absorption processes 15, 27
see also reactive absorption
acetal formation 451, 457–8
acetic acid
adsorption 125–6
cellulosic bioethanol production 488
extractive fermentation 422
filtration-based separations 331
lignocellulosic biomass 517–18, 520, 522–4
membrane bioreactors 392
nanofiltration 251–3
product separation and purification 20–21
simulated moving-bed chromatography 189
acetone-butanol-ethanol (ABE)
adsorption 104, 129–32, 136–42
biomass conversion processes 26
extractive fermentation 410, 412–16, 420–3, 426–9
pervaporation 283–5
acid gas removal (AGR) 15
acid hydrolysis 330–331, 333, 542
activated alumina 114
activated carbon 112–13, 127–8, 267
adipic acid 455
adsorbent resins 127
adsorption 103–48
activated alumina 114
activated carbon 112–13, 127–8
adsorbent characteristics 422–3
adsorbent selection criteria 110–111
adsorber modeling 123–4
adsorption isotherms 105–9
application in biorefineries 104, 122, 124–35
bio-based adsorbents 115–16, 134
biodiesel purification 135
biofuels 129–32
biopolymers 559–60
breakthrough curves 140–141
1-butanol recovery from ABE 129–32, 136–42
cellulosic bioethanol production 493–4
classification of isotherms 108–9
commercial and new adsorbents 111–16
desorption profiles 138–9
equilibrium isotherms 139–40
ethanol dehydration 133–5
extractive fermentation 410–412, 414, 422–3, 427–9
extrusion of adsorbents 136–8
fermentation inhibitors 125–9
fundamental principles 104–10
heat of adsorption 110
hysteresis loops 109–10
lignocellulosic biomass 518, 521, 525
membrane distillation 301
membrane separation 224–5
metal organic frameworks 116
polymeric resin adsorbents 114–15, 127, 130–133
qualitative comparison 285
regeneration of adsorbents 111, 117–22
research needs and prospects 142–3
silica gel 113, 135
zeolites and molecular sieves 104, 113–14, 128–30, 133–42
see also pressure swing adsorption
adsorption capacity 110–111
affinity-based separation 18–19, 28
see also adsorption; ion exchange; simulated moving bed chromatography
agitated columns 68–9
agitated thin film dryers (ATFD) 563
agricultural biomass
biomass conversion processes 3–4
filtration-based separations 329
membrane bioreactors 385
solid–liquid extraction 358
supercritical fluid extraction 92–3, 96
agro-crops 385
agro-food concentration 306–7
air drying of solids 497–8
air gap membrane distillation (AGMD) 303, 305, 308, 310, 313, 316, 320
algal biomass see microalgae
alginate 267, 268–9, 273
alkaloids 83
alumina 266–7, 272
amino acids 183–5, 247
anaerobic digestion (AD) 490
anaerobic membrane bioreactors 399–402
animal manures 3
anion exchange membranes (AEM) 424–5
anionic resins 127
antibiotics 246
aqueous extraction 541–3
aqueous two-phase solvent (ATPS) 74
arabinitol 6, 12
arabinose 521
asymmetric membranes 281–2, 402
asynchronous port switching 189
autocatalysis 556, 559, 561–4
azeotropic distillation 39, 45–50, 58
azeotropic mixtures
  cellulosic bioethanol production 489, 493–5
  membrane bioreactors 377–8, 396
  membrane distillation 303, 308
  pervaporation 260, 261, 267–81, 286–8
  pressure swing adsorption 503–12
  reactive distillation 440, 446, 449, 455
basket-type extractors 366–7
batch operation mode
  chromatography 167–9, 182
  extractive fermentation 426, 430
  membrane bioreactors 398–9
  reactive absorption 471
  solid–liquid extraction 354, 361, 364–5
BeiHua (BH) packing 42–3
belt-type extractors 366–7
BET isotherm 107, 362
bimodal curves 64–5, 71
bioalcohols
  cellulosic bioethanol production 70–72, 487–501
  extractive fermentation 409–16, 420–423, 426–9
  membrane bioreactors 380–2, 390–397, 403
  pervaporation 259, 267–81, 283–9
  bio-based adsorbents 115–16, 134, 510
  biobutanol 6–7
  biochemical conversion biorefineries see sugar platforms
  biodegradable polymers 555–8, 564–5
biodiesel
  adsorption 135
  biomass conversion processes 12–13
  extractive fermentation 421
  feedstock markets 534–6
  ion exchange 162–4
  liquid-liquid extraction 72–3
  membrane bioreactors 378, 380–381, 382–5, 397–9
