CONTENTS

Preface xv

Constants and Units xvii

Periodic Table of the Elements

1 Some Fundamental Chemical Thermodynamic and Kinetic Concepts 1

Concentration Units, 1
Thermodynamic Versus Kinetic Approaches, 2
Introductory Thermodynamics, 3
 Gibbs Energy, 4
 Chemical Potential and Activity, 4
 Equilibrium Constants, 5
 Calculating the Equilibrium Constant from Gibbs Energy Changes, 6
 Temperature Effects on K\textsubscript{eq}, 8
 Calculating Activities, 9
 Saturation Indices (SIs), 12
 Carbonate Equilibria in Open or Closed Systems, 13
 Calcite Equilibria in a System Open to Atmospheric Carbon Dioxide, 14
 Redox Reactions, 17
 Metal Speciation Diagrams, 19
A Brief Introduction to Kinetics, 20
 Overall Versus Elementary Reactions, 20
 Molecularity and Reaction Order, 21
 Transition State Theory and the Arrhenius Equation, 24
 Michaelis-Menten Kinetics, 25
 The Elovich Equation for Chemisorption Kinetics, 26
 Simultaneous Versus Sequential Reaction Sequences, 27
 Transport Versus Surface Control of Mineral Growth and Dissolution Rates, 28
CONTENTS

Rate Laws for Surface-Controlled Mineral Growth and Dissolution, 30
Equilibration Time in Porous Media, 31
Questions for Further Thought, 31
Further Reading, 34

2 The Hydrologic Cycle as Context for Environmental Surfaces and Interfaces 35

The Structure and Fundamental Properties of Water, 35
The Chemical Composition of the Earth, 37
The Critical Zone, 38
The Hydrologic Cycle, 38
Oceans, 39
Atmosphere, 40
Underground water, 43
Soils and Soil Water, 44
Groundwater, 45
Surface Waters: Focus on Rivers, 52
Stream Load, 52
Gibbs Plots, 54
The Hyporheic Zone, 56
The OTIS Model and Solute Transport in Streams, 56
Particle Transport and Sedimentation, 57
Water Budgets and Chemical Fluxes in Terrestrial Ecosystems, 59
Questions for Further Thought, 62
Further Reading, 66

3 Some Minerals of Special Interest to Environmental Surface Chemistry 67

Gibbsite, 67
Quartz, 68
Kaolinite, 69
Smectite: Example Montmorillonite, 71
Fe(hydr)oxides, 73
Hematite, 73
Goethite, 73
Lepidocrocite, 76
Maghemite, 77
Ferrihydrite, 77
Magnetite, 77
Manganese Oxides, 77
Calcite, 78
Feldspars, 79
Zeolites, 79
Questions for Further Thought, 81
Further Reading, 81

4 Some Key Techniques for Investigating Surfaces and Interfaces 82

A Brief Overview of Some Commonly Used Techniques, 82
In-Depth Descriptions of Some Key Techniques, 86
Scanning Electron Microscopy (SEM), 86
CONTENTS

- Transmission Electron Microscopy (TEM), 87
- Scanning Tunneling Microscopy (STM), 90
- Case Study: Imaging Parameters and High-Resolution Imaging of Hematite, 91
- AFM and Interfacial Forces, 92
- X-Ray Photoelectron Spectroscopy (XPS), 99
- BET Surface Area Measurements, 100
- Some Synchrotron-Based Techniques, 103
- Microscopies for Biofilm Imaging, 108
- Questions for Further Thought, 108
- Further Reading, 111

5 Surfaces and Interfaces

- **What is a Surface? What is an Interface?,** 112
- **The Challenges of Defining Surfaces and Interfaces,** 113
- **Surfaces are Complex,** 114
 - Relaxation and Reconstruction, 114
 - Surface Sites, 115
 - Surface Microtopography, 116
 - Surface Free Energy, 117
 - Water Near Surfaces, 119
 - Dynamic Surfaces, 120
 - Bacterial Substrates, 120
 - Fractal Properties of Surfaces and Environmental Particles, 120
 - Interdisciplinary Topic of Study, 123
- **Surface Free Energy and Surface Excess,** 124
- **Surface Tension and Related Phenomena,** 126
 - Surfactants and Micelles, 126
 - Contact Angle, 127
 - The Young-Laplace Equation, 128
 - Meniscus and Capillarity, 128
 - The Gibbs Equation, 130
- **Some Approaches to Surface and Interface Modeling,** 130
- **Case Study: Bacteria–Mineral–Gas Interactions in the Vadose Zone,** 132
- **Questions for Further Thought,** 133
- **Further Reading,** 135

