Absolute combustion point
 in automatic temperature control, 91–93
 combustible analyzers and, 93–94
 in combustion air control, 91
 in fired heater combustion air control, 98–88
 in oxygen analyzer air control, 88–90
Absolute pressure, measuring, 239–240
Absorber, 58
Acid gas components, 57
Additives, in pressure control, 17
Adjustable head end unloader, flow control via, 100, 149,
Advanced Computer Control, 71
Aerated liquid, effect on level indications, 236. See also Foam
Afterburn, in combustion air control, 96
Air baffle, sonic boost and, 132
Air blower, for Venezuelan sulfur recovery plant, 151–152, 154
Air blower controls, 153–154
Air dryer desiccant, 123
Air flow
 in air blowers, 153–154, 157
 in automatic temperature control, 91–93
 in centrifugal compressor, 151–153
 in combustion air control, 90–91
 in fired heater combustion air control, 87–88
 in oxygen analyzer air control, 88–90
Air fuel mixing efficiency
 in fired heater combustion air control, 87
 point of absolute combustion and, 89–90
Air leaks, in combustion air control, 91
Air pressure
 in control valve safety enhancement, 130
 control valves for, 115–124
 with split-range control, 128–129
Alarm connections, flushing of, 255–256
Alarm design, 252, 255
Alarm points, 247
Alarms, testing, 249–250. See also Level alarms

Alkylation unit, 195
at Texas City refinery, 129

Alkylation unit turbine, problems with, 205

Amine (NH₃)
degradation, 58
fuel gas absorber, 232
regenerator, 56–58
stripping from water, 35–36, 56–58

Ammonia, 56
concentration in bottoms stream, 56

Amperage load, for air blowers, 152, 154, 157

Analyzers
online, 77–78
for process control, 77–83

APC (air pressure closes) valves, 119–120
on discharge of compressor, 120
on discharge of pump, 118
on heaters, 122–123
with split-range control, 49
on vessels, 120

APO (air pressure opens) valves, 118–119
on discharge of compressor, 120
on discharge of pump, 118
on heaters, 121–123
with split-range control, 49
on vessels, 121

Aqueous fluids, measuring level of, 233–234

Artificial control limitations, dealing with, 145

Aruba Exxon Lago Refinery, nozzle exit loss at, 269–271

Aruba Refinery, 4–6. See also Aruba Exxon Lago Refinery; Coastal Refinery, Aruba
boiler pumps at, 217–218
hydrogen plant reforming catalyst at, 217
steam moisture content in, 221–222
Yarway valve at, 163–164

Asphaltines, in gas oil, 2–3
Asphalt production, optimizing, 81, 138
Asphalt viscosity, controlling, 81–83

Atmospheric vent valve, in air blowers, 152–153

Automated steam rack, 172

Automatic control
alarm points and trip parameters and, 247
of asphalt viscosity, 81–82
manual control versus, 91–92

Automatic speed control, for steam turbines, 173

Automatic temperature control, in fired heater combustion air control, 91–93

Back pressure control valves
for de-iso-octanizer, 42–43
in vacuum systems, 131–133
on vessels, 120–121

Backup diesel generator, 123

Backup pumps
problems with, 207
process flow field testing and, 254–255

Ball float, in steam condensate recovery, 179

Barometric drain lines, sonic boost and, 134

Barometric pressure compensator, in measuring vacuum pressure, 239

Binary distillation, of pure components, 33–39

Blowdown water, in deaerators, 226
Blower controls, 153–154
Blower suction pressure, 152–154
Blowing the condensate seal, in condensate level control, 182

Boiler blowdown, 216
controlling, 228–229

Boiler feed water (BFW), 122, 125–126, 179, 184, 186–187, 228–229
charge pump, override control for, 126
deaerators, level control in, 226–227
wet steam and, 216

