- Geogrids, 904
- Geologic maps, 20
- Geologic time, 15–17
- Geomembranes, 904, 908, 913. See also geosynthetics
- Geometry of the obstacle, 831
- Geonets, 904, 912
- Geophysics, elements
 - Electrical resistivity techniques, 160–161
 - Electromagnetic methods, 161–165
 - Generally, 151
 - Remote sensing techniques, 165–166
 - Seismic techniques, 151–159
- Geosynthetics
 - Clay liners, 904
 - Compressible inclusions, 922
 - Defined, 904
 - Erosion control, 920–921
 - Filtration and drainage, 919–920
 - Geosynthetic mat and column-supported embankment, 953–955
 - Landfill slopes, 922
 - Lightweight fills, 922
 - Liners and covers, 913–915
 - Properties of, 905–913
 - Reinforcement, 915–919
 - Thermal insulation, 922
 - Types of, 904–905
- Geotechnical centrifuge, 317–318
- Geotechnical engineering, generally
 - Defined, 1
 - Failures, 5
 - Foundations, 5
 - As fun, 5
 - Past and future of, 2
 - Recent and notable projects, 2–5
 - Units of measure, 5–10
- Geotextiles, 904
- Governing differential equation (GDE), 882
- Gow, Charles, 104
- Grains, 26
- Gravel
 - Composition, 27
 - Particle size, shape, color, 26–27
- Gravimetric water content, 31–32
- Gravity walls, 727–729, 802–804
- Ground, 938
- Ground freezing, 945
- Ground motion, earthquake and, 786–789
- Ground-penetrating radar (GPR), 162
- Ground response, 792
- Ground response analysis, 792
- Ground rolls, 153
- Groundwater
 - Defined, 20–22
 - Deformation properties and, 423
 - Groundwater table, 20
 - Remediation, geoenvironmental engineering, 888–890
 - Site investigation, drilling, and sampling, 85–87
 - Water stress conditions and, 679 (See also slope stability)
- Group velocity, 157
- Grout, 949
- Grouted barriers, 885
- Grouting techniques, for soil improvement, 948–953

H

- Hand shaking test, 87
- Hand tampers, 698
- Handy, Richard, 117
- Hardening rule, 352–353
- Hardness (rock), 73
- Harmonic functions, 377
- Hazard level, 797
heads, of water, 371
head (water), 371
heat conduction theory, 473–474
heat flow, 472
heat transfer rate, 472
heave and critical block, 380
high air entry porous stone, 173
histogram, 304
hollow stem auger drilling method, 82–83
hurricanes
defined, 850
Hurricane Katrina levee case history, 848–850
hydration, 949
hydraulic conductivity
defined, 371–372
of saturated soils, 371–373
of unsaturated soils, for water and for air, 382–384
hydraulic conductivity field tests
borehole tests, 127–129
cone penetrometer dissipation test (CPDT), 129
generally, 127
sealed double-ring infiltration test (SDRIT), 130–131	
two-stage borehole permeameter test (TSBPT), 131–132
hydraulic gradient, 371
hydraulic hammers, 560
hydro-blasting compaction, 945
hydrograph, 830
hydrometer analysis, 49, 50–53
hypocenter, 784
ice lenses, 479
igneous rocks, 17, 68
impact hammers, 560
impedance log, 560
impulse response method, 559–560
incremental loading procedure, 185
independent stress state variables, 264
inertial interaction, 806
initial tangent modulus (G_{max})
defined, 411–412
reduction of G_{max} with strain (G/G_{max} curve), 412–413
inliers, 19
in-plane, 907
in situ air sparging (ISAS), 888
in situ flushing, 888
in situ tests, 80–81
borehole shear test (BST), 117–119
California bearing ratio test (CBR), 122
compaction control tests, 124–127
cone penetration test (CPT), 107–111
dialatometer test (DMT), 114–115
generally, 104
hydraulic conductivity field tests, 127–132
offshore, 132–134
plate load test (PLT), 119–122
pocket erodometer test (PET), 123–124
pocket penetrometer test (PPT), 122–123
pressuremeter test (PMT), 111–114
shear strength properties and, 450–452
soil modulus and correlation with, 408
standard penetration test (SPT), 104–107
torvane test (TVT), 122–123
vane shear test (VST), 115–117
in situ waste containment, 885
intelligent compaction, 698, 703
interaction factor method, 590
interface shear stress, 829
International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE), 49, 174, 609
ions, 160
ironing, 708
isomorphous, defined, 28
isomorphous substitution, 28

