Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xv</td>
</tr>
</tbody>
</table>

PART I INTRODUCTION

1 Introduction

- 1.1 Overview of Wireless Technologies | 3
- 1.2 TUTWSN | 5
- 1.3 Contents of the Book | 6

PART II DESIGN SPACE OF WSNS

2 WSN Properties

- 2.1 Characteristics of WSNs | 9
- 2.2 WSN Applications | 11
 - 2.2.1 Commercial WSNs | 12
 - 2.2.2 Research WSNs | 14
- 2.3 Requirements for WSNs | 16

3 Standards and Proposals

- 3.1 Standards | 19
 - 3.1.1 IEEE 1451 Standard | 19
 - 3.1.2 IEEE 802.15 Standard | 21
- 3.2 Variations of Standards | 28
 - 3.2.1 Wibree | 28
 - 3.2.2 Z-Wave | 28
 - 3.2.3 MiWi | 28

4 Sensor Node Platforms

- 4.1 Platform Components | 29
 - 4.1.1 Communication Subsystem | 30
 - 4.1.2 Computing Subsystem | 33
CONTENTS

4.1.3 Sensing Subsystem ... 33
4.1.4 Power Subsystem .. 34
4.2 Existing Platforms .. 36
4.3 TUTWSN Platforms ... 39
 4.3.1 Temperature-sensing Platform 39
 4.3.2 SoC Node Prototype .. 43
 4.3.3 Ethernet Gateway Prototype 44
4.4 Antenna Design ... 46
 4.4.1 Antenna Design Flow .. 46
 4.4.2 Planar Antenna Types .. 48
 4.4.3 Trade-Offs in Antenna Design 49

5 Design of WSNs ... 51
 5.1 Design Dimensions .. 51
 5.2 WSN Design Flow ... 54
 5.3 Related Research on WSN Design 56
 5.3.1 WSN Design Methodologies 56
 5.4 WSN Evaluation Methods .. 60
 5.5 WSN Evaluation Tools ... 61
 5.5.1 Networking Oriented Simulators for WSN 61
 5.5.2 Sensor Node Simulators 62
 5.5.3 Analysis of Evaluation Tools 63

PART III WSN PROTOCOL STACK 67

6 Protocol Stack Overview ... 69
 6.1 Outline of WSN Stack .. 69
 6.1.1 Physical Layer .. 70
 6.1.2 Data Link Layer .. 71
 6.1.3 Network Layer .. 71
 6.1.4 Transport Layer .. 71
 6.1.5 Application Layer ... 72

7 MAC Protocols ... 73
 7.1 Requirements .. 73
 7.2 General MAC Approaches .. 75
 7.2.1 Contention Protocols 75
 7.2.2 Contention-free Protocols 77
 7.2.3 Multichannel Protocols 78
 7.3 WSN MAC Protocols ... 80
 7.3.1 Synchronized Low Duty-cycle Protocols 80
 7.3.2 Unsynchronized Low Duty-cycle Protocols 85
 7.3.3 Wake-up Radio Protocols 87
 7.3.4 Summary ... 88
8 Routing Protocols 91
 8.1 Requirements ... 91
 8.2 Classifications .. 92
 8.3 Operation Principles ... 93
 8.3.1 Nodecentric Routing 93
 8.3.2 Data-centric Routing 94
 8.3.3 Location-based Routing 95
 8.3.4 Multipath Routing 97
 8.3.5 Negotiation-based Routing 97
 8.3.6 Query-based Routing 98
 8.3.7 Cost Field-based Routing 99
 8.4 Summary ... 101

9 Middleware and Application Layer 103
 9.1 Motivation and Requirements 103
 9.2 WSN Middleware Approaches 105
 9.3 WSN Middleware Proposals 106
 9.3.1 Interfaces ... 106
 9.3.2 Virtual Machines .. 107
 9.3.3 Database Middlewares 107
 9.3.4 Mobile Agent Middlewares 108
 9.3.5 Application-driven Middlewares 108
 9.3.6 Programming Abstractions 109
 9.3.7 WSN Middleware Analysis 110

10 Operating Systems 115
 10.1 Motivation and Requirements 115
 10.1.1 OS Services and Requirements 116
 10.1.2 Implementation Approaches 117
 10.2 Existing OSs .. 119
 10.2.1 Event-handler OSs 120
 10.2.2 Preemptive Multithreading OSs 121
 10.2.3 Analysis .. 121

