# Contents

## Preface

### 1 Introduction
- 1.1 Reasons for Studying Engines 1
- 1.2 Engine Types and Operation 2
- 1.3 Reasons for Cycle Simulations 3
  - 1.3.1 Educational Value 3
  - 1.3.2 Guide Experimentation 3
  - 1.3.3 Only Technique to Study Certain Variables 4
  - 1.3.4 Complete Extensive Parametric Studies 4
  - 1.3.5 Opportunities for Optimization 4
  - 1.3.6 Simulations for Real-time Control 4
  - 1.3.7 Summary 5
- 1.4 Brief Comments on the History of Simulations 5
- 1.5 Overview of Book Content 6

## 2 Overview of Engines and Their Operation

- 2.1 Goals of Engine Designs 9
- 2.2 Engine Classifications by Applications 10
- 2.3 Engine Characteristics 11
- 2.4 Basic Engine Components 12
- 2.5 Engine Operating Cycles 12
- 2.6 Performance Parameters 12
  - 2.6.1 Work, Power, and Torque 12
  - 2.6.2 Mean Effective Pressure 15
  - 2.6.3 Thermal Efficiencies 16
  - 2.6.4 Specific Fuel Consumption 17
  - 2.6.5 Other Parameters 17
- 2.7 Summary 18

## 3 Overview of Engine Cycle Simulations

- 3.1 Introduction 19
- 3.2 Ideal (Air Standard) Cycle Analyses 19
- 3.3 Thermodynamic Engine Cycle Simulations 21
### Contents

3.4 Quasi-dimensional Thermodynamic Engine Cycle Simulations 22  
3.5 Multi-dimensional Simulations 23  
3.6 Commercial Products 24  
   3.6.1 Thermodynamic Simulations 24  
   3.6.2 Multi-dimensional Simulations 25  
3.7 Summary 26  

Appendix 3.A: A Brief Summary of the Thermodynamics of the “Otto” Cycle Analysis 29

4 Properties of the Working Fluids 37  
4.1 Introduction 37  
4.2 Unburned Mixture Composition 37  
   4.2.1 Oxygen-containing Fuels 40  
   4.2.2 Oxidizers 41  
   4.2.3 Fuels 41  
4.3 Burned Mixture ("Frozen" Composition) 42  
4.4 Equilibrium Composition 43  
4.5 Determinations of the Thermodynamic Properties 46  
4.6 Results for the Thermodynamic Properties 47  
4.7 Summary 61  

5 Thermodynamic Formulations 63  
5.1 Introduction 63  
5.2 Approximations and Assumptions 64  
5.3 Formulations 65  
   5.3.1 One-Zone Formulation 65  
   5.3.2 Two-Zone Formulation 67  
   5.3.3 Three-Zone Formulation 72  
5.4 Comments on the Three Formulations 77  
5.5 Summary 77  

6 Items and Procedures for Solutions 79  
6.1 Introduction 79  
6.2 Items Needed to Solve the Energy Equations 79  
   6.2.1 Thermodynamic Properties 79  
   6.2.2 Kinematics 80  
   6.2.3 Combustion Process (Mass Fraction Burned) 82  
   6.2.4 Cylinder Heat Transfer 85  
   6.2.5 Mass Flow Rates 86  
   6.2.6 Mass Conservation 89  
   6.2.7 Friction 89  
   6.2.8 Pollutant Calculations 94  
   6.2.9 Other Sub-models 94  
6.3 Numerical Solution 94  
   6.3.1 Initial and Boundary Conditions 95  
   6.3.2 Internal Consistency Checks 96  
6.4 Summary 96
## Contents

7 Basic Results

7.1 Introduction 99

7.2 Engine Specifications and Operating Conditions 99

7.3 Results and Discussion 101

7.3.1 Cylinder Volumes, Pressures, and Temperatures 102

7.3.2 Cylinder Masses and Flow Rates 106

7.3.3 Specific Enthalpy and Internal Energy 108

7.3.4 Molecular Masses, Gas Constants, and Mole Fractions 110

7.3.5 Energy Distribution and Work 114

7.4 Summary and Conclusions 116

8 Performance Results 119

8.1 Introduction 119

8.2 Engine and Operating Conditions 119

8.3 Performance Results (Part I)—Functions of Load and Speed 119

8.4 Performance Results (Part II)—Functions of Operating/Design Parameters 129

8.4.1 Combustion Timing 129

8.4.2 Compression Ratio 131

8.4.3 Equivalence Ratio 133

8.4.4 Burn Duration 135

8.4.5 Inlet Temperature 135

8.4.6 Residual Mass Fraction 136

8.4.7 Exhaust Pressure 136

8.4.8 Exhaust Gas Temperature 140

8.4.9 Exhaust Gas Recirculation 142

8.4.10 Pumping Work 145

8.5 Summary and Conclusions 149

9 Second Law Results 153

9.1 Introduction 153

9.2 Exergy 153

9.3 Previous Literature 154

9.4 Formulation of Second Law Analyses 154

9.5 Results from the Second Law Analyses 158

9.5.1 Basic Results 158

9.5.2 Parametric Results 163

9.5.3 Auxiliary Comments 174

9.6 Summary and Conclusions 176

10 Other Engine Combustion Processes 179

10.1 Introduction 179

10.2 Diesel Engine Combustion 179

10.3 Best Features from SI and CI Engines 180

10.4 Other Combustion Processes 181

10.4.1 Stratified Charge Combustion 181

10.4.2 Low Temperature Combustion 181
10.5 Challenges of Alternative Combustion Processes 182
10.6 Applications of the Simulations for Other Combustion Processes 183
10.7 Summary 184