J
Janbu chart, 658–659
jet grouting, 950
joints, 71
Joule, James Prescott, 472
joules, defined, 472
jumping jacks, 698
junction strength, 909

K
karst, 19
Kelvin, 6, 472
Kelvin-Voigt model, 347–348
Khalili rule, 717
kilogram, 5
kilo-Newton, 10
kilo-Pascal, 10
kinematic interaction, 806

L
laboratory tests
air permeability test for unsaturated soils, 214–215
collapse test, 193
laboratory tests (continued)
 compaction test, dry unit weight, 181–184
 compaction test, soil modulus, 184–185
 consolidation test, 185–190
 constant head permeameter test, 209–212
 direct shear test, 193–195
 erosion test, 215–218
 falling head permeameter test for saturated soils, 212–213
generally, 172
 lab vane test, 206
 measurements, 172–181
 resonant column test, 202–206
 shrink test, 192–193
 simple shear test, 195–196
 soil water retention curve (soil water characteristic curve) test, 206–209
 swell test, 190–192
 triaxial test, 198–202
 unconfined compression test, 196–198
 wetting front test for unsaturated soils, 213–214
lab values of hydraulic conductivity, field values versus, 373
lab vane test, 206
lacustrine deposits, 88
landfills, 890–895
Laplace equation, 377
latent heat, 475
laterite, 88
leachate collection, 893–894
levee overtopping, erosion and, 847–850
LIDAR (laser radar), 165
light nonaqueous phase liquids (LNAPLs), 876–877
lightweight deflectometer (LWD) test, 126
lime, 952
limit pressure, 353
limit states
defined, 488–489
limit state design (LSD), 490
limit state function, 488
linear elasticity, 401
linear viscoelasticity, 347–349
liners, geosynthetic, 904, 913–915
liquefaction
 earthquake geotechnology, 797–801
 sand liquefaction, 375
liquidity index, 57
liquid limit, 53
live bed scour, 831
load
cyclic loading effect, 604–605
horizontal load and moment, pile group, 606–609
horizontal load and moment, single pile, 598–606
load and resistance factor design (LRFD), 490, 595–596
loading-collapse curve (LC curve), 356
loading rate, undrained strength and, 456
load settlement curve approach, 500–502
normal compression loading (NCL) curve, 355
one-way cyclic loading, 583
plate load test (PLT), 119–122
rate of loading effect, 603–604
surface loading and retaining walls, 722–723
testing, pile installation, 571–575
vertical load, pile group, 587–591
vertical load, single pile, 575–587
See also deep foundations; shallow foundations
loam, 89
loess, 89
long flexible pile, 599–601
longitudinal distortion, 522
long-term analysis, 463, 669
love waves, 153
LPC-CPT method, 578
LPC-PMT method, 576–578

M
machine drive power, 705
major principal stress, 245
manometer, 173
Marchetti, Silvano, 114
marl, 89
mat foundation
defined, 385
large mat foundations, 523–528
matric suction, 256–257
maximum dry density, 183
maximum shear stress, scour and, 837–839
Maxwell, James, 348
Maxwell model, 347–348
meandering, by rivers, 844–847
MEANDER method, 844
meander migration, 19
mechanically stabilized earth (MSE) walls, 729–732, 805, 915–918
mechanical waves, 161
Menard, Louis, 111
metamorphic rocks, 17, 68
meter, 5
methane, 895
method of slices, 661–667
Michelangelo, 2
microbial methods, for soil improvement, 952
microtiles, 557
minor principal stress, 245
Mississippi River, locks and dams of, 3
mixing method, for grouting, 951–952
mobility, 559
Modified Cam Clay (MCC) model, 354–355
Modified Proctor Compaction Test (MPCT), 181, 183–184
modulus of deformation. See deformation properties
modulus of elasticity, 345–347
modulus of subgrade reaction, 405–406, 602
Mohr, Otto, 2, 247, 350
Mohr circle
 earth pressure theory, 720–721
 in three dimensions, 248
 for two-dimensional analysis, 247–248
Mohr-Coulomb yield criterion, 350
moment magnitude, 785
monitored natural attenuation (MNA), 889
montmorillonite, 89
Morgenstern chart, 659–661
mortar, 949
movement at depth in the slope, 676
movements of the slope surface, 676

