Index

Note: Page numbers in *italics* represent figures.

“active line access,” 156
Address Resolution Protocol (ARP), 56, 165
“aggregate and backhaul,” of hierarchical network, 45
agreement digest, 119
agreement digest construction procedure, 117–118
requirements, 115
agreement digest field, elements of, 116
alarm inhibit signal, 72
alarm management transactions, 72
all-pairs shortest path computation, 126–127
optimization of, by partitioning and coalescing, 127–129, 128
any-to-any networks, operational model of, 183
area border bridges (ABBs), 101, 172, 173
C-MACs hosted by, 174
and frame duplication, 175
function of, 173
SPBM structures, 177, 177
unary FDB problem at, 176, 176–177
ATM/IP integration, 56
Backbone Core Bridges (BCBs), 104, 133
Backbone Edge Bridges (BEBs), 25, 53, 133
ABB selected by, 175
CEs hosted on, 138
in dual homing, 137
failure, 140–142
and I-SID control plane, 104
and LAG link failure, 140, 141
load spreading at edge, 125
and PIM, 170
service information, 75
Backbone MAC (B-MAC) addresses, 6, 11, 52
and dual-homed UNI, 135, 135–136, 136
“flood and learn” elimination of, 54
loop-free topology based on, 164
multiple granularities of, 13
unicast, 14
visibility of unicast, 70
backhaul network, 39–40
base station controller (BSC), 155
Base VID usage, 9–11
BEBs/Provider edges (PEs), 168–169
BRAS sites, 41
bridged Ethernet emulation, SPBM overlay of, 145
Bridge ID transformation methods, 29
Bridge Priority, 20, 94

© 2012 the Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.
bridge protocol data units (BPDUs), 110
bridging, development of, 2
broadcast
 SPBM operation with, 144, 145
 versus per service multicast, 24, 31
broadcast video distribution, 170
budgeting for resiliency, and metro
 network architecture, 39–40
B-VIDs, 17, 65, 148
 assignment of I-SIDs to, 12, 124
 as data plane separator, 81, 120
 and FDB problem, 177
 role of, 11

candidate multicast trees, exponential
growth of, 102
Carrier Ethernet, “packet transport”
 approaches for, 151
carrier networks, 38, 120
 and ECMP, 159–160
 traditional enterprise distinguished
 from, 44–45
CIST External Root Path Cost, 94
CIST Root Identifier, 94
classical IP over ATM (CLIP), 56
cloud computing, 43, 153
C-MAC addresses, 6, 11, 52, 65
C-MAC learning, 137
C-MAC tandem function, 174
common multicast group address, 67
 complete sequence number packets
 (CSNPs), 87
computation, as replacement for
 multicast signaling, 76, 188
Computed Topology Digest, 34, 35
computed topology digest, constructing,
 117
computing power, rise of, 77, 77
congruency
 and application of ECMP to SPB, 159
 bidirectional, 71
 multicast/unicast, 184
connectivity. See also extended
 connectivity models
 in multiarea deployment, 175
 multiarea point-to-point, 175–178
multipoint
 recovery of, 182
 resiliency for, 51
 virtualization of, 153–154
 connectivity requirements of, 154
connectivity check message (CCM), 72
consolidated service edge model, 40
control plane. See also shortest path
 bridging control plane
IS-IS routing system, 15–16
visual model of SPB information,
 16–17, 17
CSNPs, 88–89
Customer Edge (CE), 134
dual-homed, 135–136
dual-homed using LAGs, 137–139
 single-homed in multipoint LAG
 environment, 140
DA-MAC, 173
datacenter/cloud computing facility, and
 ECMP, 159–160
data center networks, 120
data centers, 43–44, 152–153
 in extended connectivity models,
 180–181
 multipath networks in, 180
 resiliency requirements of, 154
data plane, SPBM, 5, 10–14
