Index

Aberrations, 87–97
chromatic, 94
correction of, 111
disturbance of axial symmetry, 96
electron diffraction, 97
geometrical, 87
anisotropic, 93
astigmatism, 92
coma, 91
distortion, 93
field curvature, 93
spherical, 90
space-charge fields, 96
Accelerators:
colliders, 517
FODO lattices in, 111, 228
types of, 111, 522
Action integral, 7
Adiabatic design of MIG, 473
Adiabatic guns, 472
Adiabatic invariant, 33–36, 473
Admittance of electron gap, 247–252
Admittance of ensemble of classical oscillators, 427–430
Amplitron, 411–418
amplification and efficiency, 414
bandwidth, 415
Buneman–Hartree line, 416
electron emission, 419
phase characteristics, 417
slow-wave structures, 413
Anode aperture, 71
Anomalous Doppler effect, 425
Applegate diagram, 268
Approximations
adiabatic, 32
hydrodynamic, 116
kinematic, 267
linear, 250, 258, 463, 523
nonrelativistic, 19–28, 42, 98, 128, 472
paraxial, 53, 211
quasistatic, 18
single-flow, 116
Averaged equations of gyrotron, 451–454
in Hamiltonian form, 454
in polar coordinates, 456
Backward wave
amplifier (BWT), 342
nonlinear effects in BWO, 348
oscillations, 339, 509
oscillator (BWO), 345
oscillator of M-type (MBWO), 377–382
relativistic BWO, 357
Bandwidth
amplitron, 415
gyrokystron, 506
gyro-TWT, see Gyro-TWT
klystron, 287
TWTM, 377
Barkhausen-Kurtz oscillator, 435
Beams:
brightness, 13
Brillouin, 186–189, 193–198
congruent, 127
INDEX

Beams: (Continued)
emittance, 12, 110
equilibrium, 182–184, 191, 205, 220
helical electron, 24, 43, 468–475
hollow, 189, 211
homocentric, 48, 131
isorotational, 186
isovelocity, 184
laminar, 116, 124, 136, 480
nonvortex, 127
regular intersection, 479
space-charge, 113, 115, 131, 181, 479
stiffness, 223
thin annular, 199
unripped beams, 182
Bessel function, 272, 294, 539
Boltzman–Maxwell distribution, 123
Bremsstrahlung magnetic, 425
Brillouin stream, 389–391
Brillouin rays, 500
de Broglie’s wave, 97
Bunching:
crossed fields, 365
current, 268
electron gap, 252
gyrokystron, 503
inertial and forced, 369, 443
klystron, 269, 283
linear and quadratic bunching
of oscillators, 433
retarded field, 290
spatial and phase, 434–445
Buneman–Hartree threshold voltage, 391, 401
Busch theorem, 41, 126
BWO, see Backward wave