N
National Geotechnical Experimentation Site, Texas A&M University, 485
natural unit weight, 31
negative pore pressure, 251
net increase in stress, 524
net settlement, 524
neutral point, 592
Newmark’s chart, 509–510
Newmark’s displacement method, 675–676
Newton, 6, 10
nodes, 289
nonaqueous phase liquids (NAPLs), 876–877
nonclastic rocks, 68
nondestructive testing (NDT), 558
nondispersive material, 157
normal compression loading (NCL) curve, 355
normality rule, 352
normal strain, 179–180, 249–250
normal stress, 245–246
nuclear density/water content test, 125
numerical simulation methods
 boundary element method (BEM), 304
 discrete element method (DEM), 304–305
 finite difference method (FDM), 289–294
 finite element method (FEM), 294–304
 numerical solutions, defined, 289
O
offshore site investigations
generally, 89–94
geophysical investigations, 94–95
technical drilling, 95–98
technical sampling, 99
in situ tests, 132–134
one-dimensional flow, 384–386
100-year flood, 830
one-way cyclic loading, 583
optimum water content, 183
organic clay/silt, 89
osmosis, 30
osmotic suction, 258
Osterberg load cell test, 572–573
outcrops, 19
outliers, 19
overconsolidated soil, 403, 448, 455
overconsolidation ratio (OCR), 408
overturning moment, 554, 607
P
Panama Canal, 3
particles, of soil. See soil components
particle velocity, 151–152
particulate grouting, 949
passive earth pressure retaining walls, 716–717
peak ground acceleration (PGA), 786
peak ground displacement (PGD), 786
peak ground velocity (PGV), 786
peat, 89
peel strength, 911
perched water, 22
permafrost, 20, 478
permanent set, 561
permeability, 373
permeance (geomembrane), 908
phase velocity, 157
phicometer, 119
phreatic surface, 21, 87, 667
pier scour, 832–834
piezometric surface, 21, 667–668
pile driving analyzer (PDA), 568–569
pile installation
 of bored piles, 555–558
 information from pile driving measurements, 566–570
 installation of driven piles, 560–561
 load testing, 571–575
 nondestructive testing of bored piles, 558–560
 pile driving formulas, 561–562
pile installation (continued)
 suction caissons, 570–571
 wave equation analysis, 563–566
 wave propagation in a pile, 562–563
piston samplers, 85
plane strain, 346
plane stress, 346
plasticity, 349–353, 353. See also soil constitutive models
 plasticity index, 53, 57, 58, 513
 plastic limit, 53
 plastic potential function, 352
plasticity index, 53, 57, 58, 513
plastic limit, 53
plastic potential function, 352
plate load test (PLT), 119–122
plugging, 99
pocket erodometer test (PET), 123–124
pocket penetrometer test (PPT), 122–123
 See also deformation properties
Pole method, 247–248
polyaromatic hydrocarbons (PAHs), 882
polychlorinated biphenyls (PCBs), 876, 882
pore-pressure parameters (A and B), 458–459
pores, 26
pore water pressure, 173
positive pore pressure, 251
potential vertical rise (PVR) method, 514
precise method, 584
prediction methods, design methods versus, 583–584
prefabricated vertical drains (PVDs), 943–944
preloading
 using fill, 941–943
 using vacuum, 943–944
pressuremeter test (PMT), 111–114, 418–419
pressure plate apparatus (PPA), 177–178
principal planes, 245
probability and risk analysis
 background, 305–308
 probabilistic approach, 305
 procedure for probability approach, 308–310, 312–313
 risk and acceptable risk, 310–312
problem-solving methods
 artificial neural network (ANN) method, 314–315
 continuum mechanics methods, 281–289
 dimensional analysis, 315–316
 drawing to scale and, 280
generally, 280
 numerical simulation methods, 289–305
 primary laws, 280
 probability and risk analysis, 305–313
 regression analysis, 313–314
 similitude laws for experimental simulations, 317–319
 types of analyses, 319
Proctor, Ralph, 181
progressive failure, 669
pseudostatic method, 674–675
psychrometers, 176–177
pull-out design, retaining walls and, 730–732, 748–749
pump and treat, 888
punching, 913
P waves, 152
P-y curve approach, 605–606, 733–735, 745–746
Q
 quantity of flow, 379
 quick clay, 89, 375
 quick sand, 89, 374–375
R
 radar satellite, 165
 radiation, 472
 raft foundations, 523
 rammed aggregate pier method, 946
 rams, 560
 Rankine, William, 2, 719
 Rankine earth pressure theory, 719–720
 rapid impact compaction, 940
 rare earthquake, 794
 rate of loading effect, 603–604
 Rayleigh waves, 153, 157
 recompression index, 407–408
 recovery ratio, 73
 recurrence interval, 791
 reflection, seismic, 153–154
 refraction, seismic, 154–155
 refractive index, 154
 regression analysis, 313–314
 relative humidity, total suction and, 258–260
 relaxation, 348
 relaxation modulus function, 348–349
 reliability index, 306
 remediation, geoenvironmental engineering, 872, 883–890
 remolded shear strength, 446
 remote sensing techniques, 165–166
 replacement. See soil improvement
 residual shear strength, 446
 residual soils, 89
 residual strength, 461
 residual stresses, 567
 resilient modulus, 402, 419–420
 resistivity tomography, 160–161
 resonant column test, 202–206
response spectrum, 787
retaining walls
 active, at rest, passive earth pressure, and associated
displacement, 716–717
anchored walls and strutted walls, 735–746
at-rest earth pressure, 724–725
bottom-up, defined, 716
cantilever top-down walls, 732–735
displacements, 726–727
earth pressure due to compaction, 725–726
earth pressures in shrink-swell soils, 726
earth pressure theories, 717–723
gravity walls, 727–729
mechanically stabilized earth (MSE) walls, 729–732, 805,
 915–918
 seismic design of, 802–805
soil nail walls, 746–751
top-down, defined, 716
trenches, 751–752
undrained behavior of fine-grained soils, 723–724
return period, 791
revegetation, 920
Reynolds Number, 216
rib strength, 909
Richter scale, 784
risk analysis
 geoenvironmental engineering, 883–885
 probability and risk analysis, 305–312
rivers
 Brazos River meander case history, 845–847
 contraction scour, 835
 river meandering, defined, 844
 See also erosion of soils and scour problems
river terraces, 20
road reinforcement, geosynthetics and, 815
rock erosion, 826–829
rock mass erosion, 828
rock quality designation, 73
rocks
 definitions, 17, 68
 discontinuities in, 71
 permafrost, 76
 rock engineering problems, 74–76
 rock engineering properties, 72–73
 rock groups and identification, 68
 rock index properties, 71–72
 rock mass, defined, 68
 rock mass rating, 73–74
 rock mass vs. rock substance, 68–71
 rock substance, defined, 68
 rock substance erosion, 828
rubber balloon test (RBT), 124–125
 rule of the middle third, 729
S
 salt solution equilibrium (SSE), 178–179
 sampling
 disturbance, 83–84
 methods, 84–85
 offshore geotechnical sampling, 99
 See also site investigation, drilling, and sampling
sand
 composition, 27
 particle size, shape, color, 26–27
 sand cone test (SCT), 124
 sand liquefaction, 375
 San Jacinto Monument, 527–528
 satellite imaging, 165–166
 saturated flow, 382
 saturated soil
 defined, 26
 effective stress, 253
 water flow in, 370–382
 water stress predictions, 357–358