  microalgae 533–8
  product separation and purification 22
  reactive absorption 467–8, 470–482
  reactive distillation 449, 452–3
  simulated moving-bed chromatography 196
  supercritical fluid extraction 96
biofuels
  adsorption 129–32
  biomass conversion processes 4, 8
  cellulosic bioethanol production 487–8
  filtration-based separations 329
  membrane bioreactors 377–407
  membrane distillation 317–19
  microalgae 537, 548
  pervaporation 259, 266, 271–81, 282–3, 289
  pressure swing adsorption 510
  reactive absorption 467–8
  solid–liquid extraction 356–7, 371
biogas
  biomass conversion processes 4
  cellulosic bioethanol production 487, 490, 498
  membrane bioreactors 380–381, 385, 399–402
  microalgae 537
  upgrading processes 400, 402, 498
biogas
biohydrogen 403
bio-oil
  biomass conversion processes 8–9
  microalgae 537, 539–50
  product separation and purification 22
  reactive distillation 457
bio-plastics 556–7, 561–4
biopolymers 555–68
adsorption 559–60
Index 571

economic importance and industrial challenges 564–5
electrodialysis 559
future directions 565
lactic acid recovery processes 559–61
market and industrial needs 556–9
process intensification 555–6
reactive distillation 556, 561–4
reactive extraction 560
reverse osmosis 560
separation performance and results 561–4
Biot numbers 88
bipolar membrane electrodialysis (BMED) 424–6, 428
block copolymers 277
Bonotto extractors 368–9
boundary conditions 124, 241
breakthrough curves 140–141
broken plus intact cell model 89
bubble-promoting devices 42–3
n-butanol
adsorption 129–32, 136–42
extractive fermentation 410–412, 414–16, 420–423, 426–9
liquid-liquid extraction 72–3
membrane bioreactors 403
pervaporation 270–281, 283–8
butyl levulinate 455
butyric acid 410, 428–30

caffeine 83
cake filtration 217, 336–46
cake layer formation 224–5
calcium sulfate 410
capital costs
lignocellulosic biomass 525–7
membrane separation 211
reactive absorption 478
carbohydrates 329, 410
carbon-negative biofuels 4
carbon-neutral biofuels 4
carboxylic acids
biomass conversion processes 8
extractive fermentation 409–11, 419, 421–2, 425–6, 428–9
lignocellulosic biomass 517–18, 520, 522
liquid-liquid extraction 73
product separation and purification 17, 20–22
reactive distillation 451–6
Carman–Kozeny equation 337, 388
carotenoids 84, 86–7
catalysis
biomass conversion processes 9–10
ion exchange 161–2
reactive distillation 441–6
see also membrane bioreactors; reactive absorption
catalyst bales 443–4
catalytic distillation trays 442–3
cation exchange membranes (CAM) 424–5
cell wall lyses/disruption 358–9, 539–40, 546
cellulosic bioethanol production 487–501
adsorption on zeolites 493–4
dehydration of ethanol 489, 493–5
distillation processes 490–492, 495–6
drying of solids 497–8
evaporation 495–6
future directions 500
importance and challenges of separation processes 490–8
integration of separation procedures 488–90
liquid-liquid extraction 70–72
liquid-solid separations 496–7
pervaporation and vapor permeation 494–5
pilot and demonstration scale 498–500
process configurations 488–90
upgrading of biogas 498
centrifugal extractors 68–9
centrifugation 490, 541
ceramic membranes
membrane bioreactors 389–90, 398–9
nanofiltration 244, 246
pervaporation 267, 270, 272
process design 213
cheese whey fermentation broth 247
chemical absorption see reactive absorption
chemical adsorption 104–5
chemical conversion biorefineries 11–13
chemical equilibrium (CE) 447–8
chemical vapor deposition (CVD) 270
chitosan 267, 268–9, 273
citric acid 429
cleaning in place (CIP) 389, 394
close boiling mixtures 440
cocurrent depressurization 121
collection efficiency 5
combined heat and power (CHP) 490
combustion processes 6, 8
compatibility of adsorbents 111
composite membranes
membrane bioreactors 402
nanofiltration 242–4
pervaporation 267, 278–82
comprehensive optimization with standing-wave (COSW) 172, 178, 181, 192, 197
concentration polarization
membrane bioreactors 389