destination-based forwarding, 67
Destination MAC Address (DA), and
 multicast forwarding model, 67
Digest Edge Count, 33, 117
Dijkstra computations, 66, 75–77, 129
distributed tie-breaking algorithm,
 28–29, 108
dual homing, 132–134
dual-homed UNI, 13–16, 135, 136
 using LAG emulation, 136–141, 138,
 139, 141
ECT algorithm, 14, 19, 20, 24, 89–90,
 93–97, 130
ECT-ALGORITHM, 19–20
ECT-VID tuples, 20
E-LAN services, 15, 41, 129, 150
E-LINE, 15, 26, 150
encapsulation, advantages of, 12–13
end-to-end load spreading, 49, 49
Enterprise LAN, 1
bandwidth, 37
development, 37
original objective, 37
Equal Cost Multipath (ECMP), 47, 48, 48–49, 120, 158–159, 160
applied to SPB, 163
extending, 180–181
equal cost multiple tree (ECMT) technique, 14, 48–49, 119, 154
ESP count, 161–162
Ethernet
addressing properties of, 61
co nature of
all-pairs computation, 126–127
point-to-point scenarios, 129
connectivity models, 1–4, 2
data plane, 16
destination-based model of, 57
elimination of flooding from, 55
evolution of, xv
“exchanges,” 156
external NNI interfaces, 156, 157
forwarding, 35 (see also forwarding)
fundamental principles of, xiii
hierarchy used by, xv
history, 37
longevity and success of, xi, xiv
OAM, 14 (see also operations, administration, and maintenance procedures)
and PBB, 52–53 (see also Provider Backbone Bridges)
Q-in-Q model, 46
reinterpreting, 36, 62
MAC addresses, 64–69
VLAN, 63–64
scaling properties of, xv, 5, 11, 46–47, 187
shortest path forwarding within, 7
virtualization support in, 4–6, 5
Ethernet bridging, history of, 52–60
Ethernet networking, key requirements of, xi
Ethernet segments, SPBM overlay use of, 147
Ethernet services, connection oriented, 38
Ethernet switching, and data centers, 153
ETH-LB, 72
ETH-LT, 72
E-TREE, 15, 150, 157
I-SIDs for, 25, 99, 99
extended connectivity models
nonplanar graphs, 181–185
spanning trees, 179–181
Extended IP Reachability TLV, 21, 167
fast fault notification, 103–107
fast reroute (FRR), 82, 85
“fat tree” architecture, 121, 122, 131, 180, 181
FDB problem, at SPBM ABBs, 176, 176–177
filtering databases (FDBs), 165, 185
common (unary) model, 176, 176
per-port, 146
“flood and learn” paradigm, 2, 7, 14, 54
Flow Aware Transport Pseudo Wires (FAT PWs), 163
Floyd’s all-pairs algorithm, 76
forwarding, use of SPBM for IP, 165–166
forwarding path, MAC-in-MAC, 4–6
forwarding tables, computation of IP, 24
4G-LTE, requirements of, 155
global addressing, in data plane, xi
global data plane identifiers, xv
global warming, and data center virtualization, 43
GMPLS control plane, 151
Group MAC address, 14
“hold-off” strategy, 105
hop-by-hop flooding in dataplane, 104, 105
hop-by-hop load spreading, 48, 48
hot potato forwarding, 175
“hub and spoke” architecture, 39
I-component, in PBB, 53
I-component Service Instance Identifiers (I-SIDs), 11, 14, 44, 53, 66
aggregating, 100–103, 102
and all-pairs computation, 127
associated with multipoint LAG, 139
attributes, 98–100
for E-TREE structures, 99, 99
IP multicast group associated with, 169
IP-VPN defined by, 167
and multicast connectivity, 24, 79, 168
and nodal MACs, 64–65
in SPB control plane, 75–76
and SPBM multicast address, 67, 182
IEEE 802.1ad, 69, 125, 156, 157
IEEE 802.1ag, 14, 61, 69, 70, 106
IEEE 802.1ah, 52, 67, 169
IEEE 802.1ak, 148
IEEE 802.1ap, 147
IEEE 802.1aq, 1, 9, 29, 59, 161
IEEE 802.1Q, 69, 163
IEEE Y.1731, 70
IETF TRILL/RBRIDGE, 146
in-service upgrade, 130–132
integrated IP unicast/multicast protocol, 169
