CONTENTS

Preface to Third Edition xiii

1 Resistivity 1

1.1 Introduction, 1
1.2 Two-Point Versus Four-Point Probe, 2
 1.2.1 Correction Factors, 8
 1.2.2 Resistivity of Arbitrarily Shaped Samples, 14
 1.2.3 Measurement Circuits, 18
 1.2.4 Measurement Errors and Precautions, 18
1.3 Wafer Mapping, 21
 1.3.1 Double Implant, 21
 1.3.2 Modulated Photoreflectance, 23
 1.3.3 Carrier Illumination (CI), 24
 1.3.4 Optical Densitometry, 25
1.4 Resistivity Profiling, 25
 1.4.1 Differential Hall Effect (DHE), 26
 1.4.2 Spreading Resistance Profiling (SRP), 29
1.5 Contactless Methods, 34
 1.5.1 Eddy Current, 34
1.6 Conductivity Type, 38
1.7 Strengths and Weaknesses, 40

Appendix 1.1 Resistivity as a Function of Doping Density, 41
Appendix 1.2 Intrinsic Carrier Density, 43

References, 44
Problems, 50
Review Questions, 59
2 Carrier and Doping Density

2.1 Introduction, 61
2.2 Capacitance-Voltage (C-V), 61
 2.2.1 Differential Capacitance, 61
 2.2.2 Band Offsets, 68
 2.2.3 Maximum-Minimum MOS-C Capacitance, 71
 2.2.4 Integral Capacitance, 75
 2.2.5 Mercury Probe Contacts, 76
 2.2.6 Electrochemical C–V Profiler (ECV), 77
2.3 Current-Voltage (I-V), 79
 2.3.1 MOSFET Substrate Voltage—Gate Voltage, 79
 2.3.2 MOSFET Threshold Voltage, 81
 2.3.3 Spreading Resistance, 82
2.4 Measurement Errors and Precautions, 82
 2.4.1 Debye Length and Voltage Breakdown, 82
 2.4.2 Series Resistance, 83
 2.4.3 Minority Carriers and Interface Traps, 89
 2.4.4 Diode Edge and Stray Capacitance, 90
 2.4.5 Excess Leakage Current, 91
 2.4.6 Deep Level Dopants/Traps, 91
 2.4.7 Semi-Insulating Substrates, 93
 2.4.8 Instrumental Limitations, 94
2.5 Hall Effect, 94
2.6 Optical Techniques, 97
 2.6.1 Plasma Resonance, 97
 2.6.2 Free Carrier Absorption, 98
 2.6.3 Infrared Spectroscopy, 99
 2.6.4 Photoluminescence (PL), 101
2.7 Secondary Ion Mass Spectrometry (SIMS), 102
2.8 Rutherford Backscattering (RBS), 103
2.9 Lateral Profiling, 104
2.10 Strengths and Weaknesses, 105
Appendix 2.1 Parallel or Series Connection?, 107
Appendix 2.2 Circuit Conversion, 108
References, 109
Problems, 117
Review Questions, 124

3 Contact Resistance and Schottky Barriers

3.1 Introduction, 127
3.2 Metal-Semiconductor Contacts, 128
3.3 Contact Resistance, 131
3.4 Measurement Techniques, 135
 3.4.1 Two-Contact Two-Terminal Method, 135
 3.4.2 Multiple-Contact Two-Terminal Methods, 138
 3.4.3 Four-Terminal Contact Resistance Method, 149
 3.4.4 Six-Terminal Contact Resistance Method, 156
3.4.5 Non-Planar Contacts, 156
3.5 Schottky Barrier Height, 157
 3.5.1 Current-Voltage, 158
 3.5.2 Current—Temperature, 160
 3.5.3 Capacitance-Voltage, 161
 3.5.4 Photocurrent, 162
 3.5.5 Ballistic Electron Emission Microscopy (BEEM), 163
3.6 Comparison of Methods, 163
3.7 Strengths and Weaknesses, 164
 Appendix 3.1 Effect of Parasitic Resistance, 165
 Appendix 3.2 Alloys for Contacts to Semiconductors, 167