Carcinotrons of M-type, 377–383
Cathode lens (immersion objective), 63, 72–75
Cathode plasma, 173, 179
Cathode thermionic, 75
Cauchy problem, 150–152, 162–167
Cavities:
buncher, 264–266
catcher, 273
penultimate, 284–287
toroidal, 265
Centrifugal electrostatic focusing, 171, 205–210
Ceramic sintering, 515
Cerenkov radiation, 300
Cerenkov synchronism, 424
CFA, 410–419
Charge conservation law, 248, 269, 292, 455
Child–Langmuir formula, 130
Classical electron oscillators, 427
Clinotron, 351
Coaxial gyrotrons, 463, 479
Coaxial resonators, 496, 514
Colliders, see Accelerators
Complex resonators, 496
Conductance of electron gap, 251, 267
Continuity theorem, 11, 368
Controlled fusion experiments, 514
Convective instabilities of helical electron beams, 481
Converter quasi-optical, 499
Coupled cavity TWTO, 340
Coupling coefficient, 266
Crossed field amplifiers (CFA), 410–419
Crossed field oscillators, see Backward wave
Crossover, 73
Current:
capacitive, 243, 250
correlation, 242, 268–272, 306–308
displacement, 242
induced, 244–246
total, 242
Cusp magnetic, 44, 472
Cutoff relation, 387
Cyclotron:
frequency (gyrofrequency), 25
resonance, 441, 508
Cyclotron autoresonance masers (CARM), 517–521
Debunching by space charge,
281–283, 296
Differential equations of trajectories, 51–54
Diffraction power output, 499
Diffraction losses, 501
Diodes:
cylindrical, 148
explosive emission, 173–179
foiled anode, 173
foiled free annular, 174
high-frequency with nonzero space charge, 257–260
magnetically insulated, 174–179
oscillator, 260
planar, 118, 129, 144, 529
relativistic planar, 145
spherical, 149
supreme relativistic, 146
volt–ampere characteristics, 146
Dispersion equation:
BWO, 344
FEL, 525
gyro-TWT, 510
MBWO, 377
MTWT, 371
space charge waves, 280
TWTO, 310, 313, 318
Doppler anomalous effect, 425
Doppler frequency up conversion, 426
Doppler normal synchronism, 424
Drift:
equations, 37, 39
gradient, 39
guiding center, 39
transversal, 29, 39
Dryden’s flow, 140
Efficiency:
amplitron, 415–417
BWO, 348, 359
diode oscillator, 260
gyrokystron, 506
gyrotron, 443, 462, 517
klystron multibeam, 287
klystron multi-cavity, 286
klystron two-cavity, 275, 277
magnetron, 394
magnetron, relativistic, 402
magnicon, 439
MBWO, 381
MILO, 408
MTWT, 375
reflex klystron, 293, 296
ubitron, 437
Electron gap, 242, 245, 251
Emission:
crossed field amplifiers (CFA), 419
explosive electron, 171
secondary, 331, 410, 419
self-amplified spontaneous
(SASE), 526
Emittance, 12, 110
Energy:
balance for free and forced stationary
oscillations, 447, 541
conservation law, 18
integral of averaged equations, 455
spread, 476
transfer in MTWT and TWTO, 368
Euler–Lagrange equation, 50
Euler’s motion equation, 123
Explosive emission diodes, 173–179
Floquet theorem, 302
Focal length:
cathode lens, 73
quadrupole lens, 105–108
short magnetic lens, 78
strong magnetic lens, 83
thin aperture lens, 70
thin unipotential and immersion
lenses, 68
Foci, sagittal and meridional, 92
Focusing:
centrifugal electrostatic, 205–208, 211
electrostatic periodical, 226
magnetic periodical, 228–234
multifocusing effect, 79, 83
slalom, 227
strong, 80
Free electron laser (FEL)
applications, 527
linear theory, 523
parameters, 526
Frequency:
bands, 237
electron cyclotron (gyrofrequency), 25
multiplier klystron, 277
plasma, 6, 280
plasma reduction, 281
Frequency oscillation zones of
reflex klystron, 295
Frequency tuning:
BWO, 348
clinotron, 352
gyrotron, 495, 515
magnetron, 396–399
MBWO, 381, 383
reflex klystron, 295
Gain (amplification):
amplitron, 414
BWA 348
gyrokystron, 506
gyro-TWT, see Gyro-TWT
klystron, 285, 288
MTWT, 372
TWTO, 336, 361
Gaussian beams, 362, 403, 499
Gaussian distribution of the
gyrotron hf field, 462
Gauss plane, 89
Girocon, 438
Global instability, 483–485
Grazing intersection, 509
Guiding center, 25, 31, 37–41, 367,
440, 451, 457, 472
Guns:
cathode, 73
centrifugal electrostatic, 171
INDEX

