Contents

Foreword for the First Edition xix
Foreword for the Second Edition xxi
Preface for the First Edition xxiii
Preface for the Second Edition xxvii
Acknowledgements xxxi

1 Alternative Sources of Energy 1
1.1 Introduction 1
1.2 Renewable Sources of Energy 2
1.3 Renewable Energy versus Alternative Energy 4
1.4 Planning and Development of Integrated Energy 10
1.4.1 Grid-Supplied Electricity 10
1.4.2 Load 11
1.4.3 Distributed Generation 12
1.5 Renewable Energy Economics 13
1.5.1 Calculation of Electricity Generation Costs 14
1.5.1.1 Existing Plants 14
1.5.1.2 New Plants 15
1.5.1.3 Investment Costs 15
1.5.1.4 Capital Recovery Factor 16
1.6 European Targets for Renewable Powers 16
1.6.1 Demand-Side Management Options 17
1.6.2 Supply-Side Management Options 19
1.7 Integrating Renewable Energy Sources 21
1.7.1 Integration of Renewable Energy in the United States 23
1.7.2 Energy Recovery Time 24
1.7.3 Sustainability 26
1.8 Modern Electronic Controls for Power Systems 29
1.9 Issues Related to Alternative Sources of Energy 31
References 35
2 Principles of Thermodynamics 37
2.1 Introduction 37
2.2 State of a Thermodynamic System 38
2.2.1 Heating Value 46
2.2.2 First and Second Laws of Thermodynamics and Thermal Efficiency 48
2.3 Fundamental Laws and Principles 49
2.3.1 Example of Efficiency in a Power Plant 51
2.3.2 Practical Problems Associated with Carnot Cycle Plant 54
2.3.3 Rankine Cycle for Power Plants 55
2.3.4 Brayton Cycle for Power Plants 58
2.3.5 Geothermal Energy 60
2.3.6 Kalina Cycle 61
2.3.7 Energy, Power, and System Balance 62
2.4 Examples of Energy Balance 66
2.4.1 Simple Residential Energy Balance 66
2.4.2 Refrigerator Energy Balance 67
2.4.3 Energy Balance for a Water Heater 68
2.4.4 Rock Bed Energy Balance 70
2.4.5 Array of Solar Collectors 70
2.4.6 Heat Pump 71
2.4.7 Heat Transfer Analysis 72
2.4.8 Simple Steam Power Turbine Analysis 73
2.5 Planet Earth: A Closed But Not Isolated System 77
References 79

3 Hydroelectric Power Plants 81
3.1 Introduction 81
3.2 Determination of the Available Power 82
3.3 Expedient Topographical and Hydrological Measurements 84
3.3.1 Simple Measurement of Elevation 84
3.3.2 Global Positioning Systems for Elevation Measurement 85
3.3.3 Pipe Losses 86
3.3.4 Expedient Measurements of Stream Water Flow 87
3.3.4.1 Measurement Using a Float 87
3.3.4.2 Measurement Using a Rectangular Spillway 88
3.3.4.3 Measurement Using a Triangular Spillway 89
3.3.4.4 Measurement Based on the Dilution of Salt in the Water 89
3.3.5 Civil Works 92
3.4 Hydropower Generator Set 93
3.4.1 Regulation Systems 93
3.4.2 Butterfly Valves 93
3.5 Waterwheels 93
3.6 Turbines 96
3.6.1 Pelton Turbine 97
3.6.2 Francis Turbine 99
3.6.3 Michell–Banki Turbine 102
3.6.4 Kaplan or Hydraulic Propeller Turbine 103
3.6.5 Deriaz Turbines 105
3.6.6 Water Pumps Working as Turbines 106
3.6.7 Specification of Hydro Turbines 107