Boiler pumps, cavitation in, 125–126

Boilers
override control for, 125–126
steam quality and, 215–218
wet steam from, 216
Boiler steam drum
 configuring level alarm for, 250–252
 configuring level trip for, 253
Booster blower, problems with, 206–210
Bottoms level control valve, 118–119
Bottoms stripping steam rate
 in controlling asphalt viscosity, 81–83
 raising, 138
Bottom tap, in measuring liquid levels, 233–234
Bottom temperature
 in fractionation efficiency optimization, 72
 TRC set point and, 63
 transmitters, 69
Bridge wall temperature, 16
Burner control, 100
Burner flameout, optical sensors for, 255
Bypasses, of control valves, 104–105, 110
Bypass valves, pump capacity limitation and, 165
Calcium carbonate salts, in throttling cooling water flow, 43
Calibration, in flow measurement, 21–22
Capacity, of process control valves, 111
Carbon dioxide (CO₂)
 atmospheric, 284
 emissions, 99
 global warming and, 99, 101, 267, 284
Carbon monoxide (CO)
 combustible analyzers and, 93
 in combustion air control, 88
 in fired heater combustion air control, 87–88
Cascade control, 125
 in deaeration, 226–229
 split-range and override control versus, 126–128
Catalyst stripping, wet steam and, 216
Catalytic cracking units, 78
Catalytic reaction, 193
Cavitation, 119, 123–124, 159–161, 210, 218, 222, 228, 270
 in boiler pumps, 217–218
 centrifugal pump control and, 273
 in deaerators, 226
 override control and, 125–126
Centrifugal compressors, 31, 101, 119, 195, 202
 air blower controls for, 153–154
 control valves on discharge of, 119–120
 operating curve for, 153–154
 override control for, 130
 suction throttling to control, 147
 surge versus motor over-amping in, 151–158
Centrifugal pump
 optimum turbine speed for, 170–171
 over-speed trip for, 172–173
 discharge pressure, 273
 impellers, 112
 centrifugal pumps, 121
 controlling, 159–166
 control valve on discharge of, 116–117
 energy losses in, 110–111
 running at too low a rate, 163
 in surge control, 162
Channel head, 180–181
 in condensate level control, 181–182
Channeling, in fractionation efficiency optimization, 70
Circulating reboilers, aerated liquid and, 236
Clark reciprocating isobutane refrigeration compressors, 195
Coked over thermowell, 281–282
Coking, delayed, 191
Closed-loop controls, over-speed trip as, 172–173
Cold weather, in measuring vacuum pressure, 238–239
Color, in kiln temperature monitoring, 16
Colorimeters, in gas oil production, 3
Combustible analyzers, in process control, 93–94, 96
Combustion air
 in fixed heaters, 7
 control correct, 94–96
 in fired heaters, 87–96
 flow, in automatic temperature control, 91–93
Complete combustion, 87–88
Complex distillation towers, 28–29
<table>
<thead>
<tr>
<th>Composition as dependent variable</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>in distillation, 26–27</td>
<td></td>
</tr>
<tr>
<td>as independent variable</td>
<td>26</td>
</tr>
<tr>
<td>Compression cylinder, with valve unloader</td>
<td>148</td>
</tr>
<tr>
<td>Compression energy savings</td>
<td>101</td>
</tr>
<tr>
<td>Compressor performance curve</td>
<td>200–201</td>
</tr>
<tr>
<td>Compression ratio, 31</td>
<td></td>
</tr>
<tr>
<td>in air blowers, 154, 157</td>
<td></td>
</tr>
<tr>
<td>suction throttle valve and, 157</td>
<td></td>
</tr>
<tr>
<td>Compression work, in second law of thermodynamics</td>
<td>154</td>
</tr>
<tr>
<td>Compressor discharge, control valve on, 119</td>
<td></td>
</tr>
<tr>
<td>Compressor discharge pressure, 65–67 molecular weight and, 155</td>
<td></td>
</tr>
<tr>
<td>Compressors. See also Air compressors; Reciprocating compressors; Refrigeration molecular weight and, 155–157 in refrigeration, 67 for refrigeration units, 29–30</td>
<td></td>
</tr>
<tr>
<td>Compressor suction pressure, 65–67</td>
<td></td>
</tr>
<tr>
<td>Compressor turbine trip, problems with, 205–210, 217</td>
<td></td>
</tr>
<tr>
<td>Compressor valves, process flow measurement and, 145</td>
<td></td>
</tr>
<tr>
<td>Computer control, problems with, 206, 208</td>
<td></td>
</tr>
<tr>
<td>Computer models</td>
<td></td>
</tr>
<tr>
<td>for complex distillation towers, 28–29</td>
<td></td>
</tr>
<tr>
<td>in diesel oil production, 79</td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td></td>
</tr>
<tr>
<td>to control constant speed centrifugal compressors, 158</td>
<td></td>
</tr>
<tr>
<td>in correct combustion air control, 94–96</td>
<td></td>
</tr>
<tr>
<td>in determining suction set point pressure, 161–162</td>
<td></td>
</tr>
<tr>
<td>in fractionation efficiency optimization, 71–72</td>
<td></td>
</tr>
<tr>
<td>in level control, 222</td>
<td></td>
</tr>
<tr>
<td>Condensate collection header, in steam condensate recovery, 180</td>
<td></td>
</tr>
<tr>
<td>Condensate control, 179–190</td>
<td></td>
</tr>
<tr>
<td>Condensate drainage system, 182–186</td>
<td></td>
</tr>
<tr>
<td>Condensate drum</td>
<td></td>
</tr>
<tr>
<td>in Lithuanian heat exchanger, 186</td>
<td></td>
</tr>
<tr>
<td>in steam condensate recovery, 182–184</td>
<td></td>
</tr>
<tr>
<td>Condensate flow, problems with, 184–186</td>
<td></td>
</tr>
<tr>
<td>Condensate level control, in steam condensate recovery, 181–184</td>
<td></td>
</tr>
<tr>
<td>Condensers, 45, 64–65</td>
<td></td>
</tr>
<tr>
<td>in computerized tower pressure control, 72</td>
<td></td>
</tr>
<tr>
<td>control of, 8</td>
<td></td>
</tr>
<tr>
<td>hot vapor bypass control and, 46, 48</td>
<td></td>
</tr>
<tr>
<td>pressure control with flooded, 44–46</td>
<td></td>
</tr>
<tr>
<td>temperature of, 31</td>
<td></td>
</tr>
<tr>
<td>in throttling cooling water flow, 43</td>
<td></td>
</tr>
<tr>
<td>in tower pressure control, 52</td>
<td></td>
</tr>
<tr>
<td>tower top pressure sensing point and, 52</td>
<td></td>
</tr>
<tr>
<td>in distillation, 26</td>
<td></td>
</tr>
<tr>
<td>condenser capacity, 48</td>
<td></td>
</tr>
<tr>
<td>combining noncondensable vapors and total condensation and, 48–49</td>
<td></td>
</tr>
<tr>
<td>TRC set point and, 63</td>
<td></td>
</tr>
<tr>
<td>Conductivity probe, 253–254</td>
<td></td>
</tr>
<tr>
<td>Constant-speed compressor, 156–157</td>
<td></td>
</tr>
<tr>
<td>Constant-speed motor, for centrifugal compressor, 155</td>
<td></td>
</tr>
<tr>
<td>Control loops, 1. See also Feedback loops feedback in, xii, 7–8, 87, 123 negative feedback in, 7–8 positive feedback and, 7–8, 87, 96, 123 tuning, 6–7 in turbine speed control, 171</td>
<td></td>
</tr>
<tr>
<td>Control parameters, measurement of, 11–23</td>
<td></td>
</tr>
<tr>
<td>Control points, in pressure control, 18. See also Sensing points; Set point pressure; Trip entries</td>
<td></td>
</tr>
<tr>
<td>Control theory, learning from, 6–7</td>
<td></td>
</tr>
<tr>
<td>Control valves</td>
<td></td>
</tr>
<tr>
<td>bypass valve, pump capacity limitation and, 165 checking capacity of, 111 on discharge of compressor, 120 on discharge of pump, 118–119 for distillation towers, 122–123 energy losses in, 110–111 flooded condensers and, 44–46</td>
<td></td>
</tr>
</tbody>
</table>
INDEX 301