 saturated unit weight, 31
 saturation, 784
 scaled model, similitude laws application (example), 318
 Schmidt hammer, 73
scour problems. See erosion of soils and scour problems
 sealed double-ring infiltrometer test (SDRIT), 130–131
 second, as unit of measure, 5
 secondary compression index, 512–513
 secondary consolidation, 407–408
 secondary recompression index, 407–408
 sedimentary rocks, 17, 68
 seepage analysis, 668
 seepage force, 371, 373–374, 652–653
 seepage velocity, 211, 370
 seismic cone test, 155–156
 seismic dilatometer test, 155–156
 seismic hazard analysis, 789–791
 seismic reflection, 94, 153–154
 seismic refraction, 94, 154–155
 seismic slope analysis, 674–676
 seismic slope stability, 801
 seismic waves, 151–153
 separation (geomembrane), 908, 913
 service limit state, 489, 502
settlement
 consolidation settlement, magnitude, 510–511
 consolidation settlement, time rate, 511
settlement (continued)
creep settlement, 511–513
element of settlement calculations, 524–527
general behavior, 502–504
geosynthetics and, 919
load settlement curve approach, 500–502
of piles, deep foundations, 584–587, 589–591
See also shallow foundations
shale, 89
shallow foundations
case history, 485
cost of, 553
definitions, 485
definitions and design strategy, 485–488
foundations on shrink-swell soils, 517–522
general behavior, 491
large mat foundations, 523–528
limit states, load and resistance factors, and factor of safety, 488–491
load settlement curve approach, 500–502
seismic design, 806–807
settlement, 502–513
shrink-swell movement, swelling pressures, and collapse movement, 513–517
tolerable movements, 522–523
ultimate bearing capacity, 491–500
SHANSEP method, 456–458
shape function matrix, 295
shear modulus, 346
shear strain, 180, 249–250
shear strength properties
basic experiments, 443–445
estimating effective stress shear strength parameters, 451–454
estimating undrained shear strength values, 459–461
experimental determination of shear strength (lab tests, in situ tests), 450–451
generally, 443
pore-pressure parameters A and B, 458–459
residual strength parameters and sensitivity, 461–462
SHANSEP method, 456–458
shear strength, defined, 443
shear strength envelope, 447–449
strength profiles, 462–463
stress-strain curve, water stress response, and stress path, 445–447
transformation from effective stress solution to undrained strength solution, 463
types of analyses, 463
undrained shear strength for unsaturated soils, 458
undrained shear strength of saturated fine-grained soils, 454–456
unsaturated soils, 449–450, 458
shear stress, 245–246
Shelby tube sampler, 84
short rigid pile, 601–602
short-term analysis, 463, 669
short-term case, 454
shrinkage limit, 53, 57, 513
shrink-swell deformation behavior, 422–424
shrink-swell index, 57, 423–424, 513
shrink-swell modulus, 422–424
shrink-swell movement, shallow foundations and, 513–517, 514
shrink-swell soils
depth foundations, piles in, 597–598
defined, 89
earth pressure, retaining walls, 726
foundations on, 517–522
shrink test, 192–193
sidescan sonars, 95
sieve analysis, 49–50
sign convention, for stresses and strains, 246
silt
composition, 27–28
particle size, shape, color, 26–27
silt fences, 921
similitude laws, for experimental simulations, 317–319
simple shear test, 195–196
simply supported bridges, 522
sinkholes, 19
site classes, 795
site investigation, drilling, and sampling
drilling methods, 81–83
field identification and boring logs, 87–88
generally, 80
groundwater level, 85–87
number and depth of borings and in situ tests, 80–81
offshore geophysical investigations, 94–95
offshore geotechnical drilling, 95–98
offshore geotechnical sampling, 99
offshore site investigations, 89–94
preliminary site investigation, 80
sampling disturbance, 83–84
sampling methods, 84–85
soil names, 88–89
slaking durability test, 72–73
slickensided clay, 89
slopes, geosynthetic, 918
slope stability
chart methods, 655–661
design approach, 649–650
finite element analysis, 674
generally, 649
infinite slopes, 650–652
method of slices, 661–667
monitoring, 676–679
plane surfaces, 654
probabilistic approach, 671–672
progressive failure in strain-softening soils, 669
reinforced slopes, 670
repair methods, 679–680
seepage force in stability analysis, 652–653
seismic slope analysis, 674–676
shallow slide failures in compacted unsaturated embankments, 669–670
slopes with water in tensile cracks, 654–655
three-dimensional circular failure analysis, 672–673
types of analyses, 668–669
water stress for slope stability, 667–668
slope stability, landfills, 894–895, 922
slurry trench barriers, 885
Snell’s law, 154
softening rule, 352–353
soil, generally
creation of, 17–19
soil names, 88–89 (See also soil classification; soil components)
stresses in three soil phases, 251–252 (See also stresses and strains)
See also saturated soil; unsaturated soil
soil cement mixing, 951
soil classification
Atterberg limits, 53–56
classification parameters, 56–57
engineering significance of classification parameters and plasticity chart, 58
hydrometer analysis, 50–53
sieve analysis, 49–50
tests for, 49
Unified Soil Classification System, 49, 58–59
soil components
composition of clay, silt, 27–28
composition of gravel, sand, silt, 27
particle behavior, 28–30
particles, liquids, and gas, 26
particle size, shape, color, 26–27
saturated, defined, 26
soil structure, 30
three-phase diagram of, 30–31
unsaturated, defined, 26
weight-volume parameters, 31–32
weight-volume parameters, measurement, 32–33
weight-volume parameters, solving problems of, 33–35
soil constitutive models
common models, 353–358
elasticity, 345–347
linear viscoelasticity, 347–349
plasticity, 349–353
soil model, defined, 345
soil contact erosion, 852
soil erosion categories, 825–826. See also erosion of soils and scour problems
soil improvement
generally, 938
with grouting and admixtures, 948–953
with inclusions, 953–955
with replacement, 946–948
without admixture in coarse-grained soils, 938–940
without admixture in fine-grained soils, 941–945
soil modulus, compaction test, 184–185
soil nails, 679
soil nail walls, 746–751
soil remediation, geoenvironmental engineering, 887–888
soil water retention curve (soil water characteristic curve) test, 206–209
soil water retention curve (SWRC), 262–264
sonic echo method, 558–559
soundings, 80–81
sound waves, 152
specific gravity test, 33
specific heat, 473
specific surface, 373
spectral analysis of surface waves, 156
spectral analysis of surface waves (SASW), 156–157, 156–159
Spencer chart, 657–658
spherical coordinates, 250–251
split spoon sampler, 84
spread footing, 485
SPT blow count, 87, 104
staking durability test, 72
standard penetration test (SPT), 33, 104–107
Standard Proctor Compaction Test (SPCT), 181–184
standpipe, 173
standpipe piezometers, 86
static load tests, 571–572
Statnamic load test, 573–575
steam hammers, 560
steel sheet pile barriers, 885–886
stiffened slab on grade, 485, 517–519
INDEX