intercept requirement, legal, 45
Intermediate System to Intermediate System (IS-IS), 7, 14, 163
extensions to, 15, 74, 91
first publication of, 77
Hello packets, IS-IS (IIH), 18, 87
information items for, 16–17, 17
introduction to, 87
and LAN segments, 142, 142
link state routing system, 15–16
and loop avoidance, 30
multiarea deployment supported by, 171
new information items for, 89, 89, 90, 90
for OAM, 71
PDUs, 18
as preferred link state protocol, 75
and service upgrade, 131
shared LAN segments supported by, 142, 142–144
for SPBM port MACs, 65
TLVs for SPB
Base VLAN Identifiers Sub-TLV, 19, 93–94
Digest Sub-TLV, 18–19, 92–93, 116
ECT-ALGORITHM Adjacency Opaque Sub-TLV, 21, 95–96
ECT-ALGORITHM Instance Opaque Sub-TLV, 21, 95–96
Instance Sub-TLV, 20, 94–95
Link Metric Sub-TLV, 21, 96
MCID Sub-TLV, 18, 91–92
Multi-topology Aware Capability (MT-CAP) TLV, 18, 19, 91, 93
SPBV MAC Address Sub-TLV, 22, 97, 171
SPBM Service Identifier and Unicast Address Sub-TLV, 21–22, 96–97, 167
and topology digest construction, 32
internal IP reachabilities, 167
Internet Group Management Protocol (IGMP), 170–171
Internet Protocol (IP), xv
multicast connectivity, 169–171
“next hop,” 166
“shortcuts,” 165, 166
Internet Protocol (IP) addresses
“loopback,” 13
multicast, 171
virtual server instance, 44
VLAN and, 152
Internet Protocol (IP) subnets, virtual network of, 163
Internet service providers (ISPs), metro network, 38–39, 39
IP forwarding, with link state bridging, 164. See also forwarding
IP/MPLS router bypass, 42–43
IP/MPLS service edge, 40
IP routing and switching models, 165–166
IP/SPBM integration, 164–166
Index

IP unicast address learning, 166–167
IP-VPN capability, xiv, 163
IP-VPN models, 167–169
IS-IS network, IP routes throughout, 166
IS-IS-SPB loop prevention mechanism, 113
ITU-T standard (G.8032), 133
ITU-T Y.1731 tools, 72
IVL (Independent VLAN learning) bridge, 58

label swapping. See label switching
label switched path, 79
label switching, 16, 61
LAG. See link aggregation
LAG emulation, dual-homed UNI using, 136–141, 138, 139, 141
LAG link failure, 140, 141
LAN segments
 flood performed by, 145–146
 and frame duplication, 146, 146
 and IS-IS pseudonode, 143–144
 IS-IS support of shared, 142, 142–144
 at Layer 2, xiv, 163
 loop formation on, 144, 144
 multipoint-to-multipoint (mp2mp), 13
 and SPBM I-SID, 163
 use of shared, 144
 virtualizing, 59
layer 3 integration with SPBM, 163–164
 IP multicast, 169–171
 IP/SPBM integration, 164–166
 IP unicast address learning, 166–167
 IP-VPN models, 167–169
leaf-facing port, 115
learning bridges, 1, 60
liberal label retention, 86
link aggregation (LAG), 133
 multipoint, 125, 137
 multipoint endpoints, 139
 in SPBM, 138, 138
“link failure impact” records, 182
link ID transformation, probabilistic nature of, 160
link layer, LAG in, 136–137
link state bridging
 LSP extensions for, 18–22
 TLVs for, 90–98
link state packets (LSPs), 18–22, 165
load spreading,
 assignment of load to trees, 124–125
 equal-cost trees, 119–124, 121, 154
 and extended connectivity models, 181
 “hot-spot free,” 120
 per-hop, 48, 158
load spreading algorithms, research on, 158–163
local area network. See LAN
loop avoidance, 37, 101
 and convergence process, 85
 currently deployed techniques, 109–111
 importance to deliver, 62
 and loop mitigation, 104
 multicast, 80
 in SPB, 30–33, 80, 111–115, 112
 SPB procedure, 113–114
 synchronization mechanisms for, 179
loop formation, on LAN segments, 144, 144