on heaters, 121
in hot vapor bypass control, 46–48
increasing size of, 112
oversizing of, 112–113
position
control valve capacity checking
and, 111
on instrument air failure, 115–124
refinery flare and, 4
sizing of, 107–114
with split-range control, 126, 128
throttling cooling water with, 43–44
troubleshooting, 165–166
in turbine speed control, 171
undersized, 111, 165–166
Convective section, 96, 100, 122
Converging-diverging steam jet ejector,
in vacuum systems, 131–133
Cooling, of steam condensate, 185–186
Cooling water, 42
with split-range control, 126–128
throttling, 43–44
Corrosion, 60
Crane Hydraulic Data Book, 20
Crude tower bottoms, 2–3
Deaerators
level control in, 226–229
override control for, 125–126
safety override for, 227–228
steam quality and, 226–229
De-ethanizer reboilers, controlling,
80–81
Degrees of freedom, 25
changing, 26
in distillation, 27
increasing, 28
Delayed coker, 191
flow measurement in, 242
Delta P (ΔP), 19–22, 31–32. See also
Differential pressure
changes in elevation and operating
pressure and, 110
in diesel oil production, 78
in flow indication, 240–241
full flooding and, 72–73
in level-trol, 235
between level-trol taps, 272–273
in nozzle exit loss, 271
oversize control valves and, 112
over-speed trip and, 173
process flow measurement and, 145–147
in sizing process control valves,
107–110
in steam condensate recovery, 179
in turbine speed control, 172
Delta P output
from differential pressure gauge, 18
in flow measurement, 19–23
from level-trol, 12–13
Delta T. See also Temperature
in computerized tower pressure
control, 71–72
in fractionation efficiency
optimization, 69–71
in propane-butane splitter, 73–76
TRC set point and, 63–64
Density
in flow indication, 240–241
in liquid level indications, 271–273
in measuring liquid levels, 234
molecular weight and, 156
in sizing process control valves,
107–110
split liquid levels and, 236
Dependent variables
in computer models, 28–29
in distillation, 26–27
independent variables versus, 25–32
in nonlinear responses, 267–269
Depropanizer bottoms temperature, in
refrigeration, 67
Depropanizer reboiler scheme, 65, 67
Dew point temperature, 268–269
Diaphragm, in pressure transducer, 240
Diesel draw-off rate, controlling, 78–79
Diesel generator, backup, 123
Diesel oil, maximizing production of,
78–79
Differential pressure, 31. See also Delta P
entries
control valve, in hot vapor bypass
control, 48
head pressure versus, 156
measuring, 12, 19
in reciprocating compressors, 143–144
Differential pressure drop, in non-orifice flowmeters, 241
Differential pressure gauge/meter, 19
Differential pressure transducers, 240
Differential steam pressure, in steam turbines, 167–168
Diffuser, in vacuum systems, 132
Digital flowmeter displays, 243–244
Digital pressure gauge, 240
Direct analyzers, controlling, 79–80
Direct turbine speed control, 171–173
Discharge control valve, in vacuum systems, 133
Discharge of compressor, control valve on, 120
Discharge of pump, control valve on, 118–119
Discharge pressure
 over-speed trip and, 173
 sonic boost and, 133
Discharge set point pressure, in air blowers, 153
Discharge throttling, flow control via, 147
Dissolved gases, split-range pressure control and, 49–50
Distillation
 binary, 33–39
 incipient flood point in, 7
 vacuum, 131
 variables in, 26–27
Distillation columns, override and split-range control for, 126–129
Distillation towers, 26–27
 aerated liquid and, 236
 complex, 28–29
 control valves for, 120–121
 flooding, 19
 pressure control in, 41–53
 pumparounds, 101
 split liquid levels in, 236–238
 water stripping in, 33–39
Doctor sweetening process, 196
Doppler flowmeters, 242
Downstream bottoms pump, 160
Downstream condenser, control of, 8
Draft heaters, in combustion air control, 95–96
Drum pressure, 157
 wet gas compressor and, 156–157
Dry steam, 216
Dual-pressure taps, in flow measurement, 241
Dynamic compressor, 31
Electrical energy, centrifugal pump control and, 159
Electric motors
 for centrifugal compressors, 151–153, 155
 for reciprocating compressors, 143
Electronic positioner, in control valve safety enhancement, 130
Elevation
 control valve delta P and, 110
 of temperature control valve, 185–186
Emergency steam flow, 254
Energy efficiency, 99
Energy, in expansion of steam, 219–221
Energy requirements
 determine required reboiler steam flow, 56
Energy waste
 with adjustable head end unloader, 149
 centrifugal pump control and, 159
 in deaerators, 226
 process control valve and, 104, 165–166
 with spillback coolers, 148
 with valve unloaders, 148
 variable-speed motors and, 163
Engines, for reciprocating compressors, 143
Enhanced Process Control Program, at Richmond, California Chevron refinery, 136, 161
Enthalpy, 57
 steam in turbines, 168–169. See also Isoenthalpic expansion
Entrainment, in fractionation efficiency optimization, 69
Entropy, of steam in turbines, 168. See also Isoentropic expansion
Erosion, 104
Ethane, removing from reboilers, 80–81
Excess pressure safety relief valve, redundancy for, 247–249
Exhaust line, in steam turbines, 169
Exhaust steam pressure, in steam turbines, 167–168
External level indications, measuring, 233

Feedback
 positive, 135–136, 182
 positive and negative, x, xii, 7–8
Feedback loops. See also Control loops in combustion air control, 94
 positive, x, xii, 7–8, 87, 124, 135–136
Feed flow, shutoff valves and, 254–255
Feed gas compressor, process flow measurement and, 146
Feed inlet nozzle, in liquid level indications, 272–273
Feed preheat, fractionation efficiency and optimizing, 73–76
Feed quality, 281
Feed rate, 57, 281
Feed surge drum, 6
Feed temperature
 combustible analyzers and, 93–94
 in propylene production, 38
Feed valves
 in polypropylene plant redesign, 3–4
 on vessels, 120–121
Feed vessel
 Yarway valve and, 164
 temperature, stabilizing, 164
Field testing. See also Testing (test procedures)
 of backup pumps, 255
 of level trip, 253
 of process flow, 243, 254–255
Filter pressure drop, in centrifugal compressor, 151–153
Fireboxes
 override control for, 129
 temperature of, 15
Fired heaters
 combustion air control in, 87–97
 increasing furnace fuel for, 7
 override controls on, 129
Flare lines, flow measurement in, 242
Flaring (flare) refinery, 4–6
Flashing condensate, 184, 186
Flashing liquid, entering orifice plate, 270–271
Flash zone thermowell, 14