Guns: (Continued)
 Chernov’s, 210
 Chow–Pantell, 471
 cusp-injected, 44, 472
 explosive–emission, 172–179
 Harris–Waters, 209
 high-convergence, 170
 Lomax–Kirstein synthesis method, 153
 magnetron injection gyrotron
 adiabatic, 470, 472–476
 magnetron injection Kino-Taylor, 169, 530
 Meltzer, 156–158
 with wedge-shaped and conic beams, 167

Gyrokystron:
 bandwidth, 506
 construction, 503
 equations, 503–505
 multicavity, 503, 506

Gyrotron:
 applications
 electroncyclotron current
 drive (ECCD), 513
 electron–cyclotron resonance heating
 (ECRH), 513
 generation of multiply charged ions
 and soft X-rays, 515
 gyrokystron RF drivers for TeV linear
 colliders, 517
 microwave procession of
 materials, 515
 millimeter radar systems, 516
 coaxial, 463, 479
 depressed collector, 502
 hard self-excitation regime, 467,
 494, 497
 large orbit, 442
 multibeam, 498
 nonsynchronous parameter, 434
 output power system, 499
 quasirelative, 495
 relativistic, 517
 resonators, 444
 starting regime, 465
 subrelativistic, 458
 subrelativistic equations, 459–465
 TE, TM modes, 445
 theory, 449–457
 thin beam approximation, 455

Gyro-TWT:
 bandwidth, 511
 gain, 511
 reflective instability, 512
 resonance conditions, 508

Hamiltonian equations, 9
Harker’s method, 162–166
Harmonics:
 gyrofrequency, 439, 452, 467
 spatial, 303–306, 382
Harris flow, 206
Helix dispersion, see Slow-wave structures
Helix TWTO, 338
Helmholz and Lagrange formulas, 61
Hull’s parabola, 387
Hybrid magnets, 544

Image rotation, 84
Image space, 62, 65, 83
Image stigmatic and geometric similarity, 47
Immersion lens, 63, 67
Impedance of diode, 258
Incremental propagation constant, 312,
 317, 345, 372

Instabilities:
 diochotron, 170, 482
 global, 483–485
 negative-mass (electrostatic cyclotron), 481
 reflective of Gyro-TWT, 512
 TE instabilities, 484
 Intermodulation distortion, 337
Invariant, Lagrange and Poincare, 124,
 127, 131

Ions compensation, 487
ITER, 514

Kicker, 472, 521

Klystrons:
 Applegate diagram, 268
 applications, 263, 284, 288, 296
 frequency multiplier, 276
 invention, 263
 multicable and multibeam, 284–288
 reflex, 289–296
 relativistic, 289
 two-cavity, 264, 273–277

Lagrange invariant, 125

Langrangian equations, 8

Laplace equation, 102, 144, 150–153, 163

Lenses:
 aperture, 63, 69–71
 cardinal elements, 65, 82, 105
 cathode (immersion objective), 63, 72–75
 electrostatic, 61–76
INDEX 571

immersion 63, 67
magnetic:
 classification, 76, 79
 Glazer’s, 80–85
 long, 86
 short, 77–80
magnification, 59, 84
quadrupole:
 applications, 109
 cardinal elements, 105
 equation of paraxial trajectories, 103
 quadrupole doublets and triplets, 108
 second order focusing, 109
 transfer matrix, 104
 second-order focusing of axially symmetric
 lenses, 98
 transfer matrix, 99
unipotential, 63, 67
Limiting current, 204, 487–492
LINAC, 527
Linearization:
 gyro-TWT equations, 509
 induced current, 250
 subrelativistic gyrotron equations, 463
Liouville theorem, 10
Llewellyn–Peterson equations, 260
Magnetic bottle, 40
Magnetic fields spatial periodic, 225, 228
Magnetic lenses, see Lenses, magnetic
Magnetic systems of gyrotrons:
 hybrid magnets, 544
 permanent magnets, 516, 545
 pulsed magnets, 545
 resistive solenoids, 543
 superconductive magnets, 543
Magnets:
 applications, 395
 Brillouin stream, 389–391
 Buneman–Hartree threshold voltage, 391, 401
 efficiency, 394
 Hull’s parabola, 387, 401
 mechanically tunable, 397
 performance, 395
 phase locking, 405
 π-mode, 384–386, 393
 planar, 136–140
 relativistic, 400–405
 resonator, 383
 voltage tunable, 397
Maxwell equations, 6
Meltzer’s flow and gun, 134–136, 156–158
Membrane equation and function, 446, 538