looping
 during control plane reconvergence, 58
 example, 111–112, 112
loop mitigation
 and implications on rapid restoration, 104
 mechanisms, 79–80
 RPFC, 61, 73
loop prevention, with topology digest, 116–118
LSPs
 control plane propagation of, 103–105
 fast-flooded, 105
 function of, 88
MAC forwarding, configuration of, 59
MAC information, summarizing unicast, 172
MAC-in-MAC, xii, 4–5, 149
forwarding path, 187
frame format, and SPBM, 5, 157
MAC (media access control) addresses. See also B-MAC addresses;
C-MAC addresses
and ABBs, 173
flooded, 56
Group, 22
group format, 66–69, 69
meaning of, 64–66
nodal unicast, 17, 90
MAC (media access control) learning,
36, 53, 152
and bridging, 60
role in loop mitigation, 57
MACs (media access control addresses),
2, 4
aging policies for, 179
meaning in virtualized data center, 44
summarization for multiarea multicast,
173
MAN, 83–84
MD5, 34, 117
meshed core network, 45
Metro Ethernet Forum (MEF), 15
connectivity constructs, 150
and OAM extensions, 72
service set, 98
metro network, 38–42, 39
minimum intervention principle, 60
mLDP protocol, 78–79, 79, 85
Moore’s law, 153
MPLS
applying SPBM multicast techniques
to, 86
protocols, 76
switching, 165
MPLS-TP, 151
MPLS/VPLS network model, 46
MPLS/VPLS-PE, 25
MTID, 34
MT Intermediate System TLV, 21
multiarea deployments, 101, 172–175
hierarchical, 171
for SPBM, 171–176, 174
specifics for SPBV, 177, 177–179
unary FDB problem at SPBM ABBs,
176, 176–177
multiarea model, used by SPB, 174,
174–175
multicast addressing model, 67
multicast convergence
behaviors, 82–87, 83
computational, 83–84
multicast distribution tree (MDT), 79,
81
multicast group addresses, nodal
nicknames for, 103
multicast LDP (M-LDP), 78
convergence behavior, 82
multicast paradigm replicated by, 87
P2MP directed trees employed by, 85
multicast OSPF, 76
multicast reconvergence scenario, 83
multicast trees, exponential growth of,
102
multicore designs, coarse-grained
parallelism supported by, 77
Multiple MAC Registration Protocol
(MMRP), 22
multiple spanning tree configuration
identifiers (MCIDs), 18, 91
multipoint resiliency, 51–52
multipoint-to-multipoint tree setup,
signaling to support, 78–79, 79
Multitopology Aware Capability
(MT-CAP) TLV, 18, 19, 91, 93
networking instance identifier, VLAN
as, 64
network regions
characteristics of different, 37
data centers, 43–44
efficiency of, 47–48
service models, 44–46
traffic patterns, 44–46
Next Hop Resolution Protocol (NHRP),
56
nodal MACs, 65–66
node diversity, role in load spreading,
nonplanar graphs
provisioned trees with routed backup, 181–183
topology modification for traffic engineering purposes, 183–185, 184

Ofcom (U.K. regulator), 156
operations, administration, and maintenance (OAM) procedures, xiii, 13, 14
data plane, 71
and ECMP, 49, 163
Ethernet investment in, 187
functionality, 71–72
maintenance level, 70
and network validation, 159
requirements for bridging, 71
SPB, 69–73
organizationally unique identifier (OUI), 62, 66, 67, 93, 96, 116, 173
overlay models, 46

packet environment, axioms of, 42
packet networks, and reengineering of carrier processes, 151
packet traffic, in carrier networks, 38
“parent-child” relationships, mutually agreed view of, 114
path computation
computing forwarding state, 23
exploiting multiple paths, 28–29
per-service-instance routing and forwarding, 24–26
in SPB, 7–9
symmetry and congruence, 26–27
tiebreaking, 27–28, 29
PATHID, 28
path selection, 159–161