Flooded condensers
 combining noncondensable vapors and total condensation and, 48–49
 pressure control with, 44–46
Flooding
 de-ethanizer reboiler control and, 80–81
 fractionation efficiency and, 72
Flood point,
in distillation, 7
Flow. See also Air flow; Gas flow;
 Process flow cascade control for, 125
 checking in the field, 243
 control, for reciprocating compressors, 147–150
 measuring, 12, 19–23
 molecular weight and, 155–157
 oversize control valves and, 105, 112–113
 over-speed trip and, 173
 process flow measurement and, 145–147
 shutoff valves and, 254–255
 in sizing process control valves, 107–110
Flow control valve, 125, 129, 157
Flow indication, 19, 240–241. See also Flow measurement
effect of nozzle exit loss on, 269–271
Flowing steam, quality of, 215–217
Flow measurement, non-orifice-type methods of, 241–242. See also Flow indication
Flowmeters
 non-orifice, 241–242
 in nozzle exit loss, 269–271
 reading, correcting off-zero, 243–244
Flow orifice taps, plugging of, 243
Flow rates
 centrifugal pump control and, 159
 level control and, 159–161
Flow recorder control (FRC). See also FRC valves
 cascade control and, 127–128
 in tower pressure control, 51–52
 variable-speed motors and, 163
Flow transmitter, 19–20
Flow velocity, process flow measurement and, 145–147
Flue gas
 in combustion air control, 94, 96
 in fired heater combustion air control, 87–88
 in oxygen analyzer air control, 88–90
Fluid cracking catalyst activity, control of, 202–203
Flushing of connections, 255–256
Flux rate, 57
Foam, 236–237
 in liquid level indications, 271–273
 radiation level detection for, 238
 split liquid levels and, 236–238
Forced condensation
 nonlinear responses in, 267–268
 dew point temperature, 268–269
Fouling
 flow measurement and, 20–21
 of thermowell, 245
Fractionation efficiency, 41, 69
 optimizing by temperature profile, 69–76
 of vacuum distillation, 131
Fractionation trays, 41
 tower top pressure sensing point and, 52–53
FRC valves. See also Flow recorder control (FRC)
 steam flow through, 179–181
Freeze protection, flow checking and, 243
Frequency control, 163, 290
Frictional pressure losses, in flow checking, 244
Froth. See Foam
Fuel consumption, minimizing in combustion air control, 94–96
Fuel gas
 bottoms level control valve with, 118
 to heaters, 121–123
 hydrocarbon liquid and, 232
 removing hydrogen sulfide from, 232
Fuel gas rate, in combustion air control, 95
Fuel gas trip, optical sensors for, 255
Full flood, fractionation efficiency and, 72–73
Furnace
 efficiency, in combustion air control, 95
 fuel, for fired heaters, 7
 refractory lining, 122
 temperature, measuring, 14–15
 tube purge, on flow valve shutoff, 254
Gas, in adjustable head end unloader, 149. See also Wet gas compressors
Gas chromatographs (GCs)
 analysis, 61
 de-ethanizer reboiler control and, 80–81
 in fractionation efficiency optimization, 69
Gas compression, variables in, 29–32
Gas engines, for reciprocating compressors, 143
Gas flow
 process flow measurement and, 145–147
 spillback pressure control and, 136–137
 with split-range control, 128–129
Gas oil, minimizing production of, 78–79
Gasoline, 195
 process flow measurement and, 147
 stabilizer, design for, 61–62, 64
Gas venting, with split-range control, 128
Gas yields, 281
Gate valves
 in determining suction set point pressure, 161–162
 oversize control valves and, 112
Gauge glass
 in configuring level alarm, 252
 high liquid level and, 234–236
 level measurement with, 233
 plugged taps and, 234
 with split liquid levels, 236–238
 temperature and, 233–234
Gear pump, control valve on discharge of, 119
Global warming, 99, 101, 284
Glycol
 in differential pressure measurement, 19
 flow checking and, 243
Governor speed control valve
 over-speed trip as backup for, 172
for steam turbines, 167–169, 172
GPM of reflux water, 57
Greenhouse gas, 284
Grid trays, fractionation efficiency optimization and, 70
Hand-jacks, 105
Hand valves, for steam turbines, 167, 169–172
Hardness deposits, in throttling cooling water flow, 43, 186
Hazards. See also Safety entries of deaerators, 226–229
of nitrogen backup, 117
of radioactive sources, 256
Head pressure, differential pressure vs., 160
Heat. See also Temperature in expansion of steam, 218–219
generated by spillback, 164
pressure and, 61–64
of steam in turbines, 167–169
of vaporization, 221
Heater feed flow control valve, 121
Heater outlet temperature in controlling asphalt viscosity, 81–82
control valve, 121
Heater puffing/thumping, in automatic temperature control, 93
Heaters in combustion air control, 94–96
fuel gas to, 121–123
steam flow into, 181
Heat exchanger, 181
in condensate level control, 181–182
pressure drop in, 183
problems with, 184–186
Heat loss from isentropic expansion, 220
from kettle boiler steam, 224
from superheated steam, 215
High differential pressure trip, for reciprocating compressors, 143–145
High discharge temperature trip, for reciprocating compressors, 143–145
High level alarms, testing, 252
High pressure alarm, 277
redundancy for, 247–249
High temperature trips, testing, 254
High water level alarm, 252
Horsepower valves, for steam turbines, 167
Hot oil, wet steam and, 216
Hot vapor bypass control, 46–48
disadvantages of, 48
Hot vapor bypass valve, 123, 46
Hydrocarbon liquids conductivity probes and, 253
fuel gas and, 232
measuring level of, 231–233
Hydrocarbons, 193, 284
atmospheric, 216
in automatic temperature control, 91
in combustion air control, 91
in oxygen analyzer air control, 88–90
in vacuum tower overflash, 161
Hydrocarbon steam reforming hydrogen production, 217
Hydrocarbon steam stripping, wet steam and, 216
Hydrochloric acid (HCl), adjusting wash water to prevent corrosion by, 267–268
Hydro-desulfurizers, nozzle exit loss in, 269–271
Hydrogen, production of, 217
Hydrogen plant reforming catalyst, wet steam and, 217
Hydrogen plant waste heat boiler, 218
Hydrogen sulfide (H₂S), 60
amine absorber, 58
content, 56
removing from fuel gas, 232
stripping from water, 33–36
Hydrogen-to-methane ratio, 203
Hydrotreater hydrogen recycle flow, control of, 193–195
Impellers, pump capacity limitation and, 165–166
Impurities, stripping from water, 33–35
Incipient flood point, in distillation, 7
Independent variables in computer models, 28–29
dependent variables vs., 25–32
in distillation, 26–27
in nonlinear responses, 267–268
Indirect level control, wet steam and, 218–219, 222
Inlet nozzle, pressure tap and, 240
Inline booster centrifugal pump, control valve on discharge of, 118–119
Instrument air, nitrogen backup for, 117
Instrument air failure, control valve position on, 115–124
Instrument air pressure, with split-range control, 128
Instrument air signals combining noncondensable vapors and total condensation and, 48–49
TRC set point and, 63
Instrumentation, experience with, 1
Instrument failure, redundancy vs., 249
malfunctions, nonlinear responses as, 273
Insulation, in temperature measurement, 245
Internal level indications, measuring, 233
Internal reflux rates, in fractionation efficiency optimization, 70
Inventory surge control, 162
I/P device, in control valve safety enhancement, 130
Iron sulfides, 195
Isenthalpic expansion, 280
Isoenthalpic expansion, of wet steam, 218–221
Isolation gate valve, 136
in determining suction set point pressure, 161–162
Jet discharge pressure, in vacuum systems, 133
Jet flood, fractionation efficiency optimization and, 70
Jet suction pressure, spillback pressure control and, 136–137
Junctions, in thermocouples, 14
Kettle boiler, overflow baffles in, 224–225
Kettle waste heat boilers
overflow baffle in, 224–226
steam quality in, 222–226
wet steam and, 216
Kettle waste heat steam generator, 223–224
Kinetic energy, 279
in expansion of steam, 219–221
of kettle boiler steam, 223
of steam in turbines, 168–169
Latent heat, 279
Leaks, 124
in pressure control, 17
in three-way valves, 164
Level alarms, 250–253
testing, 252–253
Level cavitation limit, 222
Level control. See also Level-trols for centrifugal pumps, 159–161
in deaerators, 226–229
in kettle waste heat boiler, 222–224
suction pressure vs., 159–161
valves, 118, 130, 188, 253
in configuring level alarm, 250
in determining suction set point pressure, 161, 162
tuning, 6
wet steam and, 222
Level entrainment limit, 222
Level indications
aerated liquid and, 236–237
high, 234–236
with radiation, 236, 238
temperature and, 233–234
Level-measuring devices, discrepancies among, 232–233
Level set points, 222
cascade control and, 127–128
Level trip
pot, 253
field testing, 253
Level-trols, 12–13. See also Level control
in configuring level alarm, 250–251
high liquid level and, 234–236
in liquid level indications, 272
Liquid channeling, in fractionation efficiency optimization, 69
Liquid level alarms, testing, 252–253
Liquid level indications
high, 234–236
nonlinear, 271–273
with radiation, 236, 238
temperature and, 233–234

