INDEX

access time, 29, 92, 126, 130
accessing patterns, 102
adaptive branch prediction, 99
advanced encryption standard, 226, 246, 301
advanced high-performance bus, 174
AES, 226, 246, 301
AHB, 174
AMBA, 25, 173
analytic bus models, 183
application, specific
 instruction processors, 6, 74, 208
 integrated circuit, 5, 69, 77
application studies, 246
application throughput requirements, 253
arbitration, 170
architecture, 2
architecture description, 214, 215
area, 27, 29, 41, 209
area model, 56
ARM pipeline, 119
array processors, 15
ASICs, 5, 41, 69, 77, 210, 229
ASIP, 6, 208
ASOC, 285
aspect ratio, 49, 56, 181
associative mapped, 132
asynchronous crossbar interconnect, 196
asynchronous system, 44
audio, 4, 7, 226, 266, 276
autonomous optimization control, 307, 310

battery power, 59, 286, 288
bimodal, 95
block size, 110, 129, 251, 274
blocking, 157, 185, 195, 197, 203
branch, 93–122
 elimination, 94
 history, 98–100, 120
 management techniques, 95
 prediction, 97
 table buffer, 95
 target buffer, 96
 target capture, 94
branch prediction
 dynamic, 94, 97
 static, 94, 97
branch speedup, 94
branches, 82, 87, 93
breaks, 72, 86, 87
BTB, 94–96, 112, 121
buffer, 91
 design, 91
 mean request, 91
buffers, 91
bus, 165
 bridge, 24, 171, 175, 177, 250
 transaction, 168, 186
 varieties, 172
 wrappers, 181, 205
bus based approach, 24, 197, 205
bus versus NOC, 201
bypassing, 90
cache, 123
 directory, 131
 hits, 129
 index, 132
INDEX

cache (cont’d)
misses, 129, 135
offset, 132
tag, 132

cache data, 133
cache memory, 128
CAS, 150, 152
CGRA, 6, 7, 208, 209
chaining, 16, 104
Chebyshev’s inequality, 92
chip floor planning, 54
chip implanted credit card, 286
CLBs, 38, 221, 238
clock overhead, 44, 46
clock skew, 44
coarse grained reconfigurable architecture, 6, 7, 209
code density, 138
column address strobe, 150
combined prediction method, 100
communication bandwidth, 166
communication latency, 167
communications laser, 293
comparing networks, 204
completion signal, 44
complex programmable logic device, 211
concurrent processors, 101
condition code, 38, 81, 85
configurability, 40, 69
configurable logic block, 38, 221
contention time, 186
control flow scheduling, 112
copy-back, 134
CoreConnect bus, 24, 79, 169, 173, 177
cost-performance ratio, 40
CPLD, 211
custom instructions, 217, 231
customisation, 209
customizing instruction processors, 212
cycle, 43
cycle time, 39, 43

D-caches, 138
data dependencies, 109
data flow scheduling, 111
data interlocks, 89
data type modifiers, 84
dataflow, 113
dataflow graph, 217

DCT, 233, 263, 268, 272, 278, 282
DDR SDRAM, 149
defect density, 50
defects, 47, 48
deployment, 302
design complexity, 29, 34
design effort, 302
design fault, 62
design for testability, 68
design iteration, 27, 248
design mapping, 227
design target miss rate, 134, 138
detecting instruction concurrency, 110
diameter of the network, 190
die, 47
die area, 40
die floorplan, 57
digital still camera, 250
direct mapping, 131
direct networks, 194
directory hit, 131
dirty bit, 135
dirty line, 136
distance, 190
distributed memory, 18
divide unit, 114
DRAM, 149
DSP, 208
DSP processors, 7
DTMR, 134
dynamic memory controller chip, 151
dynamic network, 189, 192, 202
dynamic pipelined processor, 86
dynamic prediction, 98–100
dynamic random access memory, 148–152
dynamic strategy, 94

ECC, 98–100
economics of a processor, 33
eDRAM, 128, 145
802.16, 279
embedded DRAM, 145
embedded processor, 61
emotion engine, 1
error, 62
 correcting codes, 65–68
correction, 64
detection, 63
essential dependency, 109–110
exceptions, 84
execution unit, 90