membrane distillation 311, 314–16, 322
membrane separation 220–222, 223–4
consolidated bioprocessing (CBP) 319
constant-pressure filtration 337, 339
constant stirred tank reactors (CSTR) 182, 561–4
continuous extractors 361, 366–8
continuous membrane fermentor–separator (CMFS) 320
continuous moving bed (CMB)
chromatography 173–4, 176
continuous operation mode
diafiltration 222–3
membrane bioreactors 398–9
reactive absorption 471
conventional filtration 23
copper recovery 159, 236
countercurrent blowdown 506–8
countercurrent columns 87
countercurrent depressurization 121–2
countercurrent diafiltration 224
countercurrent extraction 354, 361
cross-flow extraction 354, 361
cross-flow filtration 336
cross-flow membrane bioreactors 389, 393, 401–2
cross-flow velocity 216, 218–19
cross-linking 266, 268, 271, 273
crown ethers 397
crystallization 24
cutinase 398–9
cyclodextrins 397
D+R reactive distillation 443
dairy industry 234–5, 247
Damkohler numbers 449
Darcy’s law 238
dead-end filtration 208, 336–9, 340–346, 389
decaffeination 83
dehydration of alcohol/water mixtures
adsorption 133–5
cellulosic bioethanol production 489, 493–5
membrane bioreactors 377–8, 396
membrane distillation 308
pervaporation 261, 267–81, 286–8
pressure swing adsorption 503–12
demineralization of water 157
dense film membranes 281–2
dephlegmators 286–7
desalination 305
desalting electrodialysis 424
detergents 160
detoxification
adsorption 126–7
biomass conversion processes 5
ion exchange 162
lignocellulosic biomass 516, 519–25
product separation and purification 26, 28
dextrose 255–6
diacylglycerols (DAG) 537, 540
diafiltration 206, 222–4
diatomaceous earths 127
diffusive flux 308
direct transesterification (DT) 541, 547
discontinuous diafiltration 222–3
dispersed solids 353
displacement desorption 117
dissociative extraction 67
distillation processes 16, 27, 39–60
application in biorefineries 43–5, 46–9, 54–5
azeotropic distillation 39, 45–50, 58
cellulosic bioethanol production 490–492, 495–6
comparisons of different methods 55–8
equipment and design 41–3
extractive distillation 39, 50–54, 58
extractive fermentation 411
feed material separation 45
future directions 58
industrial challenges 47, 50
mathematical models 55, 58
molecular distillation 16, 39–40, 54–6, 58
ordinary distillation 40–45, 58
product separation and purification 44–5
thermodynamic fundamental 40–41
see also membrane distillation; reactive distillation
distributed valve designs 186
distribution coefficients 63, 71, 73–4
Donnan effect 236
Donnan–Steric partitioning pore model (DSPM) 240
drinking water 159, 234–5
dry washing 162–3
drying of solids 497–8
drying technologies 539, 563
dual solvent extraction 65–7
dumped catalyst packings 442
dusty-gas model (DGM) 306, 308–9
dynamic liquid holdup 445
Index 573

edible oils, fats and waxes 83
electrodialysis (ED) 20–23
biopolymers 559
extractive fermentation 410–411, 413, 424–6, 428–9
lignocellulosic biomass 523, 525
nanofiltration 247
electrodialysis fermentation (EDF) 425, 428–9
emulsification 541
enantioseparation
liquid-liquid extraction 74
simulated moving-bed chromatography 170, 186–7
end-of-pipe product recovery 409
enzyme inhibition 517–18, 524–5
epichlorohydrin 456
equilibrium isotherms 139–40, 504–6
equilibrium limitations 440
equilibrium partition rules 63
equilibrium stage models 450, 469
essential oils 356, 363–5
Esterfip–H biodiesel process 13
esterification
biopolymers 556, 559, 561–4
reactive distillation 451–6, 458
ethanol
adsorption 128, 133–5
cellulosic bioethanol production 70–72, 487–501
dehydration using pressure swing adsorption 503–12
distillation processes 44–54
extractive fermentation 410–411, 415–16
filtration-based separations 329
liquid-liquid extraction 70–72
membrane bioreactors 380–2, 390–397
membrane distillation 301, 307–8, 314–19, 321
membrane separation 207
pervaporation 270, 272–81, 283–8
simulated moving-bed chromatography 192–4
supercritical fluid extraction 90
see also bioalcohols