Liquid levels
measuring, 12–13
split, 236–238

Liquid ring seal pumps, 131

Low-flow alarms, ultrasound flowmeter for, 256

Low flow rates, centrifugal pump control and, 159

Low flow shutoff valves, 254

Low-flow trips
on fired heaters, 129
ultrasound flowmeter for, 256

Low level alarms
testing, 252
transmitter, in configuring level alarm, 250–251

Low-pressure condensate, in steam condensate recovery, 180–181

Low-pressure input, 18

Low pump discharge pressure, process flow field testing and, 255

LPG product
impurities in, 64–65
from propane-butane splitter, 74

LPG vaporizer, fixing, 4–6

Lube oil pressure, override control for, 129

Lube oil pump, problems with, 207–208

Lube oil system, problems with, 207–209

Lubricating oil vacuum tower, spillback pressure control for, 136–137

Magnetic rotometer, in flow measurement, 242

Malfunctions, nonlinear responses as, 273

Manometer
gauge glass as, 232
in measuring vacuum pressure, 239–240

Manual control, automatic control versus, 79–80

Mercaptan content of sour gasoline, 195
Mercaptan sulfur, 195
Mercaptooid sweetening plant, 195–196
Mercuroid switch, for level trip, 253

Mercury absolute-pressure manometer, in measuring vacuum pressure, 239–240

Metered flow, process flow measurement and, 147

Milliamp output, in level-trol, 235–236

Moisture content of steam, 215–229
in exhaust steam, reducing, 279
calculating, 221
measuring, 221–222

Mollier diagram, 215, 218–221

Motive steam
centrifugal pump control and, 159
in turbine-driven pumps, 162

Motive steam pressure
sonic boost and, 134
spillback pressure control and, 136–137
in steam turbines, 167–168
throttling, 138

Motive steam valve, in controlling asphalt viscosity, 81–82

Motor over-amping, in centrifugal compressors, 151–158. See also Electric motors

Multicomponent refrigerants, 65–68

Multicomponent systems, pressure control in, 61–68

Multiple outputs, in control valve safety enhancement, 130

Multivariable override control, 129

MW variations, cause of, 201–202

Naphtha, nonlinear liquid level indications with, 272
Naphtha product, split-range pressure control and, 50, 128

Natural draft fired heaters, 100
Natural draft heaters, in combustion air control, 95–96

Natural gas
for reciprocating compressors, 143
split-range pressure control and, 50–51
flow, with split-range control, 128

Negative feedback, 7–8

Net positive suction head (NPSH), 43
in boiler pumps, 217–218, 221
level control and, 160, 162
pressure, nonlinear response to, 273
Neutron backscatter technique, 238
in liquid level indications, 271
Neutrons, in level measurement, 238
Nitrogen backup, in air pressure valves, 116, 121
Nitrogen bottle, in pressure alarm testing, 250
Noncondensable vapors
combining with total condensation, 48–49
pressure control with, 44
split-range pressure control for, 49, 50–51
Nonlinear liquid level indications, 271–273
Nonlinear response/performance, 3, 267–273
of centrifugal pump discharge pressure, 273
in effect of nozzle exit loss on flow indication, 269–271
with split liquid levels, 237–238
of steam jet ejectors, 131–132
Non-orifice-type flow measurement methods, 241–242
Nozzle exit loss, flow indication and, 269–271
Nozzle port valves, for steam turbines, 167, 170
Nozzles
in steam turbines, 168
wet steam in, 216
Off-zero error/reading
correcting for flowmeter, 243–244
in flow measurement, 21–22
Oil circulation pump, 163
Oil skimming site glass, 58–59
Online analyzers, 78
Online colorimeters, in gas oil production, 3
On-stream analyzers, for process control, 77–78
Operating pressure, control valve delta P and, 110
Optical pyrometers, in temperature monitoring, 16
Optical sensors, for burner flameout, 255
Optimum air flow
in fired heater combustion air control, 87–88
in oxygen analyzer air control, 88–91
Optimum turbine speed, 170–171
Orifice coefficient (K), in flow measurement, 145, 240–241, 244
Orifice flanges, for flow indication, 240–244, 291
Orifice flowmeters, 241
in nozzle exit loss, 270–271
Orifice plate coefficient (K), in flow measurement, 20
Orifice plates
flashing liquid and, 270–271
in flow indication/measurement, 20–21, 240–244
Orifice taps, in flow measurement, 21
Orifice plate pressure drop, elimination of, 102–104
Over-amping, in centrifugal compressors, 151–158
Overflash pump, 161
Overflow baffle, in kettle waste heat boiler, 224–226
Overhead pressure control system combining noncondensable vapors and total condensation and, 48–49
Overloading, sonic boost and, 133
Override control, 66–67, 125–126, 182
cascade control versus, 127–128
in condensate drainage system, 182–183 multivariable, 129
in propane-butane splitter, 75–76
safety of, 129
split-range control versus, 126–127
Override pressure control, for deaerators, 228
Over-speed trip
problems with, 205–210, 217
on steam turbines, 172–173
on turbines, 129
Oxygen (O₂)
in combustion air control, 94, 96
removing from boiler water, 226–229
Oxygen analyzers
in automatic temperature control, 91–93
in combustion air control, 96
in fired heater combustion air control, 88–91

Packing gland, conductivity probes and, 253–254

Panel board operators. See also Plant operators; Plant panel board operators
in automatic temperature control, 92
cascade control and, 127
dependent and independent variables and, 25
in determining suction set point pressure, 161–162
multicomponent refrigeration and, 67–68
nonlinear liquid level indications and, 273
oversize control valves and, 113
positive feedback loops and, 87
Panel level indication, 13
Panel light, in pressure alarm testing, 250

Parameter sensing points
for override control, 126–127
for split-range control, 126–127

