Contents

Foreword xvii
Series Preface xix
About the Authors xxi
Acknowledgements xxiii
List of Abbreviations xxv

Introduction xxxv
 Systems Integration xxxvi
 Systems Interaction xxxix

1 Flight Control Systems 1
 1.1 Introduction 1
 1.2 Principles of Flight Control 3
 1.3 Flight Control Surfaces 4
 1.4 Primary Flight Control 5
 1.5 Secondary Flight Control 5
 1.6 Commercial Aircraft 7
 1.6.1 Primary Flight Control 7
 1.6.2 Secondary Flight Control 7
 1.7 Flight Control Linkage Systems 9
 1.7.1 Push-Pull Control Rod System 10
 1.7.2 Cable and Pulley System 11
 1.8 High Lift Control Systems 13
 1.9 Trim and Feel 15
 1.9.1 Trim 15
 1.9.2 Feel 17
 1.10 Flight Control Actuation 18
 1.10.1 Simple Mechanical/Hydraulic Actuation 19
 1.10.2 Mechanical Actuation with Electrical Signalling 21
1.10.3 Multiple Redundancy Actuation 22
1.10.4 Mechanical Screwjack Actuator 26
1.10.5 Integrated Actuator Package (IAP) 27
1.10.6 Advanced Actuation Implementations 30
1.11 Civil System Implementations 34
1.11.1 Top-Level Comparison 35
1.11.2 Airbus Implementation 36
1.12 Fly-By-Wire Control Laws 40
1.13 A380 Flight Control Actuation 41
1.14 Boeing 777 Implementation 44
1.15 Interrelationship of Flight Control, Guidance and Flight Management 48

2 Engine Control Systems 51
2.1 Introduction 51
2.1.1 Engine/Airframe Interfaces 52
2.2 Engine Technology and Principles of Operation 53
2.3 The Control Problem 55
2.3.1 Fuel Flow Control 56
2.3.2 Air Flow Control 58
2.3.3 Control Systems 59
2.3.4 Control System Parameters 60
2.3.5 Input Signals 60
2.3.6 Output Signals 62
2.4 Example Systems 62
2.5 Design Criteria 71
2.6 Engine Starting 73
2.6.1 Fuel Control 73
2.6.2 Ignition Control 74
2.6.3 Engine Rotation 75
2.6.4 Throttle Levers 77
2.6.5 Starting Sequence 78
2.7 Engine Indications 78
2.8 Engine Oil Systems 81
2.9 Engine Offtakes 81
2.10 Reverse Thrust 83
2.11 Engine Control on Modern Civil Aircraft 84

3 Fuel Systems 87
3.1 Introduction 87
3.2 Characteristics of Fuel Systems 89
3.3 Description of Fuel System Components 90
3.3.1 Fuel Transfer Pumps 90
3.3.2 Fuel Booster Pumps 91
3.3.3 Fuel Transfer Valves 92
3.3.4 Non-Return Valves (NRVs) 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Fuel Quantity Measurement</td>
<td>94</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Level Sensors</td>
<td>94</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Fuel Gauging Probes</td>
<td>96</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Fuel Quantity Measurement Basics</td>
<td>96</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Tank Shapes</td>
<td>97</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Fuel Properties</td>
<td>98</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Fuel Quantity Measurement Systems</td>
<td>101</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Fokker F50/F100 System</td>
<td>101</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Airbus A320 System</td>
<td>103</td>
</tr>
<tr>
<td>3.4.9</td>
<td>‘Smart’ Probes</td>
<td>104</td>
</tr>
<tr>
<td>3.4.10</td>
<td>Ultrasonic Probes</td>
<td>105</td>
</tr>
<tr>
<td>3.5</td>
<td>Fuel System Operating Modes</td>
<td>105</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pressurisation</td>
<td>106</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Engine Feed</td>
<td>106</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Fuel Transfer</td>
<td>108</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Refuel/Defuel</td>
<td>109</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Vent Systems</td>
<td>111</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Use of Fuel as a Heat Sink</td>
<td>112</td>
</tr>
<tr>
<td>3.5.7</td>
<td>External Fuel Tanks</td>
<td>112</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Fuel Jettison</td>
<td>113</td>
</tr>
<tr>
<td>3.5.9</td>
<td>In-Flight Refuelling</td>
<td>114</td>
</tr>
<tr>
<td>3.6</td>
<td>Integrated Civil Aircraft Systems</td>
<td>116</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Bombardier Global Express</td>
<td>117</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Boeing 777</td>
<td>119</td>
</tr>
<tr>
<td>3.6.3</td>
<td>A340-500/600 Fuel System</td>
<td>120</td>
</tr>
<tr>
<td>3.7</td>
<td>Fuel Tank Safety</td>
<td>128</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Principles of Fuel Inerting</td>
<td>129</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Air Separation Technology</td>
<td>130</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Typical Fuel Inerting System</td>
<td>131</td>
</tr>
<tr>
<td>3.8</td>
<td>Polar Operations – Cold Fuel Management</td>
<td>133</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Minimum Equipment List (MEL)</td>
<td>133</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Cold Fuel Characteristics</td>
<td>134</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Fuel Temperature Indication</td>
<td>135</td>
</tr>
</tbody>
</table>