etherification 451, 456–7
ethyl lactate 454
ethylene dichloride (EDC) 455–6
ethylene glycol (EG) 457–8
evaporation
cellulosic bioethanol production 495–6
lignocellulosic biomass 518–19, 525
exchange capacity 151
exothermicity 440
extended Nernst-Planck equation 240–241
extraction factors 63, 353
extraction yields 84, 86–7
extractive distillation 39, 50–54, 58, 301
extractive fermentation 25–6, 409–37
adsorption 410–412, 414, 422–3, 427–9
application in biorefineries 426–8
economic importance and industrial challenges 428–31
electrodialysis 410–411, 413, 424–6, 428–9
enhanced butanol production 426–7
fundamental principles 412–13
future directions 431
gas stripping 412–16, 427
liquid-liquid extraction 412–14, 419–22, 427
market and industrial needs 410–412
organic acids production 428–9
pervaporation 412–14, 416–19, 427
extrusion of adsorbents 136–8
fast-growing crops 3–4
fatty acid esters 49
fatty acid methyl ester (FAME)
biomass conversion processes 12–13
liquid-liquid extraction 72
membrane bioreactors 380, 382–3, 398
microalgae 541, 545, 547
reactive absorption 470, 474–6, 478–81
feed-and-bleed operation 208
feed-effluent heat exchangers (FEHE) 473, 476–7, 479
feedstock markets 534–6, 548
fermentation
adsorption 103–4, 125–43
filtration-based separations 335
ion exchange 162
lignocellulosic biomass 513–32
liquid-liquid extraction 70–74
membrane bioreactors 378, 381–2, 391–5
membrane distillation 307, 317–20
membrane separation 207
nanofiltration 246–53
pervaporation 259–60, 283–8
product separation and purification 22–3, 25–6, 28
simulated moving-bed chromatography 191–2, 195–6
see also extractive fermentation; simultaneous saccharification and fermentation
fibrous bed bioreactors (FBB) 428
film theory 88, 220–221
filtration-based separations 329–49
  application in biorefineries 339–40
  cake compressibility 342–4
  cake filtration 336–46
  cellulosic bioethanol production 490, 496
design of dead-end filtration process 340–346
downstream fermentation and separations 335
flocculation of hydrolyzates 343–4, 347
fouling 340–342, 343, 345–7
hydrolyzate separations 332–5
lignocellulosic biomass 329–34, 339–40, 345–6
model development 346–8
operating parameters and process variables 334
particle morphology 342–4
particle surface properties and medium liquid 344–5
pressure effects 341, 342
pretreatment 330–334
process flow 330–331
solid–liquid separations in biorefineries 335–6
specific resistance 340–344
first-generation biofuels 4
Fischer–Tropsch (FT) process 9–10, 457
flocculation 519, 525
flow-guided sieve trays 42–4
flux properties
  cellulosic bioethanol production 495
  membrane distillation 308–10, 314–15, 320
  pervaporation 264–5, 268–9, 271–3, 275–80
food industry
  ion exchange 157–8
  microalgae 543
  nanofiltration 234–5
forest wastes 3, 329
formic acid
  lignocellulosic biomass 517–18, 520
  nanofiltration 250, 252
fouling
  adsorption 423
  electrodialysis 425–6
  extractive fermentation 423, 425–6
  filtration-based separations 340–342, 343, 345–7
  membrane bioreactors 389
  membrane distillation 322
  membrane separation 221, 224–5
  nanofiltration 236, 239
  pervaporation 285, 288
  fouling tolerance 68
  fourth-generation biofuels 4
fraction extraction 65–7
free fatty acids (FFA)
  liquid–liquid extraction 72
  membrane bioreactors 384
  microalgae 537–8
  product separation and purification 18
  reactive absorption 470, 471–6, 478, 482
  reactive distillation 452
Freundlich isotherm 105, 108, 388
frictional pressure drop 218
fuel additives 451, 456–7
fuel cells 19, 22–3
fumaric acid 422, 429
fungal dehydration 49
furans 250–252
furfural
  adsorption 125–9
  biomass conversion processes 5
  filtration-based separations 334, 340
  lignocellulosic biomass 516–18, 520, 522–4
  nanofiltration 251
galactoglucomannan (GGM) 214
gas phase isotherms 105–8
gas stripping
  adsorption 117, 130–131
  extractive fermentation 412–16, 427
  membrane bioreactors 388
  qualitative comparison 285
