Adjoined matrix, 108–109
Alpha inflation controlled by multivariate tests, 347
Analysis of variance (ANOVA), 9, 16, 18, 79–82, 140
ANOVA summary table, 82 as a special case of multiple regression, 9
factorial models, 2
F-distribution, 82
F-ratio, 82
F-test value as square of t test value, 79
fully crossed versus hierarchical multivariate linear contrasts models, 428
two-way ANOVA (AV2) by the sums of squares method, 386–390
study question: calculate a one-way ANOVA, 86, 87
study question: compute a two-way ANOVA using Stata, 439
study question: compute a two-way ANOVA with unbalanced data using Stata, 440
study question, essay: explain how ANOVA partitions the variance, 85
study question, essay: applying ANOVA to correlational data, 18–19
study question, essay: factorial statistical methods versus multivariate methods, 18
Analysis of covariance (ANCOVA), 12–13, 16, 408–412
a nonorthogonal application of the general linear model, 408
analysis of covariance and the general linear model, 408–412
analysis of covariance summary table, 409
ANCOVA and ANOVA comparatively analyzed by SAS, 410–412

ANCova by SPSS, 408–410
ANCova results compared to ANOVA results as an analytic strategy, 408
Arcosine of the correlation coefficient gives the angles between the vectors, 145
Biased, 26
Bilinear forms, 126–127
Binomial, 43, 47, 50, 52, 53, 56, 83
binomial as an exact test, 83
binomial distribution, 43, 50
binomial expansion by the formula method, 53
binomial expansion by the Pascal’s triangle method, 53
binomial expansion, four ways, 56
binomial expansion, 47
binomial, algebraic expression, 50
formula for each binomial term, 53
non-symmetric binomial, 52
Biplot, 241–248
demonstration biplots by Gabriel, 244
East Jerusalem biplot by Gabriel, 244
biplot of means, 354–355
should be standardized when data are not commensurate, 354
visual demonstration of the biplot, 246
study question: create a biplot and a graph matrix in Stata, 279
Bivariate
bivariate data, 34
bivariate scatter plot, 227
study question: create a bivariate scatter plot in Excel, 279
Bounding vectors, 248, 323
Branching diagram, 48
Canonical correlation analysis, 6, 9–10, 17, 283–332
adjoined input data matrix, 297, 299
adjoined output matrix of correlation coefficients, 298, 316–319,
adjoined output matrix of Z scores, 298, 316–319
adjoined R matrix, 297, 300
as a double factor analysis, 10, 283, 329
canonical variate loadings, comparisons of, 290–292
factoring the product matrix P to get the eigenvector, 298, 303–305
linked summary tables, 321, 324–325
linked time-series scatter plots, 326, 327
mathematical demonstration of canonical correlation analysis, 297–320
matrix of standardized X-set coefficients, C, 298, 311–312
matrix of standardized Y-set coefficients, D, 298, 311–312
matrix of X-set canonical variates (chi), 298, 312
matrix of Y-set canonical variates (eta), 298, 313
obtaining the eigenvalue of P, 298, 305–306
product matrix P, 298, 302–303
rotation of canonical correlation solution not recommended, 293
seven types of information from canonical correlation, 284–286
seventeen-step mathematical demonstration of, 297–320
the five eigenvectors of canonical correlation, 298, 306–307
the misunderstood method, 284
the underused method, 284
study question: calculate a canonical correlation analysis using Excel, 330
study question: create canonical correlation summary tables from SAS output, 330
study question: plot the vectors of the manifest variables in a canonical correlation analysis within the latent variable space, 330
study question: use SAS, Stata, or SPSS to conduct a canonical correlation analysis, 330,
study question, essay: compare canonical coefficients to factor loadings, 329
study question, essay: compare canonical variates to factor scores, 329
Canonical correlation analysis (cont'd)
study question, essay: explain each
sub-matrix of the adjoined R output
matrix, 329
study question, essay: name some
reasonable and useful applications
of canonical correlation, 329
study question, essay: various forms in
which eigenvectors appear in
canonical correlation, 329
Categorical data, 4, 17
Centering matrix and centered data
centered matrix of sums of squares
and cross products (CSSCP matrix),
95, 106, 155
centering matrix is an idempotent
matrix, 34, 105, 155
centering matrix, 34, 103–106, 155
CSSCP matrix, 155, 375–376
study question, essay: explain the
centering matrix and its place in
calculating a covariance matrix, 85,
77, 84
Central limit theorem, 58
Central tendency and the four
measurement scales, 26
Central tendency: mean, median, mode,
23–26, 83
Characteristic equation, 154
Class statement in SAS, 415
Classical probability theory, 43
Cluster analysis, 6, 14–15, 252–253,
268–269, 278
Coefficient of determination, 145
Commensurate variables, 5, 177, 243, 354
Common factor method of factor analysis
alpha factoring is a psychometric
method, 197
common factor methods, 194
common factors are considered to be
