CONTENTS

List of Contributors xv
Preface xix
Acknowledgments xxiii

1 Textile Antennas for Body Area Networks: Design Strategies and Evaluation Methods 1
Ping Jack Soh and Guy A. E. Vandenbosch

1.1 Introduction, 1
1.2 Textile Materials and Antenna Fabrication Procedure, 2
 1.2.1 Conductive Textiles/Foils, 2
 1.2.2 Non-conductive Textiles, 3
 1.2.3 Textile Antenna Fabrication Procedure Using Commercial Textiles, 4
1.3 Design Strategies and Evaluation Methods, 5
 1.3.1 Antenna Simulation and Evaluation in Free Space, 5
 1.3.2 On-Body Co-simulations and Experimental Evaluations, 6
 1.3.3 Deformation Study, 9
 1.3.4 Antenna Efficiency Evaluation, 11
 1.3.5 Specific Absorption Rate Evaluation, 15
 1.3.6 Aging and Varying Environmental Conditions, 18
1.4 Conclusion, 20
References, 21
CONTENTS

2 Metamaterial-Enabled and Microwave Circuit Integrated Wearable Antennas for Off-Body Communications 27
Zhi Hao Jiang, Taiwei Yue, and Douglas H. Werner

2.1 Introduction, 27
2.2 A Metasurface-Enabled Compact Wearable Antenna, 29
 2.2.1 Antenna Design, 29
 2.2.2 Radiation Mechanism, 31
 2.2.3 Free-Space Experiments, 34
 2.2.4 Bandwidth Extended Design, 34
2.3 Microwave Circuit Integrated Wearable Filtering Antennas, 37
 2.3.1 Narrowband CP Filtering Antenna Synthesis, 37
 2.3.2 Wideband CP Filtering Antenna Synthesis, 41
 2.3.3 Free-Space Experiments, 46
2.4 Investigation of Performance for Wearable Applications, 47
 2.4.1 Metasurface-Enabled Antenna, 47
 2.4.2 Narrowband CP Filtering Antenna, 49
 2.4.3 Wideband CP Filtering Antenna, 52
2.5 Conclusion, 55
References, 55

3 AMC-Backed Flexible Near-Endfire Wearable Antennas for On-Body Communications 61
Kush Agarwal and Yong-Xin Guo

3.1 Introduction, 61
3.2 AMC-Backed Near-Endfire Antenna for On-Body Communications, 64
 3.2.1 Bidirectional Yagi Antenna for Endfire Radiation, 65
 3.2.2 Near-Endfire Yagi Antenna Backed by Single-Layered AMC, 65
 3.2.3 Near-Endfire Yagi Antenna Backed by Double-Layered AMC, 67
3.3 Fabricating the Antenna Configurations on Flexible Latex Substrate, 68
3.4 Investigation of Antenna Performances in Free Space, 69
 3.4.1 Return Loss, 70
 3.4.2 Gain, 70
 3.4.3 Radiation Patterns, 71
3.5 Investigation of Antenna Performances on Voxel Model, 72
 3.5.1 Frequency Detuning, 72
 3.5.2 Specific Absorption Rate and Antenna Efficiency, 74
 3.5.3 Radiation Patterns, 74
3.6 Antenna Performance Under Bending Deformation, 76
3.7 Measurement Results, 79
 3.7.1 Return Loss Measurements, 80
 3.7.2 Radiation Pattern Measurements, 81
 3.7.3 Gain Measurements, 83
3.8 Conclusion, 84
References, 85
5 Basic Performance Characteristics of Wearable Antennas Over a Wide Frequency Range

Koichi Ito

5.1 Introduction, 135
5.2 Frequency Dependence of Communication Channels Between Wearable Antennas Mounted on the Human Body, 136
 5.2.1 Calculation Models, 136
 5.2.2 Electric Field Distributions, 139
 5.2.3 Received Open Voltage and Ideal Power Transmission Efficiency, 140
x CONTENTS

5.3 Influences of Surrounding Environment and Body Movement, 142
 5.3.1 Influence of a Floor and a Wall, 142
 5.3.2 Influence of Body Movement, 143

5.4 Practical Applications, 149
 5.4.1 Wall-Mounted ID Tag System, 149
 5.4.2 Human Vital Data Acquisition System Using a Dual-Mode Antenna, 152

5.5 Conclusion, 156

References, 156

6 Implanted Antennas and RF Transmission in Through-Body Communications 159
Terence Shie Ping See, Zhi Ning Chen, and Xianning Qing

6.1 Introduction, 159

6.2 Antennas for Wireless Capsule Endoscopy, 162
 6.2.1 RF Transmission Characterization, 162
 6.2.2 Channel Characterization, 168
 6.2.3 Antenna Designs, 174
 6.2.4 System Integration, 183

6.3 Antennas in Wireless Implantable Neuroprobe Microsystem for Motor Prosthesis, 187
 6.3.1 Antenna Configuration on Head, 187
 6.3.2 Antenna Designs at 434 MHz Band, 187
 6.3.3 Antenna Designs at 4 GHz Band, 192
 6.3.4 Primate Demonstration, 199

6.4 Conclusion, 201

References, 201

7 Antennas, Phantoms, and Body-Centric Propagation at Millimeter-Waves 205
Nacer Chahat, Adrian Tang, Anda Guraliuc, Maxim Zhadobov, Ronan Sauleau, and Guido Valerio

7.1 Introduction, 205

7.2 Human Body Modeling and Exposure Guidelines, 207
 7.2.1 From Microwaves to Millimeter-Waves, 207
 7.2.2 Dielectric Properties and Measurement Techniques for Phantoms and Human Tissues at Millimeter-Waves, 211
 7.2.3 Numerical and Experimental Phantoms at Millimeter-Waves, 213
 7.2.4 Exposure Limits and Guidelines, 218