References, 168
Problems, 174
Review Questions, 184

4 Series Resistance, Channel Length and Width, and Threshold Voltage 185

4.1 Introduction, 185
4.2 PN Junction Diodes, 185
 4.2.1 Current-Voltage, 185
 4.2.2 Open-Circuit Voltage Decay (OCVD), 188
 4.2.3 Capacitance-Voltage (C–V), 190
4.3 Schottky Barrier Diodes, 190
 4.3.1 Series Resistance, 190
4.4 Solar Cells, 192
 4.4.1 Series Resistance—Multiple Light Intensities, 195
 4.4.2 Series Resistance—Constant Light Intensity, 196
 4.4.3 Shunt Resistance, 197
4.5 Bipolar Junction Transistors, 198
 4.5.1 Emitter Resistance, 200
 4.5.2 Collector Resistance, 202
 4.5.3 Base Resistance, 202
4.6 MOSFETs, 206
 4.6.1 Series Resistance and Channel Length—Current-Voltage, 206
 4.6.2 Channel Length—Capacitance-Voltage, 216
 4.6.3 Channel Width, 218
4.7 MESFETs and MODFETs, 219
4.8 Threshold Voltage, 222
 4.8.1 Linear Extrapolation, 223
 4.8.2 Constant Drain Current, 225
 4.8.3 Sub-threshold Drain Current, 226
 4.8.4 Transconductance, 227
 4.8.5 Transconductance Derivative, 228
 4.8.6 Drain Current Ratio, 228
4.9 Pseudo MOSFET, 230
4.10 Strengths and Weaknesses, 231
 Appendix 4.1 Schottky Diode Current-Voltage Equation, 231

References, 232
5 Defects

5.1 Introduction, 251
5.2 Generation-Recombination Statistics, 253
 5.2.1 A Pictorial View, 253
 5.2.2 A Mathematical Description, 255
5.3 Capacitance Measurements, 258
 5.3.1 Steady-State Measurements, 259
 5.3.2 Transient Measurements, 259
5.4 Current Measurements, 267
5.5 Charge Measurements, 269
5.6 Deep-Level Transient Spectroscopy (DLTS), 270
 5.6.1 Conventional DLTS, 270
 5.6.2 Interface Trapped Charge DLTS, 280
 5.6.3 Optical and Scanning DLTS, 283
 5.6.4 Precautions, 285
5.7 Thermally Stimulated Capacitance and Current, 288
5.8 Positron Annihilation Spectroscopy (PAS), 289
5.9 Strengths and Weaknesses, 292

Appendix 5.1 Activation Energy and Capture Cross-Section, 293
Appendix 5.2 Time Constant Extraction, 294
Appendix 5.3 Si and GaAs Data, 296

References, 301
Problems, 308
Review Questions, 316

6 Oxide and Interface Trapped Charges, Oxide Thickness

6.1 Introduction, 319
6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge, 321
 6.2.1 Capacitance-Voltage Curves, 321
 6.2.2 Flatband Voltage, 327
 6.2.3 Capacitance Measurements, 331
 6.2.4 Fixed Charge, 334
 6.2.5 Gate-Semiconductor Work Function Difference, 335
 6.2.6 Oxide Trapped Charge, 338
 6.2.7 Mobile Charge, 338
6.3 Interface Trapped Charge, 342
 6.3.1 Low Frequency (Quasi-static) Methods, 342
 6.3.2 Conductance, 347
 6.3.3 High Frequency Methods, 350
 6.3.4 Charge Pumping, 352
 6.3.5 MOSFET Sub-threshold Current, 359
 6.3.6 DC-IV, 361
 6.3.7 Other Methods, 363
6.4 Oxide Thickness, 364
 6.4.1 Capacitance-Voltage, 364
 6.4.2 Current-Voltage, 369
 6.4.3 Other Methods, 369
6.5 Strengths and Weaknesses, 369
 Appendix 6.1 Capacitance Measurement Techniques, 371
 Appendix 6.2 Effect of Chuck Capacitance and Leakage Current, 372
References, 374
Problems, 381
Review Questions, 387

7 Carrier Lifetimes 389

7.1 Introduction, 389
7.2 Recombination Lifetime/Surface Recombination Velocity, 390
7.3 Generation Lifetime/Surface Generation Velocity, 394
7.4 Recombination Lifetime—Optical Measurements, 395
 7.4.1 Photoconductance Decay (PCD), 399
 7.4.2 Quasi-Steady-State Photoconductance (QSSPC), 402
 7.4.3 Short-Circuit Current/Open-Circuit Voltage Decay (SCCD/OCVD), 402
 7.4.4 Photoluminescence Decay (PLD), 404
 7.4.5 Surface Photovoltage (SPV), 404
 7.4.6 Steady-State Short-Circuit Current (SSSCC), 411
 7.4.7 Free Carrier Absorption, 413
 7.4.8 Electron Beam Induced Current (EBIC), 416
7.5 Recombination Lifetime—Electrical Measurements, 417
 7.5.1 Diode Current-Voltage, 417
 7.5.2 Reverse Recovery (RR), 420
 7.5.3 Open-Circuit Voltage Decay (OCVD), 422
 7.5.4 Pulsed MOS Capacitor, 424
 7.5.5 Other Techniques, 428
7.6 Generation Lifetime—Electrical Measurements, 429
 7.6.1 Gate-Controlled Diode, 429
 7.6.2 Pulsed MOS Capacitor, 432
7.7 Strengths and Weaknesses, 440
 Appendix 7.1 Optical Excitation, 441
 Appendix 7.2 Electrical Excitation, 444
References, 448
Problems, 458
Review Questions, 464