Parasitic energy loss, in turbine speed control, 171

Pass partition baffle, 183–184, 189
Phase Rule
in distillation, 27
eamples of, 25–26
importance of, 25
Pilot light, 14
Pilot tubes, in flow measurement, 242
Pipe rupture, 120
Piping reducers, 112
Piston head, in adjustable head end unloader, 149
Piston rod failure, in reciprocating compressors, 144–145
Plant furnaces, temperature monitoring for, 16
Plant operations, alarm and trip design for safe, 247–256
Plant panel board operators, 1. See also Panel board operators; Plant operators
dependent and independent variables and, 25
multicomponent refrigeration and, 67–68
in tower pressure control, 52
Plugged connections, in pressure control, 17–19
Plugged level connection, 250–251
Plugged orifice taps, 21
Plugged taps, 234
in configuring level alarm, 252
in measuring liquid levels, 234
in measuring vacuum pressure, 240
Pneumatic panel board instruments, nitrogen backup for, 117
Pockets, for adjustable head end unloader, 149–150
Point of absolute combustion
in automatic temperature control, 91–93
combustible analyzers and, 93–94
in combustion air control, 94
in fired heater combustion air control, 90–91
in oxygen analyzer air control, 88–90
Portable temperature probe, temperature measurement via, 245
Ports, in steam turbines, 168
Positioner, in control valve safety enhancement, 130
Positive displacement compressor, 31
Positive displacement pump, control valve on discharge of, 119
Positive displacement reciprocating compressor, control valves on, 120
discharge of, 118
Positive feedback, x, xii, 7–8, 87, 124
in automatic temperature control, 93
in condensate level control, 182
in vacuum system pressure control, 135–136
Preflash drums
liquid level indications for, 271–273
split liquid levels in, 236
Preheat, fractionation efficiency and optimizing, 73–76
Process control
- analyzers for, 77–83
 - for centrifugal pumps, 159–166
 - combustible analyzers in, 93–94
 - fractionation efficiency optimization in, 69–76
- Process Control Engineering, xii, 20, 61, 112, 124, 215
 - dependent and independent variables in, 25–32
 - mathematical methods of flow measurement in, 19–22
 - thermodynamics in, 215
- Process control valves
 - checking capacity of, 111
 - on discharge of compressor, 119–120
 - on discharge of pump, 118–119
 - for distillation towers, 120–121
 - energy losses in, 110–111
 - enhancing safety of, 130
 - on heaters, 119–121
 - increasing size of, 112
 - oversizing of, 112–113
 - sizing of, 107–113
 - with split-range control, 128–129
 - in turbine speed control, 171
 - undersized, 110, 165–166
 - on vessels, 118–119
- Process flow
 - centrifugal pump control and, 159
 - measuring, 19–20, 145–147
 - shutoff valves and, 254–255
- Process heaters, in petroleum refineries, 91
- Process parameter, direct turbine speed control by, 171–173
- Process plants. See also Plant entries
 - distillation towers in, 41
 - steam condensate recovery from, 179
- Process pumps
 - overflow baffles in, 224–226
 - turbine-driven, 170–171
- Pump capacity, reduced, 165–166
- Pump circulation rate, variable-speed motors and, 163
- Pump discharge, in polypropylene plant redesign, 3
- Pump discharge control valve, 116–117
 - in turbine-driven pumps, 162
- Pump discharge flow, centrifugal pump control and, 159
- Pump discharge isolation gate valve, in suction set point pressure determination, 161
- Pump discharge pressure
 - from centrifugal pump, 273
 - in measuring steam moisture content, 221–222
 - over-speed trip and, 173
- Pump impellers, 112–113
 - pump capacity limitation and, 165–166
- Pumps. See also Centrifugal pump entries; Reflux pump
cavitation in, 217–218
 - energy losses in, 110–111
 - overflow baffles in, 224–226
 - vacuum liquid ring seal, 131
- Pump suction head pressure, nonlinear response to, 273
- Pump suction pressure
 - centrifugal pump control and, 159–161
 - level control versus, 159–161
- Pump suction pressure control, for variable-speed pumps, 162–163
- Pump suction pressure transmitter, in control valve safety enhancement, 130
- Pure components, binary distillation of, 33–39
- Purge gas, pressure tap and, 240
- Purge water, for deaerators, 228–229
- Radiant section temperature, 16
- Radiation detection, for liquid level measurement, 236, 238
- Radiation level detection, 13
- Radioactive materials, radiation level detection from, 13
- Radioactive sources, for alarm and trip points, 256
- Raw water, turning into boiler feed water, 179
- Reaction temperature, 192
- Reactor recycle hydrogen gas rate, 198
- Reboiler heat input, in pressure control, 17
Reboilers, 64–65, 122, 160
 aerated liquid and, 236
 in computerized tower pressure control, 71–72
 controlling, 80–81
 in distillation, 26–27
 in fractionation efficiency optimization, 70–71
 full flooding and, 72–73
 problems with, 212–213
 reflux and, 56–58
 refrigerant composition and, 65–67
 steam flow into, 181
 in tower pressure control, 51–52
Reboiler fouling, 58
Reboiler steam, 57
 control, 58
 flow rate, 56
 controlling, 33–38
Reboiler temperatures, 58
Reciprocating compressors, 30, 31, 100, 143–150, 192
 control valves on discharge of, 118
 flow control for, 147–150
 high discharge temperature trip for, 143–145
 operation of, 143
 process flow measurement for, 145–147
 problem with, 195
Reciprocating pump, control valve on discharge of, 119
Recycle gas
effect of molecular weight of, 199–200
Reduced pump capacity, undersized control valve and, 165–166
Redundancy, 247–249
 in configuring level alarm, 250–252
Reflux
 APC valves and, 122
 problems with, 210–212
 reboiler and, 29
Reflux drum, 42–43
 combining noncondensable vapors and total condensation and, 48–49
 flooded condensers and, 45
 flooding from, 72–73
 hot vapor bypass control and, 46–48
 level, 123
in pressure control, 17–18
 pressure transmitter, with split-range control, 128–129
 problems with, 210–212
 split-range control with, 126–128
 in throttling cooling water flow, 43–44
 in tower pressure control, 52
 tower top pressure sensing point and, 52–53
 venting vapor from, 44
Reflux flow, in fractionation efficiency optimization, 70–71
Reflux pump, 29, 43
 in propane-butane splitter, 74
Reflux rate, 29, 58
 in computerized tower pressure control, 71–72
 controlling, 33–38, 56
 in fractionation efficiency optimization, 69
 full flooding and, 72–73
 TRC set point and, 63
Refrigerant composition adjusting, 67
 in pressure control, 65–68
Refrigerant flow, limitations on, 65–66
Refrigerants, 30–32
 temperature of, 31
Refrigeration capacity, of alkylation unit, 65–67
Refrigeration compressor, override control for, 129
Relative volatility, in fractionation efficiency optimization, 69–70
Relief valves
 flooded condensers and, 45
 in pressure control, 18
 redundancy for, 247–249
Re-radiation, in temperature monitoring, 16
Reservoir pressure, in deaeration, 228
Residence time, 281
Response time, 198
Restriction orifice, in flushing of connections, 256
Safety. See also Hazards
alarms and trips for, 247–256
enhancing control valve, 130
incorrect trip testing and, 256
of override control, 129
over-speed trip and, 173
Process Control Engineer and, 206
redundancy in, 247–249
routine testing and, 206–207
Safety relief valve, redundancy for,
247–248
Safety note, 60
cleaning level taps in rich amine
service, 60
Salt accumulation, safety and, 209
Salt content, of wet steam, 216–218
Saturation temperature, of kettle boiler
steam, 223
Second law of thermodynamics, 154–155
Sensing points
for override and split-range control,
126–128
testing pressure alarm, 249–250
tower top pressure, 52–53
Set point pressure, 17
Shutoff valves
for level trip, 253
for low process flow, 254
Sieve trays, fractionation efficiency
optimization and, 70
Skimming glass, 58–59
Skin temperature, in propylene
production, 38
Solenoid valve, with pilot light, 14
Sonic boost
factors affecting loss of, 133–134
spillback pressure control and, 136–137
throttling mode of operation and,
134–136
in vacuum systems, 132–133
Sound waves, in flow measurement, 242.
See also Ultrasonic transit time
flowmeter; Ultrasound
flowmeters
Sour water strippers, controlling, 34–35,
56
Speed control valve
over-speed trip as backup for, 173
for steam turbines, 167–177
Spillback control valve, 164–165
Spillback cooler, flow control via, 148
Spillback flow, in safe minimum flow
control, 163–165
Spillback pressure control, 136–137
throttling mode of operation versus,
135
Spillback recycle flow, 157
Spillback suction pressure control, 156
Spillback valves
in polypropylene plant redesign, 3–4
wet gas compressor and, 155–157
Split liquid levels, 236–238
Split-range control, 125, 126–128. See
also Split-range pressure control
cascade control versus, 127
operation of, 127–128
override control versus, 126–127
Split-range pressure control
combining noncondensable vapors and
total condensation and, 48–49
for noncondensable vapors, 50–51
Splitter reboiler, problems with, 211–212
Static electricity, 195
Steam
full flooding and, 72–73
isoenthalpic expansion of, 218–220
isoentropic expansion of, 218–221
in oxygen analyzer air control, 88–90
in propane-butane splitter, 74–76
in water strippers, 33–37
flow to, 56
Steam boilers, overflow baffles in,
224–226
Steam chest, in steam turbines, 168–170
Steam condensate recovery of, 100,
179–181
Steam condensate control, 179–186
condensate level in, 181–184
problems with, 184–186
Steam control valves, throttling mode of
operation and, 134–136
Steam drum
boiler pumps and, 218
configuring level alarm for, 250–252
level trip for, 253
Steam engine, over-speed trip on, 172–173
Steam exhaust line, in steam turbines,
169
Steam flow, 122
 in deaeration, 226–227
 problems with, 184–186
 into steam reboiler/heater, 189–190
Steam heater
 problems with, 184–186
 steam flow into, 182
Steam heat exchanger, 180
 pressure drop in, 183
Steam jet ejector, in vacuum systems, 131–133. See also Vacuum ejectors
Steam nozzle, wet steam in, 216
Steam pressure
 in deaerators, 227–228
 sonic boost and, 133–134
 spillback pressure control for, 136–137
 in steam condensate recovery, 180–181
 in steam jet ejectors, 131
 in steam turbines, 169, 172
Steam production, in oxygen analyzer air control, 89
Steam quality, 215–230
 boilers and, 217–222
 deaerators and, 226–229
 of flowing steam, 215–217
 in kettle waste heat boiler, 222–226
Steam rack
 automated, 172
 in steam turbines, 170
Steam stripping
 with deaerators, 226–227
 wet steam and, 216
Steam super heat furnace tables, wet steam and, 217
Steam tables, 215
Steam trap, in steam condensate recovery, 179–180
Steam turbines, 100. See also Turbines
 accident with over-speed, 256
 controlling, 167–173
 hand valves for, 167, 169–172
 over-speed trip on, 172–173
 problems with, 205–206
 retrofitting for automatic speed control, 172
 theory of, 167–169
 wet steam and salt deposits in, 217
 driven pumps, 99–100
Steam valve, in controlling asphalt viscosity, 81–83
Strippers
 control of, 55, 60
 constant, 55
 efficiency, 60
 pressure, 58
Stripper tower, in deaeration, 226
Stripping, wet steam and, 216
Stripping steam rate, in controlling, 59
 asphalt viscosity, 81–83
Stripping trays, de-ethanizer reboiler control and, 80
Subcooling, of steam condensate, 185–186
Suction filter, 160
Suction head pressure, nonlinear response to, 273
Suction pressure
 in air blowers, 153–154, 156
 centrifugal pump control and, 159–161
 level control vs., 159–161
Suction pressure control
 origination of, 161
 for variable-speed pumps, 162–163
Suction pressure tap, 160
Suction pressure transmitter, in control valve safety enhancement, 130
Suction screen, pump pressure sensing point and, 160
Suction set point pressure, determining, 161–162
Suction throttle valve, wet gas compressor and, 156–158
Suction throttling
 flow control via, 147
 limitations on, 154–155
 pressure control, 155
Sulfur deposits, in automatic temperature control, 92
Sulfuric acid plant booster blower, problems with, 206–210
Sulfur plant furnace, temperature monitoring for, 17
Sulfur recovery plant
 centrifugal compressor at, 151–158
 steam turbines at, 170
Superheated steam, 215–216
Surge control, 162
Surge, in centrifugal compressors, 119, 151–158, 195
Surge point, in air blowers, 153
Synergism, 284