real, and not just useful, 195
comparison of operating
characteristics of six methods,
206–210
cumbered by assumptions and
strictures, 222
goal of common factor analysis is to
account for the correlations among
the variables, 203
has a logically compelling
philosophical basis, 221
Heywood case and ultra-Heywood
case, 198, 208
indeterminacy problem, 191
iterated principal factor method, 196
maximum likelihood factor analysis
(MLFA) is primarily a statistical
(inferential) method, 197
maximum likelihood method of factor
analysis (MLFA), 196
performance characteristics of the
common factor methods provide
little basis for preferring them, 221
principal factor method, 194
SAS code for principal factor method,
195–196
Communalities, 146
amount of variance accounted for, 146,
158
Commutative law of multiplication, 94
Component scores in PCA, centered, 184
Component scores in PCA, uncentered,
184
Confidence interval around a multiple
regression plane (study question),
439
Confirmatory data analysis, 233
Confirmatory factor analysis (CFA), 6,
17, 198, 222
Conformable matrices (study question,
essay), 136
Conflict of conventions for upper case,
90
Continuous data, 4, 18
versus discrete data (study question,
essay), 18
Convergence, 159
Correlated groups, 58
Correlation coefficient, 38–43, 85, 87,
107
correlation coefficient is the
expected value of the product of Z
scores, 39
correlation matrix R, 38, 87, 107, 153,
376–377
cosine of the angle between the two
vectors is the correlation coefficient,
42–43
definitional formula for the correlation coefficient, 39
study question: calculate the correlation coefficient by four different methods, 85
Cosine, 42
Covariance, 2, 34–38, 83, 87, 94, 96, 107, 127
computational formula for covariance, 35
covariance matrix is also called a variance/covariance matrix, 96
covariance matrix, 36–38, 87, 96, 127, 153, 155
covariances appear in the off-diagonal elements of the variance/covariance matrix, 36–38, 161
matrix algebra formula for the covariance matrix, 37
summary of principles of covariance and correlation matrices, 107
transformations of covariance matrices by quadratic and bilinear forms, 127
Cray supercomputer performance analysis, 254–258
Create a 3D multiple regression plane using graphics software (study question), 439
Cronbach’s alpha, 197
Crossed factors, 406
DataMax, 249–251
Define the rank of a matrix and the terms singular and nonsingular (study question, essay), 136
Degrees of freedom, 26
Demand characteristics, 356
Dendrogram, 234–235, 269
Dependent variable(s), 2, 14
Derivation of the F ratio from the t ratio (study question, essay), 348
desirable characteristics in multivariate graphics, 230, 243, 245
determinant of a matrix, 112–118, 128, 137
by bent diagonals method, 113
by matrix extension method, 114
by method of cofactors, 115
determinant as generalized variance, and trace of the matrix as total variance, 117–118
determinant methods: bent diagonals, matrix extension, method of cofactors, 113
only square matrices have determinants, 112
singular matrix has a determinant of zero, 128
study question: calculate the determinant of a matrix, 137
deviation scores, 90
df values (degrees of freedom), 26–27, 33, 38–40, 73–75, 79, 81–82
Diagonal matrix, 97–98
Diagonalized form of a matrix, 98
Discrete data, 4
Discriminant analysis, 6, 13–14, 344–346
calculating a discriminant analysis from a Hotelling’s T-squared test, 344–346
discriminant function has the property of maximally separating groups, 345, 364
graphical comparison of discriminant analysis and principal component analysis using vector projections, 346
study question: calculate a discriminant analysis using Excel, 348
Division of Labor Scale, 271
Dot product, 93, 243
Effectiveness of clustering, 253–254
Effectiveness of factoring, 253–254
Eigenvectors and eigenvalues, 128–129
eigenvalues as variances of component scores, 185
eigenvalues, sum of communalities by columns, 162
Eigenvectors and eigenvalues (cont’d)
eigenvalues, 143, 146
eigenvector as a vector of sums of the optimal power of the $R$ matrix, 152
eigenvector normalized to one, $K$
matrix in factor analysis, 169
eigenvector transformation of a covariance structure, 175
eigenvector, three types in factor analysis: $K$, $F$, and $T$ matrices, 169–170
eigenvector, vector of transformation coefficients for obtaining component scores, 178
eigenvectors/eigenvalues, computational methods are an art within applied mathematics (numerical analysis), 153
fundamental eigenvalue/eigenvector equation, 160
study question, essay: explain eigenvectors and eigenvalues, 136
Empirical (real) versus theoretical (logical construction), 46
Euphoria versus dysphoria, 356
Exact probability, 57
approximation to, 57
Expected values (study question, essay), 84
Experimental designs, experimental methods, 12
Experimental versus correlational research (study question, essay), 18
Exploratory data analysis (EDA), 233
Exploratory factor analysis (EFA), 198