Microscopes:
 emission, 73
 lenses, 85
 resolution, 75, 97
 scanning, 75
 transmission, 94
Millimeter TWTO, BWO, and
orotrons, 350
MILO (magnetically insulated line oscillator),
406–410
Modes:
 gyrotrotron interaction:
 selection, 494–499
 suppression, 493
 π-mode, 384–386, 393
 ρ-mode, 129, 257–259, 479, 529
 T-mode, 129, 257–259, 479, 529
 voltage-, power-, and bandwidth
 amplifier klystron modes, 276,
 285–288
Modulation:
 energy, 503, 521
 velocity, 265–267
Momentum generalized, 8, 41,
46, 55
Motion of electrons in static fields:
 axially symmetric and plane
 symmetric, 41–46
 electric, 21–23
 magnetic, 23–31
 weakly inhomogeneous, 31–41
M-type injected beam back wave
 oscillator (MBWO),
 377–382
M-type injected beam traveling
 wave tube (MTWT):
 bunching, 368
 construction, 381
 efficiency, 375
 gain, 369, 372
 nonlinear effects, 375
 planar, 364, 381
Negative conductance:
 diode, 258
 electron gap, 252
Negative mass instability, 481
Noise:
 figure, 334
 magnetron, 396
 partition, 335
 shot, 335
 velocity, 335
Orotrons, 352–354
Oscillators, classical electron:
 admittance of assemble, 427–430
 harmonic, 20, 138, 430
 isochronous, 442
 nonisochronous, 432–436, 486
 phase bunching, 433
 relativistic, 20
 spatial bunching, 435
 spontaneous radiation, 423
 stimulated radiation, 427–432
O-type devices, 297, 368
Paraxial ray equations, 211–215
Peniotron, 437
Periodic focusing, 225–234
Permanent magnetic system, 516, 545
Pervance, 114, 130, 214
Phase:
 locking, 405
 selection, 434–437
Phased antenna array, 360, 376, 418, 481
Pierce:
 formula of TWT and Gyro-TWT
 amplification, 316, 511
 gun, 152, 168
 parameter, 311
 synthesis gun method, 143
Pinch effect, 118
Pitch-factor, 468, 476, 483
Poincaré invariant, 124
Poisson’s equation, 113
Pondermotive force, 524
Potential depression, 114, 201, 204, 487, 496
Pulsed magnet, 545
Pump magnet, 458, 472
Quadrupole lenses, see Lenses, quadrupole
Quality factor (Q-factor):
 diffracton, 447
 loaded, 255, 297, 399, 448
Quasioptical gyrotron, see Gyrotron
Quasistatic approximation, 18
Radar, 333, 360, 396, 516
Radiation:
 Bremsstrahlung, 425
 Cerenkov, 300
 parasitic electromagnetic, 486
 spontaneous, 423–426
 stimulated, 427–433
 stray, 501
 synchrotron, 526
 transition, 300
Reduction factor plasma, 281
Reflected electrons, 335, 484
Reflective waves, 312, 335, 337, 348, 358, 512
Reflex klystron, 289–296
Relativistic:
 beams in an infinite magnetic field, 199–205
 current, 213
 gyrotron, 517
 klystron, 289
 magnetron, 400–405
 paraxial ray equations, 211–215
 perveance, 114, 130, 214
 planar diode, 145–147
 solid Brillouin beams, 193–199
 TWTO and BWO, 354–362
 unrippled beams, 191–193
Resistive magnet, 543
Resonator (cavity):
 Bragg, 520
 buncher cavity, 264
 catcher cavity, 264
 coaxial, 496, 514
 gyromonotron open, 444
 hole-and-slot magnetron, 385
 rising sun, 385
 strapped, 385
 toroidal, 265
Saturation effects:
 gyro-TWT, 511
 MTWT and MBWO, 375
 TWTO, 285, 318, 326
Secondary emission, 331, 410, 419
Selection modes, 494–499
Shockley-Ramo theorem, 243–245
Slalom focusing, 227
Slow-wave structures (SWS):
 cloverleaf, 340
 comb, 301, 350, 533–535
 coupled cavity, 340
 dispersion diagram, 395
 helix, 290, 338
 interdigital, 301, 350, 533–535
 staggered slot, 340
 surface waves, 304, 350, 366
Solenoids, see Magnetic system of gyrotrons
Space charge:
 beams, 113, 115, 131, 181, 479
 current limitation, 114, 130
 effects in MTWT, 373
 fields, 178, 479
 parameters, 229, 312, 318, 349, 374
 self consistent equations, 116
 waves in velocity modulated beams, 277
INDEX 573