stiffness, 906
Stokes, George, 52
Stokoe, Ken, 156
stone columns, 946
strain gages, 180
strain hardening/softening, 353
strain rate, 404
strain tensor, 249–250
stresses and strains
area ratio factors, 253–254
calculating stresses on any plane, equilibrium equations
for two-dimensional analysis, 246–247
calculating stresses on any plane, Mohr circle for
two-dimensional analysis, 247–248
cylindrical coordinates and spherical coordinates,
250–251
displacements, 249
effective stress (saturated soils), 253
effective stress (unsaturated soils), 252–253
generally, 245
independent stress state variables, 264
Mohr circle in three dimensions, 248
net increase in stress, 524
normal strain, shear strain, strain tensor, 179–180,
249–250
precision on water content and water tension, 260
sign convention for stresses and strains, 246
soil water retention curve (SWRC), 262–264
strain rate, 404
strains, defined, 249
stress, defined, 245
stresses in three soil phases, 251–252
stress history factor, 403
stress increase with depth, for shallow foundations,
508–510
stress invariants, 248–249
stress profile at rest in unsaturated soils, 260–262
stress-strain curves, 251
stress vector, normal stress, shear stress, stress tensor,
245–246
water stress profiles, 254–255
water tension and suction, 255–260
See also deformation properties; retaining walls; shear
strength properties; soil constitutive models
stress-strain curve, 445–447
strip footings, 385
structure, of soil, 30
strutted walls, 735–746
sub-bottom profilers, 95
submerged unit weight, 31
subsidence, 19, 22