F-distribution and F-ratio, 82
F-ratio for multiple regression, 380
F-test value as square of t test value, 79
Factor analysis, 6–8, 139–226
as a data simplification tool, 169
autoregressive Toeplitz covariance structure in factor analysis, 215–216
by far most commonly used method, 140
cannot separate error from structure, 215
clustered covariance structure in factor analysis, 215
considerations, item reliability, 200
considerations, operating characteristics of methods, 200
considerations, small set of variables, 200
considered by many to be an ontological discovery procedure, 141
considered controversial by many statisticians, 142
data reliability and factor analysis, 210–221
extracting factor two, 158–160
extracting first eigenvector, 153, 178
factor analysis articles in APA journals, 140
factor analysis summary table, 146–147, 167
factor analysis summary table: loadings, communalities, eigenvalues, and percents, 161–162
factor analysis, principal axis method, 194
factor loadings as coordinates, 147
factor loadings as the eigenvector normalized to its eigenvalue, 149, 157
factor loadings, 143
factor pattern, 143, 162
factors account for all variance in errorless data, 172
first eigenvalue, 153, 157
first eigenvector, 153, 156–157
first factor product matrix, 154, 158
first of the multivariate methods, 142
first vector of factor loadings, 154
fundamental factor theorem, an example of transformation by quadratic and bilinear forms, 176
fundamental factor theorem, 174–175
how many factors? eigenvalue greater than one criterion versus scree plot, 148
mathematics and geometry of factor analysis, 149
matrix of first factor residuals, 154, 158
matrix of second factor residuals, 154, 161
misuses of factor analysis, 142
one of great success stories, 140
perfect fit to the factor analytic model
with errorless data, 212
principal component method, 149, 165,
194, 201, 234, 268
provides conceptual foundation for
other multivariate methods, 142
psychological meaningfulness may not
be a good guide to factor structure
fidelity, 218
quaint positivism in early factor
analysis literature, 141
quintessential multivariate method,
139
reliability concerns in factor analysis,
141, 214
SAS code for PROC FACTOR, 165
second eigenvalue, 154
second eigenvector, 154
second factor product matrix, 154, 160
SPSS instructions for factor analysis,
166–167
Stata command line for factor analysis,
164
testing a matrix of residuals from
factor analysis for statistical
significance, 161
study question: compute factor analysis
and principal component analysis
using SAS, Stata, or SPSS, 224
study questions: factor analysis
spreadsheet calculations, 223
study question, essay: appropriateness
of factoring means, 279
study questions, essay: define factor
analysis terms, 222
study question, essay: explain factor
loadings as coordinates, 223
study question, essay: explain how
reliability affects factor analysis
results, 223
study question, essay: explain the
fundamental factor theorem and
quadratic/bilinear forms, 223
study question, essay: how many
factors?, 222
Factor rotation
factor rotational methods, not
commonly used with PCA, 193

graphical approach, 192
oblique methods, 193
varimax procedure, 192
Factor scores
calculation of factor scores in the
common factor model is more
complex than in the principal
component model, 199
demonstration of the calculation of
factor scores, 171–172
factor score transformation process is
reversible with errorless data,
174–176
factor scores as estimates of scores on
latent variables, 169
factor scores for data set that is not of
full rank, 172–173
fidelity of factor scores at six levels of
item reliability, 220
regression model is the most popular
method of estimating factor scores,
199
SPSS offers three procedures for
estimating factor scores, 199
Factorial ANOVA models, 2
Factorial statistical methods (study
question, essay), 18
Financial Wellbeing Scale, 336
Foot-in-the-door technique, 413
Formulas for ANOVA sums of squares,
write them (study question, essay),
85
Formulas for SSCP matrix, covariance
matrix, and correlation matrix, write
them (study question, essay), 85
Four measurement scales: nominal,
ordinal, interval, and ratio, 4–5,
22–23
Four measurement scales (study
question, essay), 18