References 109

4 Wind Power Plants 111
4.1 Introduction 111
4.2 Appropriate Location 112
4.2.1 Evaluation of Wind Intensity 112
4.2.1.1 Meteorological Mapping 116
4.2.1.2 Weibull Probability Distribution 118
4.2.1.3 Analysis of Wind Speed by Visualization 121
4.2.1.4 Technique of the Balloon 123
4.2.2 Topography 124
4.2.3 Purpose of the Energy Generated 124
4.2.4 Accessibility 124
4.3 Wind Power 125
4.3.1 Wind Power Corrections 126
4.3.2 Wind Distribution 128
4.4 General Classification of Wind Turbines 129
4.4.1 Rotor Turbines 131
4.4.2 Multiple-Blade Turbines 131
4.4.3 Drag Turbines (Savonius) 132
4.4.4 Lifting Turbines 133
4.4.4.1 Starting System 134
4.4.4.2 Rotor 134
4.4.4.3 Lifting 134
4.4.4.4 Speed Multipliers 134
4.4.4.5 Braking System 135
4.4.4.6 Generation System 135
4.4.4.7 Horizontal- and Vertical-Axis Turbines 135
4.4.5 Magnus Turbines 136
4.4.6 System TARP–WARP 136
4.4.7 Accessories 139
4.5 Generators and Speed Control Used in Wind Power Energy 140
4.6 Analysis of Small Generating Systems 143
4.6.1 Maximization of C_p 145

References 148
5 Thermosolar Power Plants 151
 5.1 Introduction 151
 5.2 Water Heating by Solar Energy 152
 5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 155
 5.3.1 Steady-State Thermal Calculations 155
 5.3.2 Transient-State Thermal Calculations 156
 5.3.3 Practical Approximate Measurements of the Thermal Constants R and C in Water Reservoirs 158
 5.4 Heating Domestic Water 159
 5.5 Thermosolar Energy 160
 5.5.1 Parabolic Trough 161
 5.5.2 Parabolic Dish 163
 5.5.3 Solar Power Tower 164
 5.5.4 Production of Hydrogen 166
 5.6 Economics Analysis of Thermosolar Energy 168

References 170

6 Photovoltaic Power Plants 173
 6.1 Introduction 173
 6.2 Solar Energy 174
 6.3 Conversion of Electricity by Photovoltaic Effect 176
 6.3.1 Photovoltaic Cells 177
 6.4 Equivalent Models for Photovoltaic Panels 178
 6.4.1 Dark-Current Electric Parameters of a Photovoltaic Panel 179
 6.4.1.1 Measurement of I_{λ} 180
 6.4.1.2 Measurement of R_p 180
 6.4.1.3 Measurement of I_d 181
 6.4.1.4 Measurement of η 182
 6.4.1.5 Measurement of I_s 183
 6.4.1.6 Measurement of R_s 183
 6.4.2 Power, Utilization, and Efficiency of a PV Cell 183
 6.5 Solar Cell Output Characteristics 188
 6.5.1 Dependence of a PV Cell Characteristic on Temperature and PV Cells 190
 6.5.2 Model of a PV Panel Consisting of n Cells in Series 193
 6.5.3 Model of a PV Panel Consisting of n Cells in Parallel 195
 6.6 Photovoltaic Systems 196
 6.6.1 Irradiance Area 197
 6.6.2 Solar Modules and Panels 198
 6.6.3 Aluminum Structures 198
 6.6.4 Load Controller 200
 6.6.5 Battery Bank 200
 6.6.6 Array Orientation 200
6.7 Applications of Photovoltaic Solar Energy 201
6.7.1 Residential and Public Illumination 201
6.7.2 Stroboscopic Signaling 202
6.7.3 Electric Fence 203
6.7.4 Telecommunications 203
6.7.5 Water Supply and Micro-irrigation Systems 203
6.7.6 Control of Plagues and Conservation of Food and Medicine 205
6.7.7 Hydrogen and Oxygen Generation by Electrolysis 206
6.7.8 Electric Power Supply 208
6.7.9 Security Video Cameras and Alarm Systems 209
6.8 Economics and Analysis of Solar Energy 209