Subsurface Contamination Reference Guide (US EPA),
882
suction, 26, 29, 251, 255
suction caissons, 570–571
suffusion, 852
S waves, 152
swelling pressure, 423
swell limit, 34, 191
swell test, 190–192
synclines, 19

T
TAMU-Slab method, 518–519
Taylor chart, 655–657
tear, 913
temperature gradient, 472
tendon bond anchor, 741
tendon unbonded length, 740, 741
tensiometers, 177
tension strength, 443
Terzaghi, Karl, 2
Texas A&M University, 485
thermal conductivity, 472
thermocouple psychrometers, 176
thermodynamics for soil problems
applications, 477–478
axisymmetric heat propagation, 474–475
definitions, 472–473
frozen soils, 478–479
generally, 472
heat conduction theory, 473–474
multilayer systems, 476–477
thermal properties of soils, 475–476
thin-wall steel tube, 84
Thompson, William (First Baron Kelvin), 348
thread rolling test, 87
three-dimensional air flow, 387–388
three-dimensional circular failure analysis, 672–673
three-dimensional water flow, 386–387
three-phase diagram, of soil components, 30–31
till, 89
time domain reflectometry (TDR), 162–165
Tokyo Haneda airport, 3
tolerable movement, shallow foundations and,
522–523
top-down retaining walls, defined, 716
torvane test (TVT), 122–123
total (normal) stress analysis, 669
total stress analysis, 463, 669
total unit weight, 31
toughness test, 87
Tower of Pisa, 2, 3, 487–488, 528
toxicity characteristics leaching procedure (TCLP), 876
transverse wave, 162
Trautwein, Steve, 130
trees, osmotic suction and, 260
trenches, retaining walls and, 751–752
Tresca yield criterion, 350
triangular test, 198–202
tissue cohesion, 453
tuff, 89
two-dimensional flow problem, 375–377
two-stage borehole permeameter test (TSBPT), 131–132
2 to 1 method, 508
two-way cyclic loading, 583