  solvent selectivities and operating conditions 415
gasification processes 9–10
gasoline
  biomass conversion processes 10–11
  cellulosic bioethanol production 489
  membrane bioreactors 379–81
gel-layer formation 236
genetic algorithm (GA) 181
genetic engineering 318
glucose
  adsorption 125–7, 132
  biomass conversion processes 7–8
  lignocellulosic biomass 517–18, 521–3
  simulated moving-bed chromatography 189
glycerol
  biomass conversion processes 7, 12
distillation processes 49
  ion exchange 162–4
  liquid–liquid extraction 72–3
  membrane bioreactors 392
  membrane distillation 317
  microalgae 538
product separation and purification 18
reactive distillation 452, 455–7
simulated moving-bed chromatography 196
graft copolymers 266, 277
green biorefineries 246–7
greenhouse gases (GHG)
  - biomass conversion processes 4
  - membrane distillation 301
microalgae 533
reactive absorption 482
grid-search strategies 181

Hagen–Poiseuille equation 238, 388
heat of adsorption 110
heat reflux-integrated process design 471–3
heat reflux extraction 355, 359
heat transfer 311–12, 314–16, 322
hemicelluloses
  - filtration-based separations 330–332, 334, 345–6
  - hydrolyzate separation and purification 514
  - membrane separation 205, 214, 221–2
  - nanofiltration 250, 252–3
  - product separation and purification 21, 24
heterogeneous catalysis 441–6, 467–8
high-pressure extraction (HPE) 355
Hilderbrant extractors 368, 370
Ho and Zydney model 346–8
hollow-fiber modules
  - extractive fermentation 430
  - membrane bioreactors 390, 402
  - membrane distillation 313–14
  - membrane separation 209–10
  - pervaporation 281, 282–3, 289
homogeneous catalysis 441–6
hot water extraction 330, 333–4
hybrid extraction processes 67
hybrid model 240
hydro distillation 356, 364–5
hydrocarbon milking 543
hydrodynamics 389
hydrogen gas 19, 22–3, 403
hydrolytic enzymes 395–6
hydrothermal liquefaction (HTL) 9
5-hydroxymethyl furfural (HMF)
  - adsorption 125–9
  - biomass conversion processes 5
  - filtration-based separations 334, 340
  - lignocellulosic biomass 516–18, 520, 522–4
3-hydroxypropionic acid (HPA) 7
hydrolyzate conditioning 5
hyperbranched polymers 301
hysteresis loops 109–10

ideal adsorbed solution (IAS) theory 107–8
immersed membrane bioreactors 399, 400–402
immersion-type extractors 361, 368
in situ product recovery 409, 412–13, 430
in situ water recycling 377
inert purge gas stripping 117
inorganic membranes
  - extractive fermentation 417–18
  - pervaporation 266–7, 270, 275–6, 278–81
insulin 186–8, 189–90
integrated lignocellulosic biorefineries (ILCB) 14–15
internally finned monoliths 446
invertase 381
ion exchange 149–65
  - advantages and disadvantages 151
  - application in biorefineries 156–64
  - biodiesel 162–4
  - catalysis 161–2
  - chromatography applications 158–9
  - commercial resins 154–5
  - food industry applications 157–8
  - fundamental principles 151–3
  - future directions 164
  - historical development 150
  - lignocellulosic biomass 162, 522–3, 525
  - market and industrial needs 153
  - membrane bioreactors 377
  - metal recovery 159
  - nitrate removal from water 157
  - operational conditions 150
  - properties of ion exchangers 151–3
  - separation of isotopes or ions 160
  - sorption 149–50
  - total electrolyte removal from water 157
  - water softening 156–7
  - water treatment 159
  - zeolites 160–1
ion exchange chromatography 158–9
ion exchange resins (IER)
  - adsorption 128
  - affinity-based separation 18–19, 28
  - biopolymers 556
  - commercially available 154–5
  - extractive fermentation 422, 429
  - membrane separation 20
  - microalgae 542
  - nanofiltration 247
ion exchange resins (IER) (continued)
  properties 151–3
  reactive distillation 442
ionic liquids (IL)
  distillation processes 52–4
  extractive fermentation 421, 429
  liquid-liquid extraction 71, 75
  membrane distillation 301
  solid–liquid extraction 360
isoelectric point (IEP) 237
isopropyl palmitate 453