6 The Charged Interface and Surface Complexation

- **Some Evidence for Surface Charge,** 136
- **Sources of Mineral Surface Charge,** 137
- **Points of Zero Charge,** 139
 - Case Study: The Surface Charge Properties of Kaolinitic Soils, 140
- **Sorption Terminology,** 141
- **Cation Exchange Capacity,** 145
- **Sorption Isotherms,** 148
- **Adsorption Isotherm Equations,** 151
 - The Langmuir Isotherm Equation, 151
 - The Freundlich Isotherm Equation, 152
 - The Frumkin Isotherm Equation, 153
CONTENTS

The Double Layer, Gouy-Chapman Theory, 153
Beyond Gouy-Chapman: Surface Complexation Models, 155
 Constant Capacitance Model (CCM), 161
 The Diffuse Double Layer (DDL) Model, 161
 Triple Layer Model (TLM), 161
 Charge Distribution CD/MUSIC Model, 162
Model Verification and Validation, 163
Case Study: Incorporating the Work Associated with Removal of Water During Adsorption into the TLM, 164
DLVO Theory and Colloid Attachment in Porous Media, 165
Questions for Further Thought, 168
Further Reading, 172

7 Sorption: Inorganic Cations and Anions

 A Typical Sorption Experiment Design, 174
 Metal Cation Sorption, 176
 The Complexity of Cation Adsorption, 179
 Inorganic Anion Adsorption, 183
 Phosphate Adsorption, 184
 Nitrate Adsorption, 186
 Sulfate Adsorption, 186
 Carbonate Sorption, 186
 Importance of Redox State and Valence to Inorganic Ion Adsorption, 187
 Chromium, 187
 Neptunium, 188
 Uranium, 188
 Selenium, 188
 Case Study: Arsenic Speciation and Mobility, 189
 Questions for Further Thought, 192
 Further Reading, 193

8 Sorption: Organic Compounds

 A Brief Introduction to Organic Chemistry, 195
 Some Organic Compounds of Interest in Environmental Surface Chemistry, 200
 Polymers, 200
 Organic Surfactants, Including Fatty Acids, 200
 Humic Substances, 201
 Polycyclic Aromatic Hydrocarbons (PAHs), 202
 Substituted Nitrobenzenes (SNBs), 204
 Volatile Organic Compounds (VOCs), 205
 Sorption of Simple Organic Ligands, Surfactants, and Natural Organic Matter, 205
 Adsorption of Simple Organic Ligands, 205
 Adsorption of Anionic Surfactants, Fatty Acids, 207
 Sorption of Cationic Surfactants, 208
 Sorption of Phospholipid Surfactants: Biomedical Implications, 209
 Adsorption of Humic And Fulvic Acids (NOM), 210
CONTENTS

Metal–Ligand Coadsorption: Ternary Surface Complexes, 214
Sorption of Some Organic Pollutants, 215
 Vapor Pressure, Solubility, and Density, 215
 The Octanol-Water Partition Constant, K_{ow}, 218
 Organic Fuel and Solvent Leaks: Volatilization, Solubility, Density, and K_{ow}, 219
 The Hammett Constant σ for Substituted Aromatic Acids Based on the Benzene Ring, 220
 Case Study: Sorption of SNBs, 221
 Molecular Dynamics (MD) Modeling of Atrazine Absorption, 223
The K_d Approach to Hydrophobic Organic Compound Transport in Porous Media, 224
Activated Carbon and Sorption of VOCs, 226
Questions for Further Thought, 227
Further Reading, 230

9 Mineral Nucleation and Growth 231

Saturation State and Mineral Nucleation: An Example of the Confluence of Thermodynamics and Kinetics, 231
 Hydroxypyromorphite Nucleation, 233
 Heterogeneous Nucleation and Epitaxial Growth, 233
From Nucleation to Growth, 236
 Ostwald Ripening, 236
 Transport and Surface Controlled Growth, 236
 The Special Importance of Kink Sites, 237
 BCF Theory, 238
 Growth Mode and Driving Force, 240
 Case Study: Calcite Birth and Spread versus Spiral Growth: BCF Theory, 241
 Rates of Step Advancement, 242
Impurities and Growth at Steps, 245
Monte Carlo Simulations of Crystal Growth, 246
Biominalization, 247
Carbonate Precipitation in the Marine Environment, 249
Questions for Further Thought, 251
Further Reading, 252

10 Mineral Weathering and Dissolution 253

Chemical, Physical, and Biological Weathering, 253
Thermodynamics of Mineral Weathering, 256
Kinetics of Mineral Dissolution, 260
 Etch Pit Formation, 261
 Oxalate Promoted Dissolution of Hematite, 263
Comparison of Laboratory- and Field-Based Dissolution Rates, 264
 Reactive Surface Area and Feldspar Dissolution, 266
Rainfall and Weathering: An Example from the Hawaiian Islands, 269
Case Study: Weathering in the Antarctic Dry Valleys, 270
CONTENTS