U
ultimate bearing capacity, 491–500
ultimate capacity, 599, 607–609
ultimate limit state, 489
unconfined compression test, 196–198
unconsolidated undrained triaxial test (UUT), 450–451
underreams, 555
undrained analysis, 463, 669
undrained behavior of fine-grained soils, retaining walls and, 723–724
undrained case, 454
undrained shear strength, 454
Unified Rock Classification System, 73
Unified Soil Classification System, 49, 58–59
unit cell, 953
United States Geological Service, 786
units of measure, 5–10
unit weight of solids, 30
unsaturated flow, 382
unsaturated soil
defined, 26
effective stress, 252–253
formation and effect of drying and wetting on the modulus, 420–422
shear strength properties, 449–450, 458
stress profile at rest in, 260–262
three-phase soils, 1
ultimate bearing capacity of, 499–500
water and air flow in, 382–388
water stress predictions, 357–358
uplift force, on buried structures, 380
U.S. Resource Conservation and Recovery Act (RCRA), 891–892

V
vacuum, preloading using, 943–944
Van der Waals forces, 29, 257
vane shear test (VST), 115–117
varved clay, 89
velocity hydrograph, 840
velocity index, 73
vibratory hammers, 560
vibratory rollers, 704–705
vibrocompaction, 938–940
viscous exponent, 122
Voigt, Woldemar, 348
Von Mises, Richard, 351
Von Mises criterion, 351

W
waffle slab, 517, 518
wash hands test, 87
Washington Monument, 2, 525–526, 527–528
wastes, types of, 872–873. See also geoenvironmental engineering
water, generally
adsorbed water layer, 29
clear water scour, 831
compression stress, 173
deep water, 833
flow of, in saturated soil, 370–382
flow of, in unsaturated soil, 382–388
gravimetric water content, 31–32
perched water, 22
stresses and strains, precision on water content and water tension, 260
stress profiles, 254–255
stress response, 445–447 (See also shear strength properties)
tension and suction, 255–260
tension stress, 173–176
water content, defined, 263
water content vs. strain curve, 513–514
water stress, in flow net, 380
water stress predictions, 357–358
water-vapor transmission, 908
wave amplitude, 152
wave equation analysis, 561, 562–566
wave frequency, 152
wave velocity, 151
weight-volume parameters
 generally, 31–32
measurement, 32–33
weight-volume parameters (continued)
 solving problems of, 33–35
 See also soil components
 wet rotary drilling method, 81–82, 112
 wetting front test (for unsaturated soils), 213–214
 wick drains, 943
 wide width strength, 909
 Woodrow Wilson Bridge, 841–844
 work hardening/softening, 353
 working stress design (WSD), 490
 World Trade Center, 74–76, 528

Y
 yield horizontal seismic coefficient, 675
 yielding, of soil, 350–352
 yield stress, 448
 Young, Thomas, 345, 401
 Young’s modulus, 345–347, 401, 406–407. See also
 deformation properties

Z
 zone of influence, 507–508