11 QoS Issues in WSN 125
 11.1 Traditional QoS .. 125
 11.2 Unique Requirements in WSNs 125
 11.3 Parameters Defining WSN QoS 126
 11.4 QoS Support in Protocol Layers 128
 11.4.1 Application Layer 128
 11.4.2 Transport Layer .. 128
 11.4.3 Network Layer ... 129
 11.4.4 Data Link Layer ... 130
 11.4.5 Physical Layer .. 131
 11.5 Summary ... 131
CONTENTS

12 Security in WSNs 133

12.1 WSN Security Threats and Countermeasures ... 133
 12.1.1 Passive Attacks ... 134
 12.1.2 Active Attacks ... 134
12.2 Security Architectures for WSNs ... 135
 12.2.1 TinySec .. 135
 12.2.2 SPINS .. 136
 12.2.3 IEEE 802.15.4 Security .. 136
 12.2.4 ZigBee Security ... 137
 12.2.5 Bluetooth Security ... 139
12.3 Key Distribution in WSNs .. 140
 12.3.1 Public-key Cryptography .. 140
 12.3.2 Pre-distributed Keys ... 140
 12.3.3 Centralized Key Distribution ... 141
12.4 Summary of WSN Security Considerations ... 142

PART IV TUTWSN 143

13 TUTWSN MAC Protocol 145

 13.1 Network Topology ... 145
 13.2 Channel Access ... 147
 13.3 Frequency Division .. 149
 13.4 Advanced Mobility Support ... 152
 13.4.1 Proactive Distribution of Neighbor Information 153
 13.4.2 Neighbor-discovery Algorithm .. 154
 13.4.3 Measured Performance of ENDP Protocol 158
 13.5 Advanced Support for Bursty Traffic ... 159
 13.5.1 Slot Reservations within a Superframe 160
 13.5.2 On-demand Slot Reservation .. 161
 13.5.3 Traffic-adaptive Slot Reservation ... 161
 13.5.4 Performance Analysis ... 162
 13.6 TUTWSN MAC Optimization ... 165
 13.6.1 Reducing Radio Requirements ... 165
 13.6.2 Network Beacon Rate Optimization 170
 13.7 TUTWSN MAC Implementation .. 179
 13.8 Measured Performance of TUTWSN MAC 180

14 TUTWSN Routing Protocol 183

 14.1 Design and Implementation ... 183
 14.2 Related Work ... 183
 14.3 Cost-Aware Routing ... 184
 14.3.1 Sink-initiated Route Establishment 185
 14.3.2 Node-initiated Route Discovery ... 185
 14.3.3 Traffic Classification ... 186
CONTENTS

14.4 Implementation ... 187
 14.4.1 Protocol Architecture 187
 14.4.2 Implementation on TUTWSN MAC 188
14.5 Measurement Results 188
 14.5.1 Network Parameter Configuration 189
 14.5.2 Network Build-up Time 189
 14.5.3 Distribution of Traffic 190
 14.5.4 End-to-end Delays 192

15 TUTWSN API ... 193
 15.1 Design of TUTWSN API 194
 15.1.1 Gateway API 194
 15.1.2 Node API .. 196
 15.2 TUTWSN API Implementation 197
 15.2.1 Gateway API 198
 15.2.2 Node API .. 198
 15.3 TUTWSN API Evaluation 200
 15.3.1 Ease of Use 200
 15.3.2 Resource Consumption 200
 15.3.3 Operational Performance 201

16 TUTWSN SensorOS ... 203
 16.1 SensorOS Design 203
 16.1.1 SensorOS Architecture 204
 16.1.2 OS Components 204
 16.2 SensorOS Implementation 206
 16.2.1 HAL Implementation 206
 16.2.2 Component Implementation 207
 16.3 SensorOS Performance Evaluation 210
 16.3.1 Resource Usage 210
 16.3.2 Context Switch Performance 210
 16.4 Lightweight Kernel Configuration 211
 16.4.1 Lightweight OS Architecture and Implementation .. 211
 16.4.2 Performance Evaluation 212
 16.5 SensorOS Bootloader Service 213
 16.5.1 SensorOS Bootloader Design Principles 213
 16.5.2 Bootloader Implementation 213