failure, 62
fault, 62
FDIV, 256
feature size, 51, 55
fetch on demand, 130
field programmable gate array, 6, 36, 208, 304
FIFO, 136
first in–first out, 136
fixed strategy, 94
flash, 126
flight, 298
FMAC, 256–258
forwarding, 90
FPGA, 6, 36, 208, 304
fruit fly, 298
fully associative mapping, 131
fundamental resolution, 51
gate delay, 46
general-purpose processors, 6, 209
geometric block code, 65
global miss rate, 141
GPP, 6, 209
H.263, 271
H.264, 272
Hamming code, 66
hit ratio, 96
hypercube, 65, 190
I-buffer, 94
I-caches, 138
ideal and practical scaling, 53
ILP, 8, 101
image compression, 262
imprecise interrupt, 116
index bits, 131
initial design, 27
initial system design, 248
instance-specific design, 228
instruction (action) retry, 63
instruction decoder, 43
data interlocks, 89
instruction packets, 107
instruction set, 5
architecture, 81
mnemonic, 84
instruction unit, 86, 88
instruction window, 110
instruction-level parallelism, 8, 101
integrated, 138
cache, 135, 138
Intel Pentium, 160
intellectual property, 24, 76, 165
interconnect
architectures, 166
interface, 166
network, 18
interleaved caches, 160
interleaved memory, 156, 160
interlock unit, 88
interlocks, 88, 89
interrupts, 84
Itanium, 1
JPEG compression, 263
(k, d) networks, 190
least recently used, 136
Leon, 77
line, 129
line replacement, 135
line size, 129
lithography, 39, 48, 51
Little’s theorem, 91
load-store architecture, 81
local miss rate, 141
logical inclusion, 143
LRU, 136
Makimoto’s wave, 41
manufacturing faults, 68
mapping designs onto reconfigurable devices, 226
marginal utility, 50
Markov’s inequality, 92
maximum rate buffer, 92
maximum request rate buffers, 91
mean request rate buffers, 91
memory bandwidth, 127
buffers, 156
chip, 149
memory bandwidth (cont’d)
 consistency, 18, 19, 120
 design, 123
 model, 125
 module, 151
memory timing controller, 151
microarchitecture, 3
MicroBlaze, 77
MIMD, 18
modeling product economics, 33
module access time, 147
module cycle time, 147
motion, 298
motion estimation, 225, 268–276
MP3 audio decoding, 276
multi-level cache, 139
multiple clock domains, 168
multiple-issue machines, 107
multiple-issue pipelined processor, 86
multi-programmed environment, 137
multi-programming effects, 137
multi-stage interconnection network, 192

NAND, 126
net die area, 55
network interface unit, 197
network on a chip, 25, 167
networked ASOC, 296
nibble mode, 152
Nios, 77
NOC, 187
NOC layered architecture, 198
nonblocking, 197
nonblocking cache, 136
NOR, 126
not-in-TLB, 22, 144
 rate, 130, 144
 time, 130

offered occupancy, 185
offered request rate, 185
on-chip peripheral bus, 177
on-die memory design, 145
OPB, 179
OpenRISC, 77
OpenSPARC, 77
optimal pipelining, 45
optimized design, 27

optimum pipeline, 44
ordering dependency, 109, 114
out-of-order execution, 116
output dependency, 109

page mode, 152
parity, 65
performance, 40, 47
physical fault, 62
physical word sizes, 129
pipeline delays, 86
pipelined processor, 10, 43, 107
PlayStation, 1
PLB, 178
Poisson
distribution, 50
distribution of defects, 50
fault equation, 63
post-deployment, 307
power, 57
power consumption, 39
power operating environments, 58
prefetch, 130
prefetching cache, 131
principle of inclusion, 140
printed batteries, 290
process address, 22
processor, 74
core selection, 78
customization approaches, 214
cycle, 42
local bus, 177
sub-units, 50
product costs, 34
product economics, 31
protocols, 170
prototyping, 255

quality-of-service, 199
quantization, 264, 268, 272–276

random replacement (RAND), 136
RAS, 150, 152
RAW, 109
rbe, 51, 70, 79
re-use, 302
read after write, 109
read-only memory, 19
rechargeable batteries, 289
reconfigurable
designs, 69
devices, 69, 211
fabric, 211
functional units, 209
interconnects, 222
logic, 4
technologies, 218
reconfiguration, 35, 64, 235
 overhead analysis, 235
register bit equivalent, 51, 79
register bypassing, 90
register-memory architecture, 81
reliability, 40, 62
rename registers, 111
reorder buffer, 12, 117
requirements, 26
reservation stations, 113, 115, 116
result bypassing, 16
RF, 293
RFID, 286
RISC, 1, 82
ROM, 19
routing architecture, 223
row address strobe, 150
saturating counter, 98
scavenged energy, 289
scheduling, 111
scratchpad memory, 128
scrubbing, 69
SDRAM, 149
SECDED, 64, 66
sectored cache, 139
self-optimization, 285
self-verification, 285
sensing, 296
sequentiality, 129
SER, 146
set associative mapping, 131, 133
shared memory, 18
SIMD, 1, 7, 249, 257, 261
 architectures, 14
 array, 7
simple processor, 158
simple sequential processor, 9
SimpleScalar toolset, 253
situation-specific optimization, 307, 309
smart card, 286
Smart Dust, 286
SOC
 memory considerations, 21
 standard buses, 173
 system model, 4
 soft and firm processor, 118
 soft error rate, 146
 soft processor, 76, 148, 231
 software configurable processors, 224
 software defined radio, 279
 solo miss rate, 141
 spatial locality, 129
 specifications, 26
 split cache, 139
 split I and D caches, 138
static
 interlocks, 89
 power, 58
 prediction, 97
 strategy, 94, 97
static networks, 190, 203
static pipelined processor, 87
Strecker’s model, 158
stride, 101, 102
structured ASIC, 7
superscalar, 7, 101
 machines, 108
 processors, 12, 108
switching power, 58
synchronous system, 44
system design process, 248
system effects, 137
system on a board, 4
systems engineering, 1
tag, 132
temporal locality, 129
tenured buses, 172, 176
3D graphics processors, 254
thumb instructions, 82
TLB, 22, 143
TMR, 63
trace scheduling, 107
transaction effects, 137
transaction processing, 137
translation lookaside buffer, 22, 143
triple modular redundancy, 63
true inclusion, 143