payload entropy, embedding, 163
PBT Provider Backbone Transport
minimal intervention paradigm of, 55
as PBB-TE, 54
peer models, 46
per-hop load spreading, 48, 158
per service multicast addresses, 75
per service multicast trees, 8, 24, 31, 75, 100, 171
“plug and play” networking, 1, 37, 185
P2MP multicast trees, 78
Port B-MACs, 14, 26, 66
p2p connections, resiliency for, 51
protocol data units (PDUs), and IS-IS routers, 87

Protocol Independent Multicast (PIM), 52, 76, 87, 170
Provider Backbone Bridges (PBBs), 6, 52–53
deviation from SPB of, 12n
and evolution of Ethernet forwarding path, 10
port-based interface structures from, 54, 54
service identifier field introduced by, 53
and service upgrade, 131
Provider Backbone Bridge–Traffic Engineering (PBB-TE), 6, 40, 43, 54, 67, 151, 182, 183, 184
mode of operation, 55
and role of VLAN, 63
Provider Bridged Backbone Network (PBBN), 6
Provider Bridging, 9
provider core networks, IP/MPLS services, 42–43
Provider Edge node, in metro network, 40
Provider Ethernet toolkit, 59–60
Provider Instance Port (PIP), 64
Provider Link State Bridging (PLSB), xii, 59
Provider VLANs (S-tags), 53
pseudocongruency (fate sharing), 184
pseudonode, in IS-IS for SPB, 142–144
and control plane scaling, 142
PSNPs, 87–89
Q-in-Q, 24, 46, 86, 157
environment, 70
forwarding plane, 59
radio access networks (RANs), 155–156
receiver-initiated join paradigm, in
mLDP protocol, 78
reverse defect indication, 72
reverse path forwarding check (RPFC),
30, 49, 58–59, 107, 111
as loop mitigation mechanism, 61, 73
reliance on, 67
role in overlay of bridged Ethernet
emulation by SPBM, 145
RFC 1112 (IP multicast), 170
ring protocols, limitations of, 42
root port, 114
routed restoration cycle, 105–107, 106
routability and co nature of Ethernet, 126–129
use of SPBM for IP, 166
routing and switching models, 165–166
routing system
connection-oriented, 57
properties of, 50
single touch provisioning using, 23
and SPB control plane, 76
RSVP-TE, “make before break”
procedure of, 86
scalability, xv
 global, 12
 of nodal level addressing, 13
SDH, 38
semiconductor process capability,
increase in, 77
server virtualization, 44, 153
service edge function, in metro network,
40
service-level agreement (SLA), 156
service migration, 130–132
shared segments, 141–142
IS-IS support of shared LAN
segments, 142, 142–144
using SPBM over, 144–148, 145–147
using SPBV over, 148–149
shared VLAN learning (SVL) mode, 10
shortest path bridging (SPB), xi, 87, 188
algorithmic innovations required by,
xiii
applications, xiii–xiv
data center, 152–153
general enterprise, 154–155
MEF services, 150
metro infrastructure, 151–152
multicarrier considerations,
156–157
radio access networks, 155–156
and bridge forwarding tables,
55
development from PBB of, 12
end-to-end load-spreading technique,
49, 50
Ethernet forwarding paradigm adopted
by, 69
and evolution of Ethernet, xv
evolution of perceived role of, 59
functionality of, xiii
history of, xii–xiii
impracticality of aggregating I-SIDs,
100–103, 102
and link state routing, 4
major motivation behind, 45
and minimal intervention, 61–62
modes of operation of, 5
motivation for developing, 37
multiarea model used by, 174,
174–175
path computation in, 7–9
problem space
different network regions, 37
Enterprise LAN, 37–38
metro network, 38–42
spanning tree replacement offered by,
4–5
unicast/multicast congruence required
by, 121
use of term, xii
variants of, xi
shortest path bridging (SPB) control
