Index

a
- accommodation space 234
- aeolian environment 205–210
- aggradation 226
- alluvial environment 210–218
- analogues 31
- anastomosing channel 210, 217
- AOI 31
- aquifer 31, 44
- aquifer model 183, 188–189
- Archie parameters 150, 152–156
- arithmetic average 126, 127
- asset team 8
- autocyclicity 222, 234
- average velocity 53

b
- B.L.U.E. 290
- background facies 105, 108–110
- base horizon 65, 68, 81
- beach barrier 219, 221
- bivariate statistics 279
- blocking well data 85, 90, 95–96, 107, 123, 126–127, 143
- borehole image 43
- Bouma sequence 229, 233
- boundary conditions 193–196, 200
- Box-Cox 286
- braided channel 210, 217, 251
- Brent Group 6, 219–225
- bulk rock volume (BRV) 161, 173, 175
- bulk volume water (BVW) 140, 154
- capillary pressure 119, 121, 136–141, 147–149, 154
- carbonate nodule 96, 219, 222, 226
- carbonate reservoir 88, 104, 149–156
- carbonate shoal 240
- carbonates reservoirs 235–243
- Cartesian grid 183
- cell number 76, 78, 81–83
- cell size 78
- cementation exponent "m" 150, 153
- central tendency 276
- checkshot 23
- Chesil Beach 19
- chronostratigraphy 67, 69
- co-kriging 22, 291
- Co-Simulation 136, 297–299
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of Variation</td>
<td>20, 276</td>
</tr>
<tr>
<td>reservoir compartments</td>
<td>11</td>
</tr>
<tr>
<td>composite log</td>
<td>36, 39</td>
</tr>
<tr>
<td>conceptual model</td>
<td>1–2, 9–10,</td>
</tr>
<tr>
<td></td>
<td>12–14, 25, 43, 44, 87–89, 99, 107</td>
</tr>
<tr>
<td>conditional distribution</td>
<td>279</td>
</tr>
<tr>
<td>conformable horizon</td>
<td>66, 81</td>
</tr>
<tr>
<td>continuous variable</td>
<td>20, 126</td>
</tr>
<tr>
<td>coordinate system</td>
<td>31, 32</td>
</tr>
<tr>
<td>core calibration</td>
<td>152</td>
</tr>
<tr>
<td>core description</td>
<td>39</td>
</tr>
<tr>
<td>core photograph</td>
<td>39</td>
</tr>
<tr>
<td>core plug data</td>
<td>39, 40</td>
</tr>
<tr>
<td>corner point grid</td>
<td>75, 183–184</td>
</tr>
<tr>
<td>correlatable horizon</td>
<td>65–69</td>
</tr>
<tr>
<td>correlation</td>
<td>32, 41, 43, 44</td>
</tr>
<tr>
<td>covariance</td>
<td>280</td>
</tr>
<tr>
<td>CPI (computer processed interpretation)</td>
<td>36, 40</td>
</tr>
<tr>
<td>cubic spline</td>
<td>36</td>
</tr>
<tr>
<td>curvature</td>
<td>247</td>
</tr>
<tr>
<td>Darcy</td>
<td>120</td>
</tr>
<tr>
<td>data management</td>
<td>31</td>
</tr>
<tr>
<td>data preparation</td>
<td>124</td>
</tr>
<tr>
<td>deepwater environment</td>
<td>229–236</td>
</tr>
<tr>
<td>delta top</td>
<td>219–222</td>
</tr>
<tr>
<td>deltaic environment</td>
<td>229–236</td>
</tr>
<tr>
<td>density log</td>
<td>152</td>
</tr>
<tr>
<td>depositional energy</td>
<td>222, 226,</td>
</tr>
<tr>
<td></td>
<td>240–241, 251</td>
</tr>
<tr>
<td>depositional environment</td>
<td>1, 10, 12, 25, 65, 70, 87–91, 107</td>
</tr>
<tr>
<td>depositional slope</td>
<td>229</td>
</tr>
<tr>
<td>depth conversion</td>
<td>8, 24, 52, 63</td>
</tr>
<tr>
<td>descriptive statistics</td>
<td>275</td>
</tr>
<tr>
<td>deterministic</td>
<td>4, 10, 16, 19, 27</td>
</tr>
<tr>
<td>deterministic modelling</td>
<td>123, 127, 158, 166, 172–178</td>
</tr>
<tr>
<td>development scenario</td>
<td>6</td>
</tr>
<tr>
<td>discrete variable</td>
<td>20, 87, 95, 101–103</td>
</tr>
<tr>
<td>distributary channel</td>
<td>220</td>
</tr>
<tr>
<td>drift</td>
<td>291</td>
</tr>
<tr>
<td>drive mechanism</td>
<td>9</td>
</tr>
<tr>
<td>DST</td>
<td>42</td>
</tr>
<tr>
<td>dynamic simulation</td>
<td>6, 11–14, 29–30</td>
</tr>
<tr>
<td>effective properties</td>
<td>117–122, 134</td>
</tr>
<tr>
<td>electrofacies</td>
<td>91–92</td>
</tr>
<tr>
<td>erosional horizon</td>
<td>66, 80–83</td>
</tr>
<tr>
<td>experimental variogram</td>
<td>98, 100–103, 110, 123, 130–132</td>
</tr>
<tr>
<td>extrapolation distance</td>
<td>56–58, 62</td>
</tr>
<tr>
<td>facies geometry</td>
<td>89, 110</td>
</tr>
<tr>
<td>facies log</td>
<td>88, 96</td>
</tr>
<tr>
<td>facies model</td>
<td>11, 14, 25, 87–114</td>
</tr>
<tr>
<td>facies scheme</td>
<td>87, 90</td>
</tr>
<tr>
<td>fault compartments</td>
<td>157</td>
</tr>
<tr>
<td>fault hierarchy</td>
<td>58</td>
</tr>
<tr>
<td>fault modelling</td>
<td>55–62</td>
</tr>
<tr>
<td>fault network</td>
<td>56, 60</td>
</tr>
<tr>
<td>fault polygons</td>
<td>33</td>
</tr>
<tr>
<td>fault sticks</td>
<td>33, 54–56</td>
</tr>
<tr>
<td>fault surface</td>
<td>56–62</td>
</tr>
<tr>
<td>fault transmissibility</td>
<td>183, 201, 203</td>
</tr>
<tr>
<td>faults</td>
<td>1, 8, 12, 14, 24</td>
</tr>
<tr>
<td>floodplain</td>
<td>217–218</td>
</tr>
<tr>
<td>flow zone indicator (FZI)</td>
<td>148</td>
</tr>
<tr>
<td>flow zones</td>
<td>112</td>
</tr>
<tr>
<td>fluid properties (PVT)</td>
<td>41, 117–122</td>
</tr>
<tr>
<td>fluvial environment</td>
<td>205–208, 218, 219</td>
</tr>
<tr>
<td>formation resistivity</td>
<td>117, 150–156</td>
</tr>
</tbody>
</table>
formation volume factor (FVF) 157, 163, 178
fracture corridor 247
fractured reservoirs 244–248
free water level FWL 119, 137
full field model 16, 29
Fulmar Formation 226