17 Cross-layer Issues in TUTWSN 217
 17.1 Cross-layer Node Configuration 217
 17.1.1 Application Layer 219
 17.1.2 Routing Layer 219
 17.1.3 MAC Layer ... 219
 17.1.4 Physical Layer 220
 17.1.5 Configuration Examples 220
CONTENTS

17.2 Piggybacking Data ... 223
17.3 Self-configuration with Cross-layer Information 224
 17.3.1 Frequency and TDMA Selection ... 224
 17.3.2 Connectivity Maintenance .. 224
 17.3.3 Role Selection ... 225

18 Protocol Analysis Models .. 227
 18.1 PHY Power Analysis .. 227
 18.2 Radio Energy Models ... 229
 18.2.1 TUTWSN Radio Energy Models .. 230
 18.2.2 ZigBee Radio Energy Models .. 232
 18.3 Contention Models ... 234
 18.3.1 TUTWSN Contention Models .. 234
 18.3.2 ZigBee Contention Models .. 235
 18.4 Node Operation Models ... 238
 18.4.1 TUTWSN Throughput Models ... 238
 18.4.2 ZigBee Throughput Models .. 239
 18.4.3 TUTWSN Power Consumption Models 240
 18.4.4 ZigBee Power Consumption Models .. 243
 18.5 Summary .. 245

19 WISENES Design and Evaluation Environment 247
 19.1 Features ... 247
 19.2 WSN Design with WISENES ... 248
 19.3 WISENES Framework .. 249
 19.3.1 Short Introduction to SDL .. 251
 19.3.2 WISENES Instantiation ... 252
 19.3.3 Central Simulation Control ... 253
 19.3.4 Transmission Medium ... 253
 19.3.5 Sensing Channel ... 254
 19.3.6 Sensor Node .. 254
 19.4 Existing WISENES Designs ... 256
 19.4.1 TUTWSN Stack .. 258
 19.4.2 ZigBee Stack .. 260
 19.5 WISENES Simulation Results ... 263
 19.5.1 Simulated Node Platforms .. 264
 19.5.2 Accuracy of Simulation Results .. 266
 19.5.3 Protocol Comparison Simulations ... 268

PART V DEPLOYMENT ... 277

20 TUTWSN Deployments ... 279
 20.1 TUTWSN Deployment Architecture .. 280
 20.1.1 WSN Server .. 281
CONTENTS

20.1.2 WSN and Gateway .. 282
20.1.3 Database ... 282
20.1.4 User Interfaces .. 282
20.2 Network Self-diagnostics ... 283
20.2.1 Problem Statement .. 283
20.2.2 Implementation .. 284
20.3 Security Experiments ... 290
20.3.1 Experimental KDC-based Key Distribution and Authentication Scheme .. 291
20.3.2 Implementation Experiments 291

21 Sensing Applications .. 293
21.1 Linear-position Metering ... 293
21.1.1 Problem Statement .. 293
21.1.2 Implementation .. 294
21.1.3 Results .. 296
21.2 Indoor-temperature Sensing 297
21.2.1 WSN Node Design ... 298
21.2.2 Results .. 298
21.3 Environmental Monitoring ... 300
21.3.1 Problem Statement .. 300
21.3.2 Implementation .. 300
21.3.3 Results .. 306

22 Transfer Applications .. 313
22.1 TCP/IP for TUTWSN ... 313
22.1.1 Problem Statement .. 313
22.1.2 Implementation .. 314
22.1.3 Results .. 316
22.2 Realtime High-performance WSN 318
22.2.1 Problem Statement .. 318
22.2.2 Implementation .. 318
22.2.3 Results .. 324

23 Tracking Applications .. 327
23.1 Surveillance System ... 327
23.1.1 Problem Statement .. 328
23.1.2 Surveillance WSN Design 328
23.1.3 WSN Prototype Implementation 331
23.1.4 Surveillance WSN Implementation on TUTWSN Prototypes .. 332
23.2 Indoor Positioning .. 334
23.2.1 Problem Statement .. 335
23.2.2 Implementation .. 335
23.3 Team Game Management .. 342
23.3.1 Problem Statement .. 343