7.3 Antennas For Off-Body Communications at Millimeter-Waves, 222
 7.3.1 From Microwaves to Millimeter-Waves, 222
 7.3.2 Antenna Requirements for Off-Body Communications, 225
CONTENTS

7.3.3 Study of the Interaction with the Human Body of a Patch Antenna Array, 225
7.3.4 Textile Antennas, 227

7.4 Antenna and Propagation for On-Body Propagation, 231
7.4.1 State-of-the-Art, 231
7.4.2 On-Body Antennas, 233
7.4.3 Theoretical Analysis of On-Body Propagation, 235
7.4.4 On-Body Channel Measurements, 241
7.4.5 On-Body to Off-Body Propagation Scenario, 244
7.4.6 A Challenge to Overcome: Transceivers for Wearable Devices at Millimeter-Waves, 247

7.5 Conclusion, 248
References, 249

8 Wearable Active Antenna Modules for Energy-Efficient Reliable Off-Body Communication Systems 261
Patrick Van Torre, Luigi Vallozzi, and Hendrik Rogier

8.1 Introduction, 261
8.2 Diversity and MIMO Techniques for Off-Body Wireless Channels, 264
8.2.1 The Indoor Off-Body Radio Propagation Channel, 264
8.2.2 Diversity and MIMO Systems, 265
8.2.3 Signal Processing Techniques in Diversity and MIMO Systems, 266
8.3 Active Wearable Antennas: Efficient Design and Implementation, 269
8.3.1 Full-Wave/Circuit Co-design Paradigm for Energy-Efficient Active Antennas in Professional Garments, 270
8.4 Body-Centric MIMO Channels, 273
8.4.1 Off-Body Stochastic Modeling, 273
8.4.2 Off-Body Deterministic Modeling, 280
8.4.3 Spatial Modulation, 289
8.5 Applications, 295
8.5.1 Wearable Distributed Sensor Network, 295
8.5.2 Distributed Exposimeter, 304
8.6 Conclusions, 311
References, 313

9 More Than Wearable: Epidermal Antennas for Tracking and Sensing 319
Sara Amendola, Cecilia Occhiauzzi, and Gaetano Marrocco

9.1 Introduction, 319
9.2 RFID Technology, 321
9.3 Radiation Performance of Epidermal Antennas, 322
9.3.1 Efficiency and Gain versus Antenna Size, 324
CONTENTS

9.3.2 Gain versus the Trace Width, 326
9.3.3 Radiation Performance versus the Trace Conductivity, 326
9.3.4 Radiation Performance versus the Spacing From the Skin, 327

9.4 Performance of Epidermal RFID Dual-Loop Tag, 328
9.4.1 Tag Layout, 329
9.4.2 Prototype and On-Skin Performance, 330
9.4.3 On-Skin Retuning, 332

9.5 Special (Functionalized) Epidermal Membranes, 335
9.5.1 Scaffold Membranes: Poli(ε-Caprolactone), 336
9.5.2 Hydrogel Membranes, 338

9.6 Sensing Applications, 341
9.6.1 Epidermal RF Thermometer, 341
9.6.2 Smart-Plaster for Wound Healing, 342

9.7 Conclusion, 347

References, 348

10 Inkjet-Printed Smart Skins and Wirelessly-Powered Sensors for Wearable Applications 351

John Kimionis and Manos (Emmanouil) M. Tentzeris

10.1 Introduction, 351
10.2 Multilayer Inkjet Printing—Conductors and Dielectrics, 352
10.3 Multilayer Inkjet Printing—Antenna Examples, 354
10.4 Inkjet-Printed Sensors, 356
10.5 Conductive Polymer-Based Sensors, 357
10.6 Carbon Nanomaterial-Based Sensors, 358
10.7 Inkjet-Printed Microfluidics, 360
10.8 Wireless Energy Harvesting for Wearables, 364
10.9 Microwave Receiver Design, 364
10.10 Circuit Fabrication with Inkjet-Printed Masking, 365
10.11 Input Power Estimation and RF-DC Conversion Circuit Design, 366
10.12 RF-DC Conversion Efficiency Measurement and Prototype Operation Tests, 368
10.13 Conclusion, 371

References, 371

11 Circuits and Systems for Wireless Body Area Network 375

Joonsung Bae and Hoi-Jun Yoo

11.1 Introduction, 375
11.2 MBAN System Concept, 377
11.2.1 System Overview, 377
11.2.2 Crystal-Less Sensor Nodes, 379
11.3 Energy-Efficient MBAN Hub Design, 381
11.3.1 Concurrent Dual-Band Operation, 381
11.3.2 Dual-Band Hub Transceiver, 383
14 Power/Data Telemetry Techniques for Implants or Wearable Systems 471

Anil K. RamRakhyani and Gianluca Lazzi

14.1 Introduction, 471
14.2 Powering of Implants and Wearable Systems, 472
 14.2.1 Non-Regenerative Power Sources, 472
 14.2.2 Regenerative Energy Harvesting Devices, 478
14.3 Data Communication to Implants and Wearable Systems, 481
 14.3.1 Low Frequency, 482
 14.3.2 High Frequency, 483
14.4 Discussion, 484
14.5 Design Examples, 485
 14.5.1 Wireless Power and Data for Retinal Prosthesis, 485
 14.5.2 Wireless Sensors for the Body Area Network, 487
14.6 Conclusion, 488

References, 488

Index 493