11 Case Studies: Introduction 187
11.1 Case Studies 187
11.2 Common Elements of the Case Studies 188
11.3 General Methodology of the Case Studies 189

12 Combustion: Heat Release and Phasing 191
12.1 Introduction 191
12.2 Engine and Operating Conditions 191
12.3 Part I: Heat Release Schedule 191
  12.3.1 Results for the Heat Release Rate 197
12.4 Part II: Combustion Phasing 205
  12.4.1 Results for Combustion Phasing 206
12.5 Summary and Conclusions 221

13 Cylinder Heat Transfer 225
13.1 Introduction 225
13.2 Basic Relations 226
13.3 Previous Literature
  13.3.1 Woschni Correlation 228
  13.3.2 Summary of Correlations 229
13.4 Results and Discussion 230
  13.4.1 Conventional Engine 230
  13.4.2 Engines Utilizing Low Heat Rejection Concepts 241
  13.4.3 Engines Utilizing Adiabatic EGR 247
13.5 Summary and Conclusions 250

14 Fuels 253
14.1 Introduction 253
14.2 Fuel Specifications 254
14.3 Engine and Operating Conditions 255
14.4 Results and Discussion
  14.4.1 Assumptions and Constraints 255
  14.4.2 Basic Results 255
  14.4.3 Engine Performance Results 259
  14.4.4 Second Law Results 266
14.5 Summary and Conclusions 268
Appendix 14.A: Energy and Exergy Distributions for the Eight Fuels at the Base Case Conditions ($b\text{mep} = 325$ kPa, 2000 rpm, $\phi = 1.0$ and MBT timing) 269

15 Oxygen-Enriched Air 275
15.1 Introduction 275
15.2 Previous Literature 276
## Contents

15.3 Engine and Operating Conditions 277  
15.4 Results and Discussion 277  
15.4.1 Strategy for This Study 278  
15.4.2 Basic Thermodynamic Properties 278  
15.4.3 Base Engine Performance 280  
15.4.4 Parametric Engine Performance 283  
15.4.5 Nitric Oxide Emissions 289  
15.5 Summary and Conclusions 291  

16 Overexpanded Engine 295  
16.1 Introduction 295  
16.2 Engine, Constraints, and Approach 296  
16.2.1 Engine and Operating Conditions 296  
16.2.2 Constraints 296  
16.2.3 Approach 296  
16.3 Results and Discussion 297  
16.3.1 Part Load 297  
16.3.2 Wide-Open Throttle 304  
16.4 Summary and Conclusions 309  

17 Nitric Oxide Emissions 311  
17.1 Introduction 311  
17.2 Nitric Oxide Kinetics 312  
17.2.1 Thermal Nitric Oxide Mechanism 312  
17.2.2 “Prompt” Nitric Oxide Mechanism 312  
17.2.3 Nitrous Oxide Route Mechanism 313  
17.2.4 Fuel Nitrogen Mechanism 313  
17.3 Nitric Oxide Computations 313  
17.3.1 Kinetic Rates 315  
17.4 Engine and Operating Conditions 316  
17.5 Results and Discussion 317  
17.5.1 Basic Chemical Kinetic Results 317  
17.5.2 Time-Resolved Nitric Oxide Results 320  
17.5.3 Engine Nitric Oxide Results 324  
17.6 Summary and Conclusions 329  

18 High Efficiency Engines 333  
18.1 Introduction 333  
18.2 Engine and Operating Conditions 334  
18.3 Results and Discussion 336  
18.3.1 Overall Assessment 336  
18.3.2 Effects of Individual Parameters 343  
18.3.3 Emissions and Exergy 347  
18.3.4 Effects of Combustion Parameters 351  
18.4 Summary and Conclusions 353
Contents

19 Summary: Thermodynamics of Engines 355

19.1 Summaries of Chapters 355

19.2 Fundamental Thermodynamic Foundations of IC Engines 356
  Item 1: Heat Engines versus Chemical Conversion Devices 356
  Item 2: Air-Standard Cycles 357
  Item 3: Importance of Compression Ratio 357
  Item 4: Importance of the Ratio of Specific Heats 359
  Item 5: Cylinder Heat Transfer 360
  Item 6: The Potential of a Low Heat Rejection Engine 360
  Item 7: Lean Operation and the Use of EGR 361
  Item 8: Insights from the Second Law of Thermodynamics 361
  Item 9: Timing of the Combustion Process 362
  Item 10: Technical Assessments of Engine Concepts 362

19.3 Concluding Remarks 362

Index 363