References 214

7 Power Plants with Fuel Cells 217
7.1 Introduction 217
7.2 The Fuel Cell 218
7.3 Commercial Technologies for the Generation of Electricity 220
7.4 Practical Issues Related to Fuel Cell Stacking 231
7.4.1 Low- and High-Temperature Fuel Cells 231
7.4.2 Commercial and Manufacturing Issues 232
7.5 Constructional Features of Proton Exchange Membrane Fuel Cells 233
7.6 Constructional Features of Solid Oxide Fuel Cells 236
7.7 Reformers, Electrolyzer Systems, and Related Precautions 237
7.8 Advantages and Disadvantages of Fuel Cells 238
7.9 Fuel Cell Equivalent Circuit 239
7.10 Water, Air, and Heat Management 246
7.10.1 Fuel Cells and Their Thermal Energy Evaluation 247
7.11 Experimental Evaluation of the Fuel Cell Equivalent Model Parameters 250
7.11.1 Determination of FC Parameters 253
7.12 Aspects of Hydrogen as Fuel 256
7.13 Load Curve Peak Shaving with Fuel Cells 258
7.13.1 Maximal Load Curve Flatness at Constant Output Power 258
7.14 Future Trends 260
References 263

8 Biomass-Powered Microplants 267
8.1 Introduction 267
8.2 Fuel from Biomass 272
8.3 Biogas 274
8.4 Biomass for Biogas 275
8.5 Biological Formation of Biogas 277
8.6 Factors Affecting Biodigestion 277
8.7 Characteristics of Biodigesters 279
8.8 Construction of a Biodigester 281
8.8.1 Typical Size for a Biodigester 282
8.9 Generation of Electricity Using Biogas 282
References 286

9 Microturbines 289
9.1 Introduction 289
9.2 Principles of Operation 291
9.3 Microturbine Fuel 293
9.4 Control of Microturbine 294
9.4.1 Mechanical-Side Structure 295
9.4.2 Electrical-Side Structure 297
9.4.3 Control-Side Structure 298
9.5 Efficiency and Power of Microturbines 303
9.6 Site Assessment for Installation of Microturbines 305
References 307

10 Earth Core and Solar Heated Geothermal Energy Plants 311
10.1 Introduction 311
10.2 Earth Core Geothermal as a Source of Energy 313
10.2.1 Earth Core Geothermal Economics 314
10.2.2 Examples of Earth Core Geothermal Electricity 316
10.3 Solar Heat Stored Underground as a Source of Energy 317
10.3.1 Heat Exchange with Nature 319
10.3.2 Heat Exchange with Surface Water 322
10.3.3 Heat Exchange with Circulating Fluid 322
10.4 Solar Geothermal Heat Exchangers 323
10.4.1 Horizontal Serpentines 324
10.4.2 Vertical Serpentines 326
10.4.3 Mixed Serpentines 326
10.4.4 Pressurized Serpentines Heat Pump 326
10.5 Heat Exchange with a Room 328
References 329

11 Thermocouple, Sea Waves, Tide, MHD, and Piezoelectric Power Plants 331
11.1 Introduction 331
11.2 Thermocouple Electric Power Generation 331
11.2.1 Thermocouples 332
11.2.2 Power Conversion Using Thermocouples 334
11.2.3 Principle of Semiconductor Thermocouples 336
11.2.4 A Stack of Semiconductor Thermocouples 338
11.2.5 A Plate of Semiconductor Thermocouples 338
11.2.6 Advantages and Disadvantages of the Semiconductor Thermocouples 339
11.3 Power Plants with Ocean Waves 339
11.3.1 Sea Wave Energy Extraction Technology 341
11.3.2 Energy Content in Sea Waves 344
11.4 Tide-Based Small Power Plants 345
11.5 Small Central Magnetohydrodynamic 347
11.6 Small Piezoelectric Power Plant 349
11.6.1 Piezoelectric Energy Conversion 350
11.6.2 Piezoelectric-Based Energy Applications 352
References 352

12 Induction Generators 357
12.1 Introduction 357
12.2 Principles of Operation 358
12.3 Representation of Steady-State Operation 360
12.4 Power and Losses Generated 362
12.5 Self-Excited Induction Generator 364
12.6 Magnetizing Curves and Self-Excitation 368
12.7 Mathematical Description of the Self-Excitation Process 369
12.8 Grid-Connected and Stand-Alone Operations 372
12.9 Speed and Voltage Control 374
12.9.1 Frequency, Speed, and Voltage Controls 376
12.9.2 The Danish Concept: Two Generators on the Same Shaft 383
12.9.3 Variable-Speed Grid Connection 384
12.9.4 Control by the Load versus Control by the Source 385
12.10 Economics Considerations 387
References 389