4 Hydraulic Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>Hydraulic Circuit Design</td>
<td>138</td>
</tr>
<tr>
<td>4.3</td>
<td>Hydraulic Actuation</td>
<td>142</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydraulic Fluid</td>
<td>144</td>
</tr>
<tr>
<td>4.5</td>
<td>Fluid Pressure</td>
<td>145</td>
</tr>
<tr>
<td>4.6</td>
<td>Fluid Temperature</td>
<td>145</td>
</tr>
<tr>
<td>4.7</td>
<td>Fluid Flow Rate</td>
<td>146</td>
</tr>
<tr>
<td>4.8</td>
<td>Hydraulic Piping</td>
<td>146</td>
</tr>
<tr>
<td>4.9</td>
<td>Hydraulic Pumps</td>
<td>147</td>
</tr>
<tr>
<td>4.10</td>
<td>Fluid Conditioning</td>
<td>151</td>
</tr>
</tbody>
</table>
7.4.3 Engine Bleed
7.4.4 Bleed Flow and Temperature Control

7.5 Cooling Systems
7.5.1 Air Cycle Refrigeration Systems
7.5.2 Turbofan System
7.5.3 Bootstrap System
7.5.4 Reversed Bootstrap
7.5.5 Ram Powered Reverse Bootstrap
7.5.6 Vapour Cycle Systems
7.5.7 Liquid Cooled Systems
7.5.8 Expendable Heat Sinks

7.6 Humidity Control
7.7 The Inefficiency of Present Systems
7.8 Air Distribution Systems
7.8.1 Avionics Cooling
7.8.2 Unconditioned Bays
7.8.3 Conditioned Bays
7.8.4 Conditioned Bay Equipment Racking
7.8.5 Ground Cooling
7.8.6 Cabin Distribution Systems

7.9 Cabin Noise
7.10 Cabin Pressurisation
7.11 Hypoxia
7.12 Molecular Sieve Oxygen Concentrators
7.13 g Tolerance
7.14 Rain Dispersal
7.15 Anti-Misting and De-Misting
7.16 Aircraft Icing

8 Emergency Systems
8.1 Introduction
8.2 Warning Systems
8.3 Fire Detection and Suppression
8.4 Emergency Power Sources
8.5 Explosion Suppression
8.6 Emergency Oxygen
8.7 Passenger Evacuation
8.8 Crew Escape
8.9 Computer-Controlled Seats
8.10 Ejection System Timing
8.11 High Speed Escape
8.12 Crash Recorder
8.13 Crash Switch
8.14 Emergency Landing
8.15 Emergency System Testing
9 Rotary Wing Systems

9.1 Introduction 319
9.2 Special Requirements of Helicopters 320
9.3 Principles of Helicopter Flight 321
9.4 Helicopter Flight Control 324
9.5 Primary Flight Control Actuation 325
 9.5.1 Manual Control 326
 9.5.2 Auto-Stabilisation 328
 9.5.3 Autopilot Modes 330
9.6 Key Helicopter Systems 333
 9.6.1 Engine and Transmission System 335
 9.6.2 Hydraulic Systems 338
 9.6.3 Electrical System 340
 9.6.4 Health Monitoring System 341
 9.6.5 Specialised Helicopter Systems 342
9.7 Helicopter Auto-Flight Control 343
 9.7.1 EH 101 Flight Control System 343
 9.7.2 NOTAR Method of Yaw Control 346
9.8 Active Control Technology 349
9.9 Advanced Battlefield Helicopter 350
 9.9.1 Target Acquisition and Designator System
 (TADS)/Pilots Night Vision System (PNVS) 350
 9.9.2 AH-64 C/D Longbow Apache 353
9.10 Tilt Rotor Systems 357
 9.10.1 Tilt Rotor Concept and Development 357
 9.10.2 V-22 OSPREY 358
 9.10.3 Civil Tilt Rotor 366