Spectrum:
energy in atoms, 422
energy of electron oscillators, 422, 431, 433
modes in waveguides and resonators, 384, 493, 496
Spent beam, 114, 201, 204, 487, 496
Spot size of electron beam, 75
Spread:
energy spread in HEB, 476, 481
velocity in helix electron beam (HEB), 476–481
Stagger-tuned model, 503
Starting current:
BWO, 345–347
gyromonotron, see Gyrotron
MBWO, 377
monotron, 254
orotron, 353
reflex klystron, 295
Startup scenario, 497
Step-tunable gyrotron, 515
Stiffness of beams, 223, 234
Strong focusing, 80
Suppression of modes, 493
Susceptibility of gyroklystron, 504
Synchronous mode, 311, 315, 498
Synchronous radius (in magnetron), 394
Synchronous spatial harmonic, 358, 361, 365
Tapered gyro-TWT, 512
Tapered MILO, 408–410
Tapering velocity, 327–329
Temperature equivalent noise, 335
Thermal (Johnson) noise, 334
Thermonuclear fusion, 514
Thermonuclear reactor, 514
Tokamak, 514
Total current method, 256
Transfer matrix, 99
Transit:
angle, 249, 266, 270, 294, 480, 532
time, 235, 241, 249, 250–252, 299
Transition radiation, 300
Transversal adiabatic invariant, 33–36, 473
Trap, magnetic, 484
Trapping electrons (TE), 484
Traveling wave tube O-type (TWTO):
applications, 332
attenuators and severs, 336
bandwidth, 301, 338
bunching, 299, 306–308
depressed collectors, 329–332
dispersion equation, 310, 313, 318
efficiency, 327–329, 333
gain, 316
helical and coupled cavity tubes, 338–341
intermodulation distortion, 337
linear theory of nonrelativistic TWTO, 306–318
noise, see Noise
nonlinear equations and effects in nonrelativistic TWTO, 318–329
parameters, 312
relativistic, 354–362
self-excitation, 335–337
slow-wave structures, 300–306
space charge, 316
Tuning:
frequency BWO, 348
frequency magnetron, see Magnetron
frequency reflex klystron, 295
Twistron, 289, 340
Ubitron, 437, 521
Ultron, 411
Velocity spread, 476–481
Vlasov–Maxwell’s equations, 122
Velocity modulation, 265–267
Voltage depression, 114, 201, 204, 487, 496
Waveguides:
circular, 445
comparison, 445, 538
corrugated, 358, 362
irregular, 442, 446, 496
periodic, 301
rectangular, 437
tapered, 400
Weakly inhomogeneous fields, 31–41
Windows:
atmospheric, 516
Brewster’s, 502
ceramic, 501
CVD-diamond, 502
output, 358, 501
Work function, 173, 478
Wronskian, 99, 428