plane, 36, 74
algorithmic aspects
agreement digest construction
details, 115–118, 119
computational optimizations,
127–129
shortest path bridging (SPB) control plane (cont’d)
 consistent tiebreaking for loop-free forwarding, 107–109, 108
 load spreading, 119–125, 121
 loop avoidance, 109–115, 112
 convergence behaviors, 82–87, 83
 elimination of signaling from multicast tree setup, 76
 function, 74–75
information
 fast fault notification, 103–107
 I-SID attributes, 98–100
 IS-IS, 87–89
 nodal nicknames for multicast group addresses, 103
 TLVs for link state bridging, 90–98
 visual model of, 89, 89–90, 90
multicast mechanisms, 76–81, 79, 81, 82
role of routing system, 75–76
shortest path bridging MAC (SPBM), xii, xiv, 5, 120, 181
 and “all pairs shortest path,” 24
 Base VID usage, 9–11
 B-MAC layer, 70
 bridged Ethernet emulation overlay of, 145
 compared with multicast protocols supporting MPLS, 76
 computational scalability of, 66
 and convergence behaviors, 86–87
 and Customer Ethernet traffic, 11
 data plane, 5, 10–14
 distributed nature of computations, 26
 dual-homed UNI into, 134–136, 135
 and Ethernet forwarding, 35
 Ethernet segments use of, 147
 filtering tables, 57
 forwarding behavior of, 165
 IS-IS information models for, 89, 89, 90, 90
 layer 3 integration with, 163–171
 loop avoidance mechanism, 80
 to manage IP subnets, 156
 and metro networks, 151
multiarea for, 171–176, 174
multipoint link aggregation in, 138, 138
operational model of, 183
optimized SPF calculations, 164
over shared segments, 144–148, 145–147
PBB as antecedent of, 52
PBB forwarding model, 13
and role of VLAN, 63
and service migration, 130–131
technology
 and benefits of symmetry and congruency, 60–61
 configuration of IP subnets, 43–44
 unary FDB problem at ABBs, 176, 176–177
 UNI fault into, 136
 and use of IP TLVs, 166
virtualization capabilities and IP-VPN, 167
shortest path bridging (SPB) technology
control plane
 IS-IS routing system, 15–16
 LSP extensions for link state bridging, 18–22, 91–97
 visual model of control plane information, 16–17, 17, 89, 89, 90, 90
loop avoidance
 SPB approach, 29–32
 topology digest construction in, 33–34
path computation
 computing forwarding state, 23
 exploiting multiple paths, 29
 per-service-instance routing and forwarding, 23–26
 and symmetry and congruence, 26–27
tiebreaking, 27–28, 29
shortest path bridging VID (SPBV), xii–xii, 5, 9
 antecedents for, 6
 data plane, 9, 9–10
 information model for, 90, 90
mesh of broadcast trees, 24
multiarea specifics for, 177, 177–179
new information items for IS-IS for, 90, 90
OAM for, 70
spanning tree algorithm for, 130
and traditional bridging, 185
using over shared segments, 148–149
shortest path first (SPF) metrics, 162
shortest path source ID (SPSourceID), 14, 20, 94, 173
shortest path trees (SPTs), 166
computing, 109
congruence properties, 68, 68–69, 69
generation of minimum-cost, 119
group multicast MAC address for, 66–69, 68, 69
with maximum diversity, 81
minimum cost, 82
root, 114, 129, 171, 174
“SPT set,” 14
shortest path VLAN IDs (SPVIDs), 7, 9–11, 14, 20, 22–24, 29–30, 66, 75, 81, 90, 95, 115, 120, 125–126, 130, 145, 148–149, 177–178, 184
some pairs shortest path technique, 127–129
SONET, 38, 40
Spanning Tree Protocol (STP), 3
absolute symmetry of, 27
and dual homing, 132–133
as Ethernet gold standard, 62
replacement of, xi
spanning trees
as an addition to the SPB toolset, 179–181
bidirectional, 180
computed, 179