13 Permanent Magnet Generators 393
13.1 Introduction 393
13.1.1 PMSG Radial Flux Machines 394
13.1.2 Axial Flux Machines 394
13.1.3 Operating Principle of the PMSG 395
13.2 Permanent Magnets Used for PMSGs 397
13.3 Modeling a Permanent Magnet Synchronous Machine 398
13.3.1 Simplified Model of a PMSG 402
13.4 Core Types of a PMSG 407
13.5 PSIM Simulation of the PMSG 408
13.6 Advantages and Disadvantages of the PMSG 408
References 411
Storage Systems

14 Storage Systems 413

14.1 Introduction 413

14.2 Energy Storage Parameters 416

14.3 Lead–Acid Batteries 419

14.3.1 Constructional Features 421

14.3.2 Battery Charge–Discharge Cycles 422

14.3.3 Operating Limits and Parameters 424

14.3.4 Maintenance of Lead–Acid Batteries 426

14.3.5 Sizing Lead–Acid Batteries for DG Applications 427

14.4 Ultracapacitors (Supercapacitors) 429

14.4.1 Double-Layer Effect 430

14.4.2 High-Energy Ultracapacitors 432

14.4.3 Applications of Ultracapacitors 433

14.5 Flywheels 435

14.5.1 Advanced Performance of Flywheels 436

14.5.2 Applications of Flywheels 437

14.5.3 Design Strategies 439

14.6 Superconducting Magnetic Storage System 441

14.6.1 SMES System Capabilities 443

14.6.2 Developments in SMES Systems 444

14.7 Pumped Hydroelectric Storage 446

14.7.1 Storage Capabilities of Pumped Systems 447

14.8 Compressed Air Energy Storage 449

14.9 Heat Storage 451

14.10 Hydrogen Storage 452

14.11 Energy Storage as an Economic Resource 453

References 457

Integration of Alternative Sources of Energy

15 Integration of Alternative Sources of Energy 461

15.1 Introduction 461

15.2 Principles of Power Interconnection 462

15.2.1 Converting Technologies 462

15.2.2 Power Converters for Power Injection into the Grid 464

15.2.3 Power Flow 466

15.3 Instantaneous Active and Reactive Power Control Approach 470

15.4 Integration of Multiple Renewable Energy Sources 473

15.4.1 DC-Link Integration 475

15.4.2 AC-Link Integration 477

15.4.3 HFAC-Link Integration 478

15.5 Islanding and Interconnection Control 481

15.6 DG PLL with Clarke and Park Transformations 490

15.6.1 Clarke Transformation for AC-Link Integration 490

15.6.2 Blondel or Park Transformation for AC-Link Integration 492
16 Distributed Generation 503
16.1 Introduction 503
16.2 The Purpose of Distributed Generation 506
16.2.1 Modularity 507
16.2.2 Efficiency 507
16.2.3 Low or No Emissions 507
16.2.4 Security 507
16.2.5 Load Management 508
16.3 Sizing and Siting of Distributed Generation 510
16.4 Demand-Side Management 511
16.5 Optimal Location of Distributed Energy Sources 512
16.5.1 DG Influence on Power and Energy Losses 514
16.5.2 Estimation of DG Influence on Power Losses of Sub-transmission Systems 518
16.5.3 Equivalent of Sub-transmission Systems Using Experimental Design 521
16.6 Algorithm of Multicriterial Analysis 523
16.6.1 Voltage Quality in DG Systems 525