Gaussian distribution, 53
General factor of intelligence, 142
General Linear Model (GLM) and
Generalized Linear Model (GLIM)
analysis of variance AV2 by multiple
regression (GLM), 390–397
analysis of variance non-orthogonal
AV2 design (unbalanced) by
General Linear Model (GLM) and Generalized Linear Model (GLIM) (cont’d)
  multiple regression (GLM), 397–404
  general linear model (GLM), 17, 385, 428–429
  generalized linear model (GLIM), 9, 15, 429
  generalized linear models (GLIM) as an expansion and generalization of the general linear model (GLM), 429
  study question, essay: history of the general linear models approach to ANOVA, 438
  study question, essay: history of the generalized linear models approach to categorical data, 438
  study question, essay: history of the least squares method, 438
Geometry of correlation coefficients, 145
Gottman Couple Communication Scale, 335–336
Graphicity and multivariate methods
  cluster analysis, 6, 14–15, 252–253, 234–235, 268–269, 278
  fractional graph area (FGA), 231–232
  generalized draftsman’s display, 264–266, 278
  graph matrix plot, 272–273
  graphical displays of hierarchically organized multivariate linear contrasts, 425–427
  graphical inscription devices, 232, 278
  graphics in hard science, 257–258
  isoquant projection plots, 248–252
  Latour’s graphicity thesis, 231
  linked principal component plot in French Canadian vocal study, 241, 242
  study question: create a 3D multiple regression plane using graphics software, 439
  study question: create a confidence interval around a multiple regression plane, 439
  study question: create a starplot multivariate graphic on the Waranusuntikule data, 440
study question, essay: explain the process of creating a cluster principal component plot, 279
study question, essay: explain the relationship between graphicity and hardness, 278
Hierarchical linear models (HLM), 9, 17
Homoscedasticity, 73
Hope scale, 274–278
Hotelling’s T-squared test, 6–7, 12, 16, 333–350
Hotelling’s three types of T-squared analysis, 334–335
Mahalanobis distance function, 334–335
T-squared analysis is not available in SAS, 342
T-squared distribution, critical ratios, 341
T-squared test, two-sample independent groups, 339–344
study question: T-squared test for correlated groups, calculate in Excel, 348
study question: T-squared test for correlated groups compute in Stata, 349
study question: T-squared test for independent groups calculate in Excel, 348
study question: T-squared test for independent groups compute in Stata, 349
study question, essay: explain how T-squared and the four MANOVA significance tests are related, 369
study question, essay: explain why the T-squared test is more powerful than multiple t-tests, 348
Hypothesis of a general factor of intelligence, 189
Hypothesis testing, 48
Idempotent matrix, 105, 155
Identity matrix (I), 100
Independent variable(s), 2, 14
Indeterminacy problem in factor analysis, 191
Infant breastfeeding study, Myers and Siegel (1958), 353
Interpolated median, 25
Interval scale, 4, 22
Intervening variables versus hypothetical constructs, 195
Introversion/extraversion, 43
Inverse of a matrix by the method of cofactors (study question), 137
Inverse of the correlation matrix, 377
Inverse matrix, explain why it is useful (study question, essay), 136
Isoquant projection plots, 248–252
Isoquants in PCA 181–182
Isoquants, isobars, and isotherms, 249
J matrix, use one to create a CSSCP matrix (study question), 136
Joint outcomes, 47
JPSP, study with a clinical theme using multidimensional scaling, 267
Large sample tests, 58
Last trial eigenvector, 159
Latent variables and latent variable scores
calculation of factor scores in the common factor model is more complex than in the principal component model, 199
component scores in PCA, centered, 184
component scores in PCA, uncentered, 184
demonstration of the calculation of factor scores, 171–172
factor scores as estimates of scores on latent variables, 169
latent structure, 139
latent variable scores, 171
latent variables, 8, 10, 139
study question, essay: compare canonical variates to factor scores, 329
Latour’s graphicity thesis, 231
Lawley-Hotelling trace, 366
Length of a vector, 108
Lie with statistics, 228
Likelihood ratio chi-square of log-linear analysis, 431–435
Likelihood ratio chi-squares are additive, 434
Linear combination, 66
Linear contrasts approach to a two-way ANOVA 404–407
Linear contrasts and multivariate linear contrasts, their malleability and power, 413
Linear contrasts and the general linear model with complex designs, 413–428
Linear dependency, 180
Linear model of a one-way ANOVA, show how it relates to the SS values (study question), 86
Linking function, 15
Log odds ratios as regression coefficients, 435
Logistic regression, 9, 15, 17, 276–278, 435–437
and its broad generality, 429
using SAS’s PROC LOGISTIC, 435–437
using Stata’s two programs logit and logistic, 435
Log-linear analysis, 15, 17, 276, 429–435
using SAS PROC FREQ, 431–432
Lower triangular inverse of the square root matrix (T')⁻¹, 122
Magnitude of a vector, 135, 150, 157, 243
literal meaning, 185
the square root of its sum of squares, 150
Magnitude of projection of vectors onto factors, 147
Mahalonobis distance function, 334
Manifest variables, 8
Manifest variable scores, 171
Market indices, 321
Marriage, his and hers, 271
Mathematical demonstrations of multivariate and corresponding univariate methods

ANCOVA, analysis of covariance by the multiple regression method (GLM), 408–413

ANOVA simplest case one-way, matrix approach to, 79–82

ANOVA, AV2 two-way analysis of variance by the multiple regression method (GLM), 390–397

ANOVA, AV2 two-way analysis of variance by the sums of squares method, 386–390

ANOVA, linear contrasts approach to, 404–407

ANOVA, nonorthogonal AV2 two-way analysis of variance by the multiple regression method (GLM), 397–404

canonical correlation analysis, 297–320
covariance matrices and correlation matrices, 34–43
discriminant analysis from Hotelling’s T-squared test, 344–346
discriminant function analysis, 153–169
discriminant scores, 171–172