\textit{g}
gas initially in place (GIIP) 162, 174
Gaussian (normal) distribution 20
geologic body 89, 101
geo-cellular model 3, 14, 25, 65, 70–80
geological framework 182
geometric average 127
geo-statistical 9, 12, 19, 27
geo-statistical simulation 131–136
glauconite 226
grid axis 75–77
grid boundary 60
grid boundary definition 183, 193
grid orientation 71
grid quality control 189, 202
grid resolution 164
grid specification 67–69
gross rock volume (GRV) 157, 161, 178

\textit{h}
Hamitibat Field 229–234
hard data 2, 12, 13, 22
harmonic average 127
heterogeneity 1, 9, 12, 16, 26, 29
hole effects 288
horizon modelling 62
horizons 1, 12, 14, 22, 24, 25, 32, 33, 41
horizon lines 62
Hyde Field 205–211
hydrocarbon distribution 115
hydrocarbon pore volume (HCPV) 162
hydrocarbon saturation 157, 161
hydrocarbon water contact (HWC) 157, 161–163, 175

\textit{i}
indicator kriging 293
indicator variogram 289
instantaneous velocity 53
interparticle porosity 150–151
interpolation 115, 127–132, 145, 291
interpreted horizon 54
interval velocity 53
isochore 65, 69

\textit{k}
Krige 19
kriging 115, 130–133, 290

\textit{l}
lag definition 286
lag tolerance 282
lagoon 219–222
large-scale architecture 67, 74
layer-cake 43
layering 79–85
Leverett J-function 140
linear workflow 13
lithofacies 100
lithology 91, 117, 147, 150–152
litho-stratigraphy 65, 69
local grid refinement (LGR) 188–189
Lucia, F. Jerry 150–151
Index

m
mapping data 32
mean 20, 27, 275
meandering channel 210, 217–218
median 4, 20, 275
medium-scale heterogeneity 87
microporosity 117, 151, 155
millidarcy 120
minimum curvature 36
mode 20, 275
model objective 3, 9, 14
modelling workflow 1, 6, 11, 13
moment of inertia 280
Monte Carlo method 5
multiple realizations 294
multipoint statistics (MPS) 22, 106
MWD/LWD 24