10 Advanced Systems

10.1 Introduction 371
 10.1.1 STOL Manoeuvre Technology
 Demonstrator (SMTD) 371
 10.1.2 Vehicle Management Systems (VMS) 372
 10.1.3 More-Electric Aircraft 372
 10.1.4 More-Electric Engine 373
10.2 Stealth 374
 10.2.1 Joint Strike Fighter (JSF) 374
10.3 Integrated Flight and Propulsion
 Control (IFPC) 375
10.4 Vehicle Management System 377
10.5 More-Electric Aircraft 381
 10.5.1 Engine Power Offtakes 381
 10.5.2 Boeing 787 (More-Electric) Electrical System 382
 10.5.3 More-Electric Hydraulic System 384
 10.5.4 More-Electric Environmental Control System 386
10.6 More-Electric Actuation

10.6.1 **Electro-Hydrostatic Actuators (EHA)**
10.6.2 **Electro-Mechanical Actuators (EMA)**
10.6.3 **Electric Braking**

10.7 More-Electric Engine

10.7.1 **Conventional Engine Characteristics**
10.7.2 **More-Electric Engine Characteristics**

10.8 Impact of Stealth Design

10.8.1 **Lockheed F-117A Nighthawk**
10.8.2 **Northrop B-2 Spirit**
10.8.3 **Joint Strike Fighter – F-35 Lightning II**

10.9 Technology Developments/Demonstrators

10.9.1 **Fault Tolerant 270VDC Electrical Power Generation System**
10.9.2 **Thermal and Energy Management Module**
10.9.3 **AFTI F-16 Flight Demonstration**

11 System Design and Development

11.1 Introduction

11.1.1 **Systems Design**
11.1.2 **Development Processes**

11.2 System Design

11.2.1 **Key Agencies and Documentation**
11.2.2 **Design Guidelines and Certification Techniques**
11.2.3 **Key Elements of the Development Process**

11.3 Major Safety Processes

11.3.1 **Functional Hazard Analysis (FHA)**
11.3.2 **Preliminary System Safety Analysis (PSSA)**
11.3.3 **System Safety Analysis (SSA)**
11.3.4 **Common Cause Analysis (CCA)**

11.4 Requirements Capture

11.4.1 **Top-Down Approach**
11.4.2 **Bottom-Up Approach**
11.4.3 **Requirements Capture Example**

11.5 Fault Tree Analysis (FTA)

11.6 Dependency Diagram

11.7 Failure Modes and Effects Analysis (FMEA)

11.8 Component Reliability

11.8.1 **Analytical Methods**
11.8.2 **In-Service Data**

11.9 Dispatch Reliability

11.10 Markov Analysis

11.11 Development Processes

11.11.1 **The Product Life Cycle**
11.11.2 **Concept Phase**
12 Avionics Technology 441
12.1 Introduction 441
12.2 The Nature of Microelectronic Devices 443
 12.2.1 Processors 446
 12.2.2 Memory Devices 446
 12.2.3 Digital Data Buses 447
 12.2.4 A 429 Data Bus 449
 12.2.5 MIL-STD-1553B 451
 12.2.6 ARINC 629 Data Bus 453
 12.2.7 COTS Data Buses 456
12.3 Data Bus Integration of Aircraft Systems 460
 12.3.1 Experimental Aircraft Programme (EAP) 460
 12.3.2 Airbus A330/340 461
 12.3.3 Boeing 777 462
 12.3.4 Regional Aircraft/Business Jets 463
 12.3.5 A380 Avionics Architecture 464
 12.3.6 Boeing 787 Avionics Architecture 467
 12.3.7 COTS Data Buses – IEEE 1394 468
12.4 Fibre Optic Buses 469
12.5 Avionics Packaging Standards 470
 12.5.1 Air Transport Radio (ATR) 470
 12.5.2 Modular Concept Unit (MCU) 470
12.6 Typical LRU Architecture 471
12.7 Integrated Modular Avionics 473

13 Environmental Conditions 477
13.1 Introduction 477
13.2 Environmental Factors 479
 13.2.1 Altitude 479
 13.2.2 Temperature 480
 13.2.3 Contamination by Fluids 482
 13.2.4 Solar Radiation 483
 13.2.5 Rain, Humidity, Moisture 484
 13.2.6 Fungus 485
 13.2.7 Salt Fog/Salt Mist 485
 13.2.8 Sand and Dust 486
13.2.9 Explosive Atmosphere 486
13.2.10 Acceleration 487
13.2.11 Immersion 487
13.2.12 Vibration 488
13.2.13 Acoustic Noise 488
13.2.14 Shock 489
13.2.15 Pyroshock 490
13.2.16 Acidic Atmosphere 490
13.2.17 Temperature, Humidity, Vibration, Altitude 490
13.2.18 Icing/Freezing Rain 491
13.2.19 Vibro-Acoustic, Temperature 491
13.2.20 RF Radiation 491
13.2.21 Lightning 492
13.2.22 Nuclear, Biological and Chemical 493

13.3 Testing and Validation Process 493

Index 499