Hotelling’s T-squared test, two-sample independent groups, 339–344

logistic regression brief introduction of mathematics, 435–437

log-linear analysis compared to Pearson’s chi-square, 429–435

MANOVA, MAV1 one-way multivariate analysis of variance, 357–365

MANOVA, MAV3 plus a control group by the linear contrasts method for complex designs, 413–428

MANOVA, the four multivariate significance tests, 365–368

multiple regression, the fundamental method of, 374–385

multivariate graphs, demonstration of convergent set of, 233–240

principal component analysis, 177–188

rotation of factor pattern by graphical method, 191–194

t-test of a single mean, 72–73
t-test of two means for correlated samples, 75–77

t-test of two means for independent samples, 73–75

z-test of a single mean, 67–68

z-test of a single proportion, 68–69

z-test of two means for correlated samples, 72

z-test of two means for independent samples, 69–70

z-test of two proportions for independent samples, 70–72

Matrix algebra concepts, 3–4, 19, 31–32, 79–82, 86, 88–138

addition and subtraction, 89

adjointed matrices, 108–109

centering matrix, 103–105

cofactor of a matrix, 116

conformable, 32, 79, 86, 89, 91
covariance and correlation matrix principles, 107
determinant of a covariance matrix, meaning of, 117–118
determinant of a matrix, 112–113
diagonal matrices, 97–98
division by a scalar, 95–96
eigenvectors and eigenvalues, 128–129

Euclidean geometry and matrix algebra, 107–108

idempotent matrices, 105–107

identity matrix, 100

inverse of a matrix, 95, 118–123

inverse of a matrix by the Cholesky method, 120–123

inverse of a matrix by the method of cofactors, 119–120

J matrix of ones, 101–102

matrix approach to ANOVA, 79–82

matrix expression of statistical methods accommodates multiple dependent variables, 88

matrix expression of statistics more elegant, 88

matrix multiplication, an efficient way
to calculate variances and
covariances simultaneously, 94
matrix product, 93
matrix, vector, and scalar, 32, 89
minor of a matrix, 115–116
multiplication of a matrix by a scalar, 90–91
multiplication of matrices, 4, 91–95
no division operation in matrix
algebra, 95
normalization of a vector, 134–136
order of multiplication in matrix
algebra, 94, 112
orthogonal vectors and matrices,
124–125
partitioned matrices, 109–110
quadratic forms and bilinear forms,
125–126
rank of a matrix, 123–124
singular value decomposition, 134
spectral decomposition and triangular
decomposition compared, 133–134
spectral decomposition, 130–133
symmetric matrices, 97
trace of a covariance matrix, meaning
of, 117–118
transpose of a matrix, 89, 91
triangular decomposition compared to
spectral decomposition, 133–134
triangular matrices, 110
study question: create SSCP,
covariance, and correlation matrices
by matrix algebra, 86
study question, essay: explain what
matrices are conformable for
addition and subtraction, 136
study question, essay: explain what
matrices are conformable for
multiplication, 136
study question, essay: explain
eigenvectors and eigenvalues, 136
study question, essay: inverse of a
matrix, why is it useful?, 136
study question, essay: orthogonal and
non-orthogonal vectors, explain, 136
study question, essay: quadratic and
bilinear forms, explain, 136
study question, essay: rank of a matrix,
define it in terms of singular and
nonsingular matrices and
eigenvalues, 136
study question, essay: why is matrix
algebra crucial to multivariate
statistics?, 19
Matrix algebra numerical
demonstrations
Cholesky method for finding a
triangular square root matrix,
110–112
covariance matrix obtained by using \(\mathbf{I}\)
and \(\mathbf{J}\) matrices, 103–107
covariance matrix transformation by
quadratic and bilinear forms, 127
determinant obtained by the bent
diagonals method, 113–114
determinant obtained by the matrix
extension method, 114–115
determinant obtained by the method
of cofactors, 115–116
eigenvectors and eigenvalues,
calculation of, by the method of
successive squaring, 149–152
(chapter 4)
matrix inversion by the Cholesky
method, 120–123
matrix inversion by the method of
cofactors, 119–120
multiplication of matrices, 91–95
study question: CSSCP matrix,
calculate it, 137
study question: determinant, calculate it
by the matrix extension method, 137
study question: deviation scores,
calculate them by the use of a \(\mathbf{J}\)
matrix, 136
study question: inverse, calculate it by
the method of cofactors, 137
study question: matrix multiplication in
Excel, 137
study question: triangular root of a
matrix calculated by the Cholesky
method, 137
McGill University, 242
Mean as point of balance of a
distribution, 24
Mean deviation, 27
Mean of sample means, 62
Mean square, 26
Measurement scales, 4, 22–23
Median bisects the area of a distribution, 23–24
Median formula, 25
Method of successive squaring, 153, 156–157
  study question: describe the steps of the method of successive squaring, 223
Mice, five cognitive tasks, 142–143
Minimum eigenvalues criterion, 148, 164, 198
Mixed models, 17
Mode, highest stack of blocks, 23
Multicollinearity, 43
Multidimensional scaling, 14–15, 266–268, 278
  study question, essay: describe purpose and data structure type of multidimensional scaling, 279
Multiparas, 354
Multiple discriminant analysis, 6–7
Multiple regression, 8, 374–385
  in SAS, 382–383
  in Stata, 383–384
  mathematical demonstration of the fundamental method, 374–385
  method of least squares and the most famous priority dispute in the history of statistics, 373
  multiple regression in linear models form, 384
  multiple regression summary table, 380
  study question: do a multiple regression analysis using a spreadsheet, 438
  study question: do a multiple regression using Stata, SPSS, or SAS, 439
  study question, essay: explain why zero is contained within the confidence interval for a predictor that is not significant, 438
Multivariate analysis of covariance (MANCOVA), 13, 16, 17
Multivariate analysis of variance (MANOVA), 3, 6–7, 12, 16, 17, 237, 255, 351–372
  an applied example, 353
  analysis using SAS, 366–367
  analysis using Stata, 362
  as a filter for univariate tests, 352
  avoids alpha inflation, 352, 368
  fully crossed versus hierarchical multivariate linear contrasts models in MANOVA, 428
  graphics help with interpretation, 352–353
MANOVA analysis of factor scores, 169
MANOVA summary table, helps with interpretation, 352–353
MANOVA summary table, 355, 363
MANOVA, like Hotelling’s T-squared, has a discriminant analysis as a by-product, 352
Monte Carlo simulation study of MANOVA, 352
one-way MANOVA (MAV1), 357–365
  principles and powers of MANOVA, 351–353
  produces four multivariate significance tests, 369
  six computational steps in one-way MANOVA, 359–364
  summary of the six computational steps, 359
  the four multivariate significance tests, 365–368
  the four multivariate statistics from SAS output of MAV1, 367
  the four multivariate tests all give the same answer when the treatment variable has only two levels, 419
  the relative power of each of the four multivariate tests, 368
  three-way MANOVA MAV3 analysis corresponds to one particular set of possible multivariate linear contrasts, 420
  study question: one-way MANOVA of standardized data, 371
  study question: one-way MANOVA using Excel, 370
  study question: one-way MANOVA using SAS, SPSS, or Stata, 370
  study question, essay: explain the
advantages of MANOVA over a series of univariate tests, 369