8 Mobility 465

8.1 Introduction, 465
8.2 Conductivity Mobility, 465
8.3 Hall Effect and Mobility, 466
 8.3.1 Basic Equations for Uniform Layers or Wafers, 466
 8.3.2 Non-uniform Layers, 471
10.2.2 Dark-Field, Phase, and Interference Contrast Microscopy, 568
10.2.3 Confocal Optical Microscopy, 570
10.2.4 Interferometric Microscopy, 572
10.2.5 Defect Etches, 575
10.2.6 Near-Field Optical Microscopy (NFOM), 575
10.3 Ellipsometry, 579
 10.3.1 Theory, 579
 10.3.2 Null Ellipsometry, 581
 10.3.3 Rotating Analyzer Ellipsometry, 582
 10.3.4 Spectroscopic Ellipsometry (SE), 583
 10.3.5 Applications, 584
10.4 Transmission, 585
 10.4.1 Theory, 585
 10.4.2 Instrumentation, 587
 10.4.3 Applications, 590
10.5 Reflection, 592
 10.5.1 Theory, 592
 10.5.2 Applications, 594
 10.5.3 Internal Reflection Infrared Spectroscopy, 598
10.6 Light Scattering, 599
10.7 Modulation Spectroscopy, 600
10.8 Line Width, 601
 10.8.1 Optical-Physical Methods, 601
 10.8.2 Electrical Methods, 603
10.9 Photoluminescence (PL), 604
10.10 Raman Spectroscopy, 608
10.11 Strengths and Weaknesses, 610
 Appendix 10.1 Transmission Equations, 611
 Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors, 613
References, 615
Problems, 621
Review Questions, 626

11 Chemical and Physical Characterization 627
11.1 Introduction, 627
11.2 Electron Beam Techniques, 628
 11.2.1 Scanning Electron Microscopy (SEM), 629
 11.2.2 Auger Electron Spectroscopy (AES), 634
 11.2.3 Electron Microprobe (EMP), 639
 11.2.4 Transmission Electron Microscopy (TEM), 645
 11.2.5 Electron Beam Induced Current (EBIC), 649
 11.2.6 Cathodoluminescence (CL), 651
 11.2.7 Low-Energy, High-Energy Electron Diffraction (LEED), 652
11.3 Ion Beam Techniques, 653
 11.3.1 Secondary Ion Mass Spectrometry (SIMS), 654
 11.3.2 Rutherford Backscattering Spectrometry (RBS), 659
CONTENTS

11.4 X-Ray and Gamma-Ray Techniques, 665
 11.4.1 X-Ray Fluorescence (XRF), 666
 11.4.2 X-Ray Photoelectron Spectroscopy (XPS), 668
 11.4.3 X-Ray Topography (XRT), 671
 11.4.4 Neutron Activation Analysis (NAA), 674

11.5 Strengths and Weaknesses, 676
Appendix 11.1 Selected Features of Some Analytical Techniques, 678

References, 678
Problems, 686
Review Questions, 687

12 Reliability and Failure Analysis 689

12.1 Introduction, 689
12.2 Failure Times and Acceleration Factors, 690
 12.2.1 Failure Times, 690
 12.2.2 Acceleration Factors, 690
12.3 Distribution Functions, 692
12.4 Reliability Concerns, 695
 12.4.1 Electromigration (EM), 695
 12.4.2 Hot Carriers, 701
 12.4.3 Gate Oxide Integrity (GOI), 704
 12.4.4 Negative Bias Temperature Instability (NBTI), 711
 12.4.5 Stress Induced Leakage Current (SILC), 712
 12.4.6 Electrostatic Discharge (ESD), 712
12.5 Failure Analysis Characterization Techniques, 713
 12.5.1 Quiescent Drain Current (I_{DDQ}), 713
 12.5.2 Mechanical Probes, 715
 12.5.3 Emission Microscopy (EMMI), 715
 12.5.4 Fluorescent Microthermography (FMT), 718
 12.5.5 Infrared Thermography (IRT), 718
 12.5.6 Voltage Contrast, 718
 12.5.7 Laser Voltage Probe (LVP), 719
 12.5.8 Liquid Crystals (LC), 720
 12.5.9 Optical Beam Induced Resistance Change (OBIRCH), 721
 12.5.10 Focused Ion Beam (FIB), 723
 12.5.11 Noise, 723
12.6 Strengths and Weaknesses, 726
Appendix 12.1 Gate Currents, 728

References, 730
Problems, 737
Review Questions, 740

Appendix 1 List of Symbols 741

Appendix 2 Abbreviations and Acronyms 749

Index 755