isotope separation 160
itaconic acid 7, 17

jatropha 535

k values 342
Katapak structured catalyst packings 443–5
kinetic selectivity 111
knowledge-driven design 172–3, 191–2
Knudsen numbers 309–10, 314–15, 320
Kozeny–Carman equation 337, 388
kraft black liquor 207, 214, 248–50
Kubota’s submerged anaerobic membrane bioreactors 400–401

lactic acid
  autocatalytic esterification 556, 559, 561–4
  biomass conversion processes 8
  biopolymers 555–68
  economic importance and industrial challenges 564–5
  extractive fermentation 422, 425
  future directions 565
  liquid-liquid extraction 73
  membrane distillation 317
  nanofiltration 247
  product separation and purification 17, 20, 22
  reactive distillation 453–4
  recovery processes 559–61
  separation performance and results 561–4
  simulated moving-bed chromatography 195–6
landfill 410
Langmuir isotherms
  adsorption 105–6, 140
  membrane bioreactors 388
  simulated moving-bed chromatography 173, 177
  solid–liquid extraction 362
lanthane compounds 306
leaching see solid–liquid extraction
leather industry 235
levulinic acid 11–12, 517–18, 520, 522
lignin
  cellulose bioethanol production 496
  filtration-based separations 330–332, 334, 339–40
  hydrolyzate separation and purification 514, 523
  membrane separation 205, 207, 214, 221
  nanofiltration 249–50, 252–3
  product separation and purification 21–2, 24
  solid–liquid extraction 359
lignocellulosic biomass
  adsorption 103, 124–9, 521, 525
  biomass conversion processes 3–4, 5–6, 8 challenges posed by biomass degradation products 518–19
  co-products 526
  costs of slow enzymes and fermentations 525–6
  detoxification 516, 519–25
  economic importance and industrial challenges 525–7
electrodialysis 523, 525
enzyme inhibition and detoxification 517–18, 524–5
evaporation and flashing 518–19, 525
filtration-based separations 329–34, 339–40, 345–6
hydrolysis of biomass 513–14
hydrolyzate separation and purification 513–32
ion exchange 162, 522–3, 525
liquid-liquid extraction 522, 525
market and industrial needs 516–17
material consumption 526
membrane bioreactors 378, 382, 395
membrane distillation 301, 320
membrane separation 205–6, 214, 221–2
microbial accommodation of inhibitors 524
microbial inhibition and detoxification 516–18, 523–5
nanofiltration 247–54
operation variables and conditions 517–19
pervaporation 259
pH effects 514–15, 519–21, 525
polymer-induced flocculation 523, 525
potential biological inhibitors 515–16
pressure swing adsorption 510
pretreatment of biomass 514–15, 517–18
process complexity 527
quantification of microbial inhibitors 518
separation performance and results 524–5
simulated moving-bed chromatography 191
solid–liquid extraction 359, 363
sugar platforms 513–14
supercritical fluid extraction 80–81, 91–2
waste reduction 527
wood degradation products 515–16
see also cellulosic bioethanol production
lignosulfites 207, 222, 252–3, 255
linear driving force model 89
lipases 383–4, 397
lipid extraction 49, 90–91, 540–541
lipid refinement 546
liquid entry pressure (LEP) 312–13
liquid–liquid extraction (LLE) 16–17, 61–78
adsorption 130–1
application in biorefineries 70–75
biodiesel 72–3
carboxylic acids 73
cellulosic bioethanol production 70–72
criteria for equipment 67–8
design categories 65–7
equipment 67–70
extractive fermentation 25–6, 412–14, 419–22, 427
extractor types 68–70
fundamental principles 62–5
future directions 74–5
industrial challenges 75
lignocellulosic biomass 518, 522, 525
literature review and recent developments 61–2
phase diagrams 63–5, 71
qualitative comparison 285
solvent performance and toxicity 419–20
see also perstraction
liquid–liquid equilibrium (LLE) 446–7
liquid membranes 417, 418
liquid phase isotherms 105–8
liquid phase water adsorption 134–5
liquid solvent extractive distillation 50, 51–2, 54
long-chain aliphatic amines 421–2
long-chain fatty acid esterification 453
low-temperature drying of solids 497–8
macleration 356
maleic acid 17