n
net-to-gross (NTG) 122, 126, 142–144, 157, 162, 178
neutron porosity 152–155
normal (Gaussian) distribution 21
normal score transformation 286
nugget 288
numerical dispersion 186

o
object-based modelling 14, 26, 104–106, 302
ordinary kriging 290

p
parallel workflow 13
permeability 1, 8, 22, 26, 120–127, 134
permeability anisotropy 120, 130, 134
Petrofacies 139, 140, 147
Petroleum Resources Management System (PRMS) 166–170
property distribution 87–90
PhiZ 148–149
pixel-based modelling 20, 22, 26, 100–103
plumbing model 1
population 19
pore network 118, 119, 151
pore throat size 119, 139, 148–149
pore volume (PV) 158, 162
pressure data 41
probabilistic (stochastic) 4, 5
probability 12, 20, 27
probability function 289
production optimization 3, 8
production ratio index (PRI) 155
project management 15, 17
project sanction 5
property model 14, 26, 115, 122–127
prototype model 16

r
random variable 20, 286
range 288
realization 163, 173–178
reef 235, 240–241
reflection coefficient 49
relative permeability 120
renormalization 193, 198–199
reserves 159–160, 165–171
reservoir architecture 8, 11, 12, 14, 27
reservoir connectivity 3, 11, 25, 104
reservoir envelope 11, reservoir fluid 1, 3, 6, 9, 11
reservoir framework 8, 14, 25
reservoir model design 12
reservoir properties 8
reservoir quality 3, 26
reservoir quality index (RQI) 148–149
reservoir zone 41, 65, 67–69
resources 165–171
retrogradation 226, 229
REV 112
RMS velocity 53
rock fabric classification 150–151
rock properties 115, 143
rock typing 146–147, 150–153
Rotliegend Formation 205, 207
routine core analysis (RCAL) 39

s
sabkha 207–210
sample 19
sampling 197–199, 203
sandsheet 207–209
saturation exponent "n" 150
saturation-height relationship (SWH) 115, 136–141
scale of heterogeneity 9, 12
scatter plot 279
scenario 17
search window 287
sector model 16
sedimentology 1, 23
seed (random number) 22
seismic 1, 8, 14, 22, 24
seismic attributes 13, 143–145

seismic facies 49
seismic interpretation 22, 53, 56, 62, 63
seismic reflector 49, 52
seismic volume 34
semi-variogram 280
sequence stratigraphy 65–67
Sequential Gaussian Simulation (SGS) 295–297
Sequential Indicator Simulation (SIS) 102, 297
shallow marine environment 226–232
shoreface 219–222, 226–228
shoulder effects 124
sill 288
simbox 285
simple kriging 290
simulation 293
simulation grid design 182–187
sinuosity 226–234
sinuous channel 210, 217–218
skewness 276
slumps 241
SmartModel 79
soft data 13
spatial continuity 280
spatial representation 2
special core analysis (SCAL) 42, 43
specimen 19, 20
stair-step faults 181, 187
standard deviation 20, 27, 276
static model 8, 12, 27
stationarity 20
stochastic (probabilistic) 10, 16, 22, 27
stochastic methods 127–129, 145, 158, 163, 166, 172, 177
stock tank oil initially in place (STOIIP) 162
straight channel 217
stratigraphic model 14, 25
streamline simulation 202
stress regime 244–247
structural model 14, 25
structural uncertainty 11, 63

tidal flat 240
"total" property 27
total porosity 119, 134
Total Property Modelling (TPM) 143
trace-fossils 226
trajectory 36
transformation 286
transgressive deposits 219–222, 226
transient well test 42
transition zone 119, 137–138
Truncated Gaussian Simulation (TGSim) 103, 299–302
turbidites 229, 234–236
two-way-time 49

uncertainty analysis 8, 12
uncertainty model 171–177
uncertainty modelling 226–227
univariate 275
upscale well data (see blocking) 75
upscaling 8, 11, 17, 29, 181–182, 190–201
upscaling methods 195–201
upscaling permeability 199–201
upscaling porosity 199

variance 20, 276
(semi-) variogram 20, 22
variogram description 282
variogram estimation 283
variogram interpretation 287
variogram models 282
velocity model 34, 43, 52–55
vertical permeability 120, 134
vertical proportion curve 110
vertical resolution 22
viscosity 120, 141
visualization 11, 16
volumetric estimation 3, 8, 115, 122, 157–158
vuggy porosity 150–154

Walther’s Law 87
water saturation 1, 8, 27, 115–122, 136–142, 152–156
wavebase 226–227
well data 32, 34, 44
well path survey 34
well planning 3, 8
well-test 22, 24, 29
well-tie 49, 52, 63
wettability 121–122
wireline log 9, 22, 25

xy-regular grid 75–77

Yufutsu Field 247–255

zonal anisotropy 283