study question, essay: describe the six steps to calculate a one-way MANOVA, 369
study question, essay: explain formula for each of the four multivariate tests, 369
study question, essay: outline the rationale of following up a MANOVA with univariate tests, 370

Multivariate graphics, 14–15, 227–282
Multivariate graphical display of three-way means, 352
Multivariate linear contrasts, calculate using SAS (study question), 440
Multivariate multiple regression, 6, 11, 17
Multivariate versus univariate significance tests, 2, 18, 337–339
Multivariate tests are used to control alpha inflation, 347

Names frequency data sets to demonstrate multivariate graphical analyses
male Hawaiian names, 249, 261, 263
nineteenth century male names, 233–240
twentieth century Austrian male names, 259
twentieth century French female names, 260
Napoleon’s Russian campaign and Minard’s graph, 228–229
Negatively skewed, 24
Nine z and t significance tests, 58–59
assumptions and sampling distributions, 77–79
Nominal scale, 4, 22
Noncommensurate variables, 5
Non-orthogonal analysis of variance, 399
Normal curve approximation to the binomial, 56
Normalization of a vector or a matrix, 134–136
Normalized eigenvector, 160
Normalized to one, 157
Null hypothesis, 43

Null hypothesized population mean, 56
Nulliparous, 357

Odds, 435–436
Odds ratios, 435–437
Odds-ratio scatter plot, 277, 435
OLS regression, 8
One-way ANOVA, calculate (study question), 86
Operating characteristics, 200, 210, 245
Opponent process theory of acquired motivation, 353
Ordinal scale, 4, 22
Orthogonal analysis of variance, 399
Orthogonal set of linear contrasts, 406
Orthogonal vectors and matrices, 124–125
study question, essay: explain orthogonal vectors, 136
Orthogonality not maintained in rotated factor loadings, why? (study question, essay), 223
Overfitting the model, 286