mannose 517–18, 522
mass transfer
membrane distillation 308–10, 319, 322
pervaporation 261–2
reactive distillation 450–451
simulated moving-bed technology 176–7, 182
solid–liquid extraction 352–3, 361–2
mass transfer coefficients 219
mass transfer resistance 111
mass transfer zones (MTZ) 119
membrane adsorption 125
membrane-assisted extraction (MAE) 26
membrane bioreactors 377–407
bioalcohol production 380–2, 390–397, 403
biodiesel production 378, 380–381, 382–5, 397–9
biofuel production 377–407
biogas production 380–1, 385, 399–402
biological systems 381–5
cell retention and ethanol removal 391, 392–5
downstream pervaporation 391–2, 396–7
fundamental principles 381–90
future directions 403–4
integration opportunities 378–9
market and industry needs 379–81
module integration 390, 400–402
modules and reactor operations 389–90
pore-flow and solution-diffusion models 387–8
transport in membrane systems 386–9
upstream saccharification 391, 395–6
membrane distillation 301–25
advantages and disadvantages 302
air gap membrane distillation 303, 305, 308, 310, 313, 316, 320
application in biorefineries 301, 315–17
characteristics 302
concentration of agro-food solutions 306–7
concentration of organic and biological solutions 307–8
concentration polarization 311, 314–16, 322
design and simulation 313–15
economic importance and industrial challenges 317–19
electrical circuit analogues 309–10
fundamental principles 308–13
future directions 321–2
heat transfer 311–12, 314–16, 322
liquid entry pressure 312–13
market and industrial needs 304–8
mass transfer 308–10, 319, 322
membrane configurations 313–14
qualitative comparison 319–21
simplified transport equations 310
sweeping gas membrane distillation 303–4, 305, 310
vacuum membrane distillation 301, 304–5, 307–8, 310, 315, 320
wastewater treatment 306
water purification 305
membrane pervaporation see pervaporation
membrane separation
application in biorefineries 206–7
membrane separation (continued)
  biomass conversion processes 20–23, 25, 28
  concentration of feed solution 216, 220
  concentration polarization and critical flux 220–222, 223–5
  cross-flow velocity 216, 218–19
  design and operation of membrane plants 210
  diafiltration 206, 222–4
  economic considerations 210–212
  flux during concentration 213
  fouling and cleaning 221, 224–6
  future directions 226
  membrane characteristics and selection 209, 212
  microalgae 543–4
  microfiltration 20, 205–22, 224–6
  module integration 209–10
  multistage membrane plants 208–9
  operating parameters 216–22
  plant design 207–10
  pretreatment 225
  process design 213–15
  process schematic 206
  recovery and purity 214–15
  retention characteristics 213–14
  single-stage membrane plants 208
  temperature 216, 219–20
  transmembrane pressure 216, 217–20
  ultrafiltration 20, 28, 129–30, 205–22, 224–6
  see also membrane bioreactors; membrane distillation; nanofiltration
  metal organic frameworks (MOF) 116, 143
  metal recovery
    ion exchange 159
    membrane distillation 306
    nanofiltration 234–5
  methanogens 385
  methanol 162–4
  methanol-to-gasoline (MTG) process 10–11
  methyl lactate (MLA) 561–4
  methyl tert-butyl ether (MTBE) 451, 456–7
  methyl diethanolamine (MDEA) 15
  methyl succinic acid 7
  microalgae 533–55
    algae oil extraction process 539–50
    algae products 537
    aqueous extraction 541–3
    biodiesel markets 536–7
    biomass conversion processes 3
    byproduct recovery 548
    cell wall lyses/disruption 539–40, 546
    combined aqueous and organic phases 543–4
  drying technologies 539
  economic importance and industrial challenges 548–9
  emerging technologies 545–6
  feedstock markets 534–6, 548
  future directions 549–50
  harvesting and isolation 539
  lipid refinement 546
  market and industrial needs 534–8
  membrane bioreactors 403
  photosynthetic limit 535–6
  product separation and purification 21
  saltwater systems 549
  separation performance and results 546–7