Taps, plugging of, 243
Temperature, 281. See also Heat; High temperature trips; Mollier diagram; Trip temperatures in combining noncondensable vapors and total condensation, 48–49 combustible analyzers and, 93–96 in combustion air control, 94–96 in condensate level control, 182 condenser and refrigerant, 31 as dependent variable, 26 in diesel oil draw-off, 78–79 in distillation, 26–27 forced condensation dew point, 268–269 hot vapor bypass control and, 46–48 of kettle waste heat boiler, 223–224 measuring, 12–16, 244–245 measuring liquid level and, 233–234 override control for, 129 in oxygen analyzer air control, 90 in refrigeration, 66–67 in saturated steam moisture capture, 221
Temperature control, automatic, 91–93
Temperature control valve (TRC), 104. See also TRC set point on fired heaters, 129 full flooding and, 72–73 in tower pressure control, 52
Temperature drop, in isenthalpic expansion, 220–221
Temperature indication (TI), 14. See also TI point temperature
Temperature indicators, 254 in temperature monitoring, 16
Temperature points, 16
Temperature probe, temperature measurement via, 245
Temperature profile, optimizing fractionation efficiency by, 69–76
Temperature response curve, wash water and, 268–269
Testing (test procedures). See also Field testing alarm points and trip parameters and, 247, 249–250 of high temperature trips, 254 of level trips, 253 of liquid level alarms, 252–253 of new pressure alarms, 249–250 safety and, 206–210
Thermal cracking, 192, 193
Thermal cracking endothermic heat of reaction, 192
Thermocouple assembly, temperature measurement via, 244–245
Thermocouples, 14–15 for kilns, 16 velocity, 16
Thermocouple length, 280–281
Thermodynamics Process Control Engineering and, 215 second law of, 154–155
Thermowells, 14–15 in fireboxes, 14–15 fouling of, 245 in temperature measurement, 244–245 in temperature monitoring, 16 Three-way valve, in safe minimum flow control, 163–165
Throttling, of cooling water, 43–44
Throttling mode of operation, 134–135, 138 with air compressors, 154–155 in determining suction set point pressure, 161–162 flow control via, 147 positive feedback in, 135–136 spillback pressure control versus, 136–137
TI point temperature, 221–222. See also Temperature indication (TI)
Total condensation, combining with noncondensables, 48–49
Total dissolved solids (TDS) in deaerators, 228–229 in wet steam, 216
Tower bottom temperature, 56
Tower pressure control, 99
Tower delta T
 in computerized tower pressure control, 71–72
 in fractionation efficiency optimization, 70–71
Tower pressure. See also Pressure control
 controlling, 33–35, 51–52
 in determining suction set point pressure, 162
 in distillation, 26–27
 in fractionation efficiency optimization, 69–76
 full flooding and, 72–73
 redundancy in safety with, 247–249
Towers. See Distillation towers
 full flooding and, 72–73
 measuring liquid levels inside, 232–234
 optimizing fractionation efficiency in, 69–76
Tower top pressure
 varying, 138
 sensing point, 52–53
Tower top vacuum, in controlling asphalt viscosity, 81–82
Tramp air leaks, in combustion air control, 96
Transducers
 in control valve safety enhancement, 130
 pressure, 12–13
Transmitter output, 161
Tray deck dumping, in fractionation efficiency optimization, 70
Tray deck weeping, 41
 fractionation efficiency optimization and, 70
Trayed towers, optimizing fractionation efficiency in, 69–76
Tray efficiency, in diesel oil production, 79
Tray location, optimum, 38–39
Trays
 aerated liquid and, 236
 fractionation efficiency optimization and, 70
 temperature, in propylene production, 38–39