Paired dyadic response matrix, 271–272
Parameter estimates in multiple regression, 381–383
Partitioned correlation matrix, 404
Partitioned matrix, 109–110
Pascal’s triangle, 51
Pearson’s chi-square, 429–431
Pearson product moment correlation coefficient, 11, 38–43
as one-Nth of cross product of Z scores, 38
as standardized covariance, 38, 98
Percentiles, 5
Personality measures and repetitive thought measures, 267
Pillai’s trace, 366
calculated from the E-1H matrix, 367–368
Positive definite matrix, 124, 128
Positive semi-definite matrix, 124, 128
Positively skewed, 24
Prejudice, 292
Premultiplying and postmultiplying matrices, 41–42, 91–92, 99–100
Primiparas, 354
Principal component analysis (PCA), 6–8, 141, 176–188
first principal component, the linear combination with maximal variance, 176
mathematical procedures, 177–188
matrix of first component products, 178
matrix of first component residuals, 178
matrix of second component products, 179
matrix of second component residuals, 179
particularly useful as a data simplification technique, 188
PCA as a reversible transformation to the extent the data set is “errorless”, 186
PCA method requires essentially no assumptions, 222
principal component analysis mathematical demonstration, 176–188, 241
principal component analysis means plot, 236
principal component analysis twin advantages, orthogonality, and maximum variance accounted for, 180
principal component analysis, factor analysis’s twin method, 176
principal component number one, the major axis of the scatterplot ellipse, 181
principal component plot, MANOVA-based, 254
principal-component plot, cluster based, 253, 259
principal-component plot, odds ratio clustered, 277
principal-component plot, time series scatter plot, 263
principal-component plots have two aspects, vector plots and scatter plots, 258
principal-component scatter plot for linked data, 264
principal-component vector plot for linked data, 264
SAS code for PROC PRINCOMP, principal component analysis, 183
scaled coefficients in PCA, 182
scaled coefficients matrix $K$, the square root of the covariance matrix (in PCA), 187
simpler and more direct computationally than factor analysis, 188
SPSS instructions for PCA, 183
stata command line for PCA, 183
transformation coefficients in PCA, 179
usually involves a covariance matrix rather than a correlation matrix, 188
variance of manifest variables and of latent variables in PCA, 182
study question: calculate a principal component analysis on the Lee et al. data in Excel and create a biplot, 279
study question, essay: principal-component plots, discuss when to use raw data and when to use standardized data, 279
Principal component analysis as descriptive versus factor analysis as ontological, 195
Principal factor analysis, 195
a true common factor analysis method, 195
the simplest of the common factor models, 201
Probability model, three characteristics, 49
Proportion as a special case of a mean, 44
Protectionist measures, 339
Psychiatry, graphicity in, 247
Pythagorean theorem, 29, 107, 334
Q components: Qtotal, Qgroup, Qdata, 81–82
Quadratic forms and bilinear forms, 66, 125–127
Quadratic forms and bilinear forms, explain them (study question, essay), 136

Quantitative data, 4

Random assignment in experimental research, 15
Random selection in correlational research, 15
Rank of a matrix, 43, 123–124, 128, 252
Rank-of-two example of simplest case data, 177
Rao’s paradox regarding multivariate and univariate hypothesis testing, 338
Ratio scale, 4, 22
Rationale of Student’s t-test, explain (study question, essay), 85
Recursive models, 10
Regressing categorical variables, 428–437
Regression equation, 378
Relational Aggression Scale, 336
Reversible covariance structure transformations when data are errorless, 175
Right-wing authoritarianism (RWA), 286
Robust, t test and ANOVA both are, 84
Romantic Partner Scales, twelve, 269, 275–277
Row-sum vector, or, vector of row sums, 156
Rotated component scores, no longer orthogonal, 194
Rotated factors, 188–194
factor analysis summary table for, 163
oblimin, 270–273
often more meaningful, 188
rotation to simple structure, 191
varimax, 270–273
Roy’s largest root, 366
R-squared values and their relevance for decisions regarding principal-component plots (study question, essay), 279
R-squared values for terms of the expanded linear contrast MAV3 model, 421–422
Sample space, 48
Sampling distribution of proportions, 45
as a probability model, 49, 83
SAS code statements for various analyses
“Class” statement in SAS, 415
code showing compact way of entering data in SAS, 420–421
data statement in SAS, 165–166, 183–184
PROC CANCOR for canonical correlation analysis in SAS, 288
PROC FACTOR for factor analysis in SAS, 165–166
PROC PLOT for plotting principal components in SAS, 183–184
PROC PRINCOMP for principal component analysis in SAS, 183–184
PROC PRINT, 183–184
using SAS code to set the priors to SMCs in a factor analysis, 195–196, 203
SAS, SPSS, or Stata, compute a one-way ANOVA (study question), 87
SAS, SPSS, or Stata, compute variances and correlation matrix (study question), 87
Scatter plot, 180
Scientific hardness, 232
Semantic space, 234
Seven habits, 20
Simulated data, 189, 210
Single sample tests, 58
Singular matrix, 128
Singular value decomposition, 134
Small sample tests, 72–73
Social dominance orientation (SDO), 286
Social reinforcement, 414
Spectral decomposition by eigenvectors/eigenvalues method, 130–133
used to obtain powers of a matrix, 131
used to obtain the inverse of a matrix, 132
used to obtain the spectral square root of a matrix, 132–133
Spectral decomposition, triangular decomposition, and singular value decomposition of matrices, 129–134
Spreadsheet calculation of covariance and correlation matrices (study question), 86–87
SPSS command for PLOT ROTATION can be used to plot the factor pattern in a factor analysis, 167–168
Squared multiple correlations (SMCs) as estimates of communalities, 195–196, 201
as lower bounds to the communalities, 195, 201
equation for calculating them from elements of the inverse of the correlation matrix, 201
substantially underestimate true communalities, 202
Squared multiple regression coefficient \( R^2 \), 377
SStotal, 80
SSCP matrix and CSSCP matrix: calculate them using matrix algebra (study question), 138
Standard deviation, 27, 243
g eo metrically, the length of a vector, 42
Standard normal curve table, 57
Standardized principal-component plot, 243
Standardized regression coefficients, 377
Standardizing matrix \( E \), 41, 99, 156
Stata data entry, 163
Stereotyping, 292
STRESS in multidimensional scaling, 266
Structural equation modeling (SEM), 6, 15, 17
Sum of products (cross product), 92, 94–95
Sum of squares, 26, 94
Sum of squares error, SSE, 379
Sum of squares regression, SSR, 378
Sums of squares, Type I and Type III, 399–401
Symmetric matrix, 97