  solvent extraction 541–5, 546, 549
  solventless extraction 545
  supercritical fluid extraction 81, 84, 86–7, 92–5, 540, 542–3, 547
  microbial accommodation of inhibitors 524
  microbial inhibition 516–18, 523–5
  microfiltration 20, 205–22
    application in biorefineries 206
    economic considerations 210–212
    fouling and cleaning 221, 224–6
    membrane bioreactors 377, 387, 391–2, 396, 399
    operating parameters 216–22
    pervaporation 288
    plant design 207–10
    process design 213–15
  microwave-assisted extraction (MAE) 355, 356
  minimum selling price (MSP) 488
  mining industry 234–5
  mixed matrix membranes (MMM) 267, 273, 279, 281, 289
  molecular distillation (MD) 16, 39–40, 54–6, 58
  molecular sieves 113–14, 133–4
  molecular weight cutoff (MWCO) 387, 395, 397–8
  monoacylglycerols (MAG) 537, 540
  Monod model 382
  mono-ethanolamine (MEA) 469
  monosaccharides 236–7, 251–2
  Monte Carlo simulation 181
  multichannel monolith modules 390
  multiple downcomer (MD) trays 41–2, 44
  multistage membrane plants 208–9
  municipal solid waste 3
  nanofiltration 205–6, 233–58
    application in biorefineries 246–56
    biomass conversion processes 242
    charge characteristics of membranes 242
commercially available membranes 245–6
definitions and characteristics 233–4
design and simulation 238–41
dextrose syrup purification 255–6
extinction of natural raw materials 253–4
filtration parameters 237
fundamental principles 236–7
future directions and challenges 256
hydrophilic and hydrophobic characteristics of membranes 242
industrial applications 234–5, 254–6
inorganic component retention 240–241
kraft black liquor 248–50
market and industrial needs 235–6
membrane bioreactors 377, 387
membrane materials and properties 241–5
monosaccharides purification 251–2
organic component retention 239–40
pre-extraction liquors and hydrolyzates 250–251
pressure and flux 236
pulp and paper mills 247–53
recovery and purification of monomeric acids 246–7
retention and fractionation 236–7
sodium hydroxide recovery and purification 254
solute retention 238–41
structure of nanofiltration membranes 242–5
sulfite pulp mill liquors 252–3, 255
viscose production 254
water permeation 238
xylose recovery and purification 254–5
natural gas 379–81
negative retention 236
Nernst–Planck equation 240–241
nitrate removal from water 157
nitrogen oxides (NOx) 482
number/height of transfer units (NTU/HTU) 469
Nusselt numbers 312–13
octanoic acid 237
oily plants 3–4
oligosaccharides 253–4
operating costs
  lignocellulosic biomass 525–7
  membrane separation 211–12
  reactive absorption 478
organic solvent nanofiltration (OSN) 246
organic–inorganic hybrid membranes 266–7, 270–271, 273, 279
osmotic pressure model 217
overliming 519–20
oxalic acid purification 20
packed columns 69, 136–8
penetration theory 88–9
percolation 353, 361
permeability 239, 262, 264–5, 387
perstraction
  extractive fermentation 412, 419, 427
  membrane distillation 319
  qualitative comparison 285
pervaporation 259–99
adsorption 130–131
application in biorefineries 261, 283–8
bioalcohol dehydration 267–81
biofuel recovery 271–81
biomass conversion processes 23
cellulosic bioethanol production 494–5
commercially available membranes 283–4
design principles for membranes 265–83
extractive fermentation 412–14, 416–19, 427
fundamental principles 261–5
future directions 288–9
hybrid systems 285–9
market and industrial needs 260–261
membrane bioreactors 378, 386–8, 391–2, 396–7
membrane materials and selection 266–81
membrane morphology 281–3
membrane performance characteristics 417
performance evaluation 264–5, 271–81
physicochemical properties of fermentation broth components 260
process design 283–5
qualitative comparison 285, 319
transport mechanisms 261–4
pesticides 236–7
petrochemical industry 169–70
pH effects
  filtration–based separations 330–334
  lignocellulosic biomass 514–15, 519–21, 525
  nanofiltration 237, 245–6, 249
pharmaceuticals 234–5, 365