17 Interconnection of Alternative Energy Sources with the Grid 533
Benjamin Kroposki, Thomas Basso, Richard Deblasio, and N. Richard Friedman
17.1 Introduction 533
17.2 Interconnection Technologies 536
17.2.1 Synchronous Interconnection 536
17.2.2 Induction Interconnection 537
17.2.3 Inverter Interconnection 538
17.3 Standards and Codes for Interconnection 539
17.3.1 IEEE 1547 539
17.3.2 National Electrical Code 540
17.3.2.1 NFPA 70: National Electrical Code 540
17.3.2.2 NFPA 853: Standard for the Installation of Stationary Fuel Cell Power Plants 541
17.3.3 UL Standards 541
17.3.3.1 UL 1741: Inverters, Converters, and Controllers for Use in Independent Power Systems 541
17.3.3.2 UL 1008: Transfer Switch Equipment 541
17.3.3.3 UL 2200: Standard for Safety for Stationary Engine Generator Assemblies 543
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Interconnection Considerations</td>
<td>543</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Voltage Regulation</td>
<td>543</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Integration with Area EPS Grounding</td>
<td>544</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Synchronization</td>
<td>544</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Isolation</td>
<td>545</td>
</tr>
<tr>
<td>17.4.5</td>
<td>Response to Voltage Disturbance</td>
<td>545</td>
</tr>
<tr>
<td>17.4.6</td>
<td>Response to Frequency Disturbance</td>
<td>546</td>
</tr>
<tr>
<td>17.4.7</td>
<td>Disconnection for Faults</td>
<td>548</td>
</tr>
<tr>
<td>17.4.8</td>
<td>Loss of Synchronism</td>
<td>549</td>
</tr>
<tr>
<td>17.4.9</td>
<td>Feeder Reclosing Coordination</td>
<td>549</td>
</tr>
<tr>
<td>17.4.10</td>
<td>Dc Injection</td>
<td>550</td>
</tr>
<tr>
<td>17.4.11</td>
<td>Voltage Flicker</td>
<td>550</td>
</tr>
<tr>
<td>17.4.12</td>
<td>Harmonics</td>
<td>551</td>
</tr>
<tr>
<td>17.4.13</td>
<td>Unintentional Islanding Protection</td>
<td>553</td>
</tr>
<tr>
<td>17.5</td>
<td>Interconnection Examples for Alternative Energy Sources</td>
<td>553</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Synchronous Generator for Peak Demand Reduction</td>
<td>555</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Small Grid-Connected PV System</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>557</td>
</tr>
<tr>
<td>18</td>
<td>Micropower System Modeling with HOMER</td>
<td>559</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>559</td>
</tr>
<tr>
<td>18.2</td>
<td>Simulation</td>
<td>561</td>
</tr>
<tr>
<td>18.3</td>
<td>Optimization</td>
<td>566</td>
</tr>
<tr>
<td>18.4</td>
<td>Sensitivity Analysis</td>
<td>569</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Dealing with Uncertainty</td>
<td>570</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Sensitivity Analyses on Hourly Data Sets</td>
<td>573</td>
</tr>
<tr>
<td>18.5</td>
<td>Physical Modeling</td>
<td>574</td>
</tr>
<tr>
<td>18.5.1</td>
<td>Loads</td>
<td>574</td>
</tr>
<tr>
<td>18.5.1.1</td>
<td>Primary Load</td>
<td>575</td>
</tr>
<tr>
<td>18.5.1.2</td>
<td>Deferrable Load</td>
<td>575</td>
</tr>
<tr>
<td>18.5.1.3</td>
<td>Thermal Load</td>
<td>576</td>
</tr>
<tr>
<td>18.5.2</td>
<td>Resources</td>
<td>577</td>
</tr>
<tr>
<td>18.5.2.1</td>
<td>Solar Resource</td>
<td>577</td>
</tr>
<tr>
<td>18.5.2.2</td>
<td>Wind Resource</td>
<td>577</td>
</tr>
<tr>
<td>18.5.2.3</td>
<td>Hydro Resource</td>
<td>578</td>
</tr>
<tr>
<td>18.5.2.4</td>
<td>Biomass Resource</td>
<td>578</td>
</tr>
<tr>
<td>18.5.3</td>
<td>Components</td>
<td>579</td>
</tr>
<tr>
<td>18.5.3.1</td>
<td>PV Array</td>
<td>580</td>
</tr>
<tr>
<td>18.5.3.2</td>
<td>Wind Turbine</td>
<td>581</td>
</tr>
<tr>
<td>18.5.3.3</td>
<td>Hydro Turbine</td>
<td>582</td>
</tr>
<tr>
<td>18.5.3.4</td>
<td>Generators</td>
<td>583</td>
</tr>
<tr>
<td>18.5.3.5</td>
<td>Battery Bank</td>
<td>585</td>
</tr>
</tbody>
</table>