11 Plants as Environmental Surfaces 280

12 Microorganisms As Environmental Surfaces 296

11 Plants as Environmental Surfaces 280

12 Microorganisms As Environmental Surfaces 296

Reactors for Dissolution Experiments, 273
The Use of Radiogenic Isotopes in Weathering Studies, 276
Questions for Further Thought, 276
Further Reading, 279

Ecohydrology and Soil Moisture Balance, 280
Some Notes on Angiosperm Physiology, 282
The Nutrient Needs of Plants, 282
Effects of Plants on Mineral Dissolution and Weathering, 284
Modes of Plant Elemental Cycling, 287
Plants and Biominalization: Phytoliths, 287
Plants and Formations in Limestone Caves, 289
Phytoremediation as an Example of Plant-Mineral-Contaminant Interactions, 291
Case Study: Phytoremediation of Atrazine, 293
Questions for Further Thought, 294
Further Reading, 295

How Microorganisms “make a Living”, 298
Metabolic Pathways, 298
Microbial Redox Reactions and Michaelis-Menten Kinetics, 303
Microbial Temperature Ranges and Extremophiles, 305
Microbial Growth Curves, 306
Bacterial Groups, 307
Bacterial Cell Walls, 307
Bacterial Adhesion and Biofilms, 309
Bacterial--Metal Interactions, 312
Bacterial-Promoted Mineral Dissolution, 313
Dissolution of Fe(III)(hydr)oxides by DIRB, 313
Dissimilatory Metal-Reducing Bacteria, 315
Microbial Effects on Carbonate Dissolution, 315
The Importance of Field-Based Studies, 317
Case Study: The In Situ Microcosm Approach, 318
Coupling In Situ Microcosms with Community Analysis, 318
Siderophores, 320
Microbial Biominalization, 322
Carbonate Precipitation, 322
Fe(III)(hydr)oxide Precipitaton: BIOS, 323
Banded Iron Formations (BIF), 324
(Alumino)silicate Precipitation, 326
Case Study: Bioremediation of U at the Oak Ridge National Laboratory Site, 327
Microbial Fuel Cells, 329
Questions for Further Thought, 332
Further Reading, 333
CONTENTS

13 Environmental Nanoscience and Nanotechnology 335
 What is a Nanoparticle?, 335
 Nanoparticle Occurrence and Distribution, 337
 What Makes a Nanoparticle Different?, 339
 Nanoparticle Surface Area, Stability, and Reactivity, 340
 Nanoparticles Have a Different Electronic Structure, 340
 How Electronic Structure Influences Nanoparticle Behavior, 342
 Nanoparticle Disorder and Defect Structures, 343
 Ferrihydrite Size, Structure, and Stability, 343
 Effects of pH and Adsorbed Ions on Nanoparticle Stabilities, 344
 Case Study: Fe(hydr)oxide Size and Stability, 345
 Secondary Growth of Nanoparticles, 346
 Self-Assembly and Templating, 348
 Nanoparticle Transport in Porous Media, 348
 The Emergence of Nanotechnology, 350
 Potential Environmental Effects of Engineered Nanoparticles, 351
 Questions for Further Thought, 353
 Further Reading, 354

14 The Big Picture: Interface Processes and the Environment 356
 Reactive Transport Models for Metals and Radionuclides in Porous Media, 356
 The K_d Approach Encounters Difficulties for Metals and Radionuclides, 356
 Comparison of the K_d versus Surface Complexation Modeling Approaches, 357
 Acid Rain Effects on Chemical Weathering, 358
 What Makes Rainfall Acidic?, 359
 Effects of Acid Rain, 360
 Acid Rain and Chemical Weathering, 360
 The Small Watershed Approach, 362
 NETPATH and PHREEQC, 362
 The Clean Air Act and Acid Rain Over Time, 363
 Acid Mine Drainage, 364
 The Environmental Problem, 365
 Nanoparticles and AMD, 365
 Hydrobiogeochemical and Photoreductive Processes, 365
 Biofilms and AMD, 367
 Potential Remediation Strategies, 369
 Environmental Particles and Climate Change, 369
 Climate Forcing and Feedbacks, 370
 Volcanoes and Climate, 373
 CO_2 and Weathering, 374
 Modeling the C Cycle Over Geologic Time, 376
 Scaling Phenomena: Integrating Observations from the Atomic to the Watershed to the Global Scale, 378
 The Concept of the Macroscope, 378
CONTENTS

Embedded Sensor Network Systems, 379
Sensors for Surface and Interface Phenomena, 380
New Opportunities: New Challenges, 380
Questions for Further Thought, 381
Further Readings, 383

Glossary of Terms 385
References 405
Index 437