spacing, 59
TRC set point, 63–64, 67. See also
 Temperature control valve (TRC)
Trip connections, flushing of, 255–256
Trip design, 247–256
Trip parameters, 247
Trip temperatures, for reciprocating compressors, 143–145
Turbine case, in steam turbines, 168
Turbine-driven pumps
 controlling, 162–163
 saving energy with, 165–166
 speed, centrifugal pump control and, 159
Turbines. See also Steam turbines
 accident with over-speed, 256
 energy efficiency, 280
 exhausting to a vacuum, 279
 over-speed trip on, 129
 problems with, 205–210, 217
 speeds, 279
 vibration, and steam chest pressure, 280
 wet steam and salt deposits in, 217
Turbine speed, optimizing, 170–171
Ultrasonic transit time flowmeter, 242
Ultrasound flowmeters, for low-flow alarm/trip points, 256
Undersizing, of control valves, 110
 waste energy, 104
 pump capacity and, 165–166
Unit pressure profile, 198
Unstable recycle gas flow, 196–197
Vacuum distillation
 fractionation efficiency of, 131
 products from, 131
Vacuum ejectors. See also Steam jet ejector
 control loops for, 8
 specialty, 134
Vacuum gas oil hydrotreater, 196
Vacuum jets, poor-quality steam in, 216
Vacuum liquid ring seal pumps, 131
Vacuum loss, in vacuum systems, 133
Vacuum measurement, 132
Vacuum pressure, measuring, 238–240
Vacuum steam ejectors, 100
Vacuum systems, pressure control in, 131–138
Vacuum tower overflash, 161
Vacuum tower pressure control of, motive steam, 134–135
Vacuum towers, temperature readings in, 14–15
Valve disablers, 148
Valve position
control valve capacity checking and, 111
on instrument air failure, 115–124
in sizing process control valves, 107
Valve position indicators, in polypropylene plant redesign, 3
Valves
in polypropylene plant redesign, 3–4 sizing of, 107–114
Valve trays, fractionation efficiency optimization and, 70
Valve unloaders, flow control via, 147–148
Vapor channeling, in fractionation efficiency optimization, 69
Vapor connections, flushing of, 255–256
Vaporization
heat of, 221
in nozzle exit loss, 270
Vapors, pressure control with noncondensable, 44. See also Hot vapor bypass
Vapor space, 196
Vapor velocity, in fractionation efficiency optimization, 70
Variable pressure steam, in steam condensate recovery, 179
Variables
dependent versus independent, 25–32
in distillation, 26–27
in gas compression, 29–32
in nonlinear responses, 267–268
Variable-speed compressors, 158
Variable-speed motors, flow control with, 163
Variable-speed pumps, suction pressure control for, 162–163
Velocity steam flow control valve, 120
Velocity thermocouple, 15
Venturi meters, flow measurement via, 241
Vent valves, split-range pressure control and, 50
Visbreakers, flow measurement in, 242
Viscosity, in sizing process control valves, 108–109
Viscosity analyzer, in controlling asphalt viscosity, 82–83
Viscosity meter, in controlling asphalt viscosity, 82–83
Wash water, adjusting to prevent HCl corrosion, 268–269
Waste heat boilers, correct level control in, 226
Water. See also Wet steam adjusting to prevent HCl corrosion, 268–269
for boilers, 179
conductivity probes and, 253
freezing of, 124
in measuring vacuum pressure, 240
with split-range control, 128
Water backup, in steam condensate recovery, 180–181
Water flow, process flow measurement and, 147
Water level, kettle boiler overflow baffles and, 224–226
Water strippers
controlling, 33–35
proper control of, 35–39
Water vapor, adjusting to prevent HCl corrosion, 268–269. See also Steam entries
Wedge meter, flow measurement via, 241–242
Weeping fractionation trays, 41
Wellhead compressors, high temperature trips for, 143–145
Wet gas compressor driver, 202
Wet steam, 215–216
in kettle waste heat boiler, 222–225
X rays, in level measurement, 238
Yarway valves, in safe minimum flow control, 163–164
Zero-order reaction, 191–192
Zero-order thermal cracking, 193