construction of, xiv
and data center, 180–181
example of, 2, 3
operation of, 110
salient attributes of, 2, 3
for SPBV, 130
SPB Adjacency Opaque ECT-ALGORITHM Sub-TLV, 95–96
SPB Base VLAN-Identifiers Sub-TLV, 19, 93–94
SPB Digest Sub-TLV, 18–19, 92–93
SPB Instance Opaque ECT-ALGORITHM Sub-TLV, 20, 95–96
SPB Instance Sub-TLV, 20, 94–95
SPB Link Metric Sub-TLV, 21, 96
SPB MCID Sub-TLV, 18, 91–92
SPBM I-SID. See I-component Service Instance Identifiers
SPBM nodes, 14, 31, 164
SPBM port MACs, 65
SPBM Service Identifier and Unicast Address Sub-TLV, 21–22, 96–97, 167
SPBM service instance. See I-component Service Instance Identifiers
SPBV Mac Address Sub-TLV, 22, 97
SPBV network, maintenance for, 70–71
SPBV node, topology change, 30–31
split horizon forwarding, 62
SPSourceID, 17, 20, 94–95, 173
SPT set, 14, 20, 22–24, 27, 93, 97
SPTs, tie-breaking algorithms defined for, 179
stacking, Ethernet, evolution of, 5
S-tags, 9, 46, 53
S-VLAN, as means of service isolation, 46
Switched Ethernet, xi
switching structure, “fat tree,” 121, 122
“tagged overlay” VPN model, 168
“tagged peer” VPN model, 168
TDM transports, traditional, and ring topology, 41
tiebreaking
and application of common transform, 160
and equal-cost paths, 107
importance of consistent, 108
and link loading, 162
time division multiplexing (TDM)
and packet transport, 151
transport technologies, point-to-point (p2p), 38
time-to-live (TTL), as a loop mitigation mechanism, 110–111
time-to-live (TTL) expiry, 79
topologies
 changes in, 85
 generating multiple, 120
Topology Agreement Digest
 elements of, 33
 requirements for, 33
topology digest
 SPB, 119
 sub-TLV for, 18–19, 92–93
 value of, 118
traffic engineering (TE). See also
 Provider Backbone Bridge–Traffic Engineering
 and metro network architecture, 39–40
 modes of operation, 50
 topology modification for, 183–185, 184
 virtual links, 50
transactional tree construction technique, 78–79
transit nodes, and convergence
 behaviors, 82–83
Transparent Connections of Lots of Links (TRILL), 56
transport network technologies, ring
 versus mesh, 41–42
tree construction styles, 80–81, 81, 82
TRILL. See Transparent Connections of Lots of Links
type-length values (TLVs)
 coded parameters, 88
 fields, 18–22
 and IP/SPBM integration, 164
 for link state bridging, 90–98
 old and new styles of encoding IP reachability, 167
 and SPBM, 166
UNI, dual-homed, 13–16, 133–141, 135, 136, 139, 141
unicast forwarding, and routing loops, 30
upgrade, in-service, 130–132
VIDs, PBB-TE forwarding model, 67
VID (virtual LAN [VLAN] identifier), 4
virtualization, xi
 of connectivity, 4–6, 46, 151, 152, 153–154
 of enterprise Ethernet, 35
 in Ethernet networking, 4
 models, 46
 server, 43–44
Virtual LAN (VLAN), xiii. See also
 VLANs
virtual machines (VMs)
 concept of, 153
 placement of, 154
 “virtual node,” 178
virtual private wire service (VPWS), IETF, 150
virtual router redundancy protocol (VRRP), 99
virtual routing instance (VRF), 167
Virtual Switch Instance (VSI)
 at C-MAC layer, 65
 and I-SIDs, 26
VLANs (virtual LANs)
 asymmetric, 6, 99
 duality of, 63–64
 Ethernet’s support of, 14
 limitation as subsetting mechanism, 62, 152
 meaning of in SPBM, 63
 semantics of, 185
 transit nodes determining the intersection of sets of, 75
 unidirectional, 6
VLAN tags, 9
 translation, 9–10
 asymmetric, 62, 64, 177
VPN models
 IP, 167–169
 “tagged overlay,” 169
 “tagged peer,” 168
WAN routers, 155
wireless, “4G,” RAN for, 155
Y.1731, 14, 69–72