t-test, 72–77, 140
of a single mean, 72–73
of parameter estimates in multiple regression, 382
of two means for correlated samples, 75–77
of two means for independent samples, 73–75
study question: calculate the t-test of two means for independent samples, 86
study question: use Excel to calculate t-tests for correlated groups, 349
study question: use Excel to calculate t-tests for independent groups, 348
study question: use Stata to compute t-tests for correlated groups, 349
study question: use Stata to compute t-tests for independent groups, 349
t-tests and z-tests, assumptions and sampling distributions for the nine tests, 77–79
Three-dimensional visualization tools, 248
Three kinds of data distribution in statistical inference: sample, population, sampling distribution, 44
Three methods for analyzing regression data with categorical dependent variables, 429
Three principles from which nine significance tests are derived, 60, 61–67
Three measures of central tendency, 23–26, 83
Three-way ANOVA plus a control group, an unusual design, 413
Three-way means show more than just the three-way interaction, 424
TIAA-CREF mutual funds financial data, 322
Tolerances for factor convergence, 156
Total communalities are the sums of communalities by rows, 162
Transform latent variable scores into manifest variable scores and vice versa, 171
Transformation of data by quadratic and bilinear forms, 176
Trial eigenvectors, 152
True experimental designs, 12, 16
Triangular root of a matrix, calculate by the Cholesky method (study question), 137
Triangular square root matrix, 110
Triangular square root matrix created by the Cholesky method, 110–112, 133–134
Two sample tests, 58
Two-way ANOVA (AV2) by the sums of squares method, 386–390
Two-way ANOVA, compute using Stata (study question), 439
Two-way ANOVA with unbalanced data, compute using Stata (study question), 440
Two-way MANOVA, compute by SAS, Stata, or SPSS (study question), 440
Two-way MANOVA, calculate using a spreadsheet (study question), 438

Unbalanced data structure in ANOVA, 398
Unbiased, 26
Uniqueness, 162
Upper triangular root matrix T, 122

Variance, 26–34, 60–62, 63, 64–67, 83, 84, 87, 94
adjustment factor for, 31
computational formula for variance, 29
defined as mean of the squared deviation scores, 28
definitional and computational variance formulas, algebraic demonstration of equivalence, 30, 33
definitional formula for variance, 29
matrix formula for variance, 31
of binary data, 63
of differences, 64–67
referred to as mean square, 26

variation and matrix algebra, 31–34
variance of means is equal to one-Nth of raw score variance, 60–62
variance/covariance matrix for latent variables, 175
variances appear in the diagonal elements of the variance/covariance matrix, 161
study question: explain each of the following: variance, covariance, and correlation coefficient, 84

Varieties of multivariate graphs, 240
Vector plot, 144–147, 163, 180
as a visual factor pattern, 145
for factor analysis simulations of clustered structure at six levels of reliability, 213
for factor analysis simulations of Toeplitz structure at six levels of reliability, 217
for the X set of variables, 296
for the Y set of variables, 296
Visual rotation, 248

Wilks' lambda, 354, 366
as a ratio of determinants, 361
calculated from the $\mathbf{E}^{-1} \mathbf{H}$ matrix, 367
equals $1-R^2$ in a one-way MANOVA, 362, 369
smaller is more statistically significant, 418

Y intercept in regression, 378

Z score, 5
Z score versus z test, 56
z-tests, 56, 67, 68, 69, 70, 72
of a single mean, 67–68
of a single proportion, 68–69
of two means for correlated samples, 72
of two means for independent samples, 69–70
of two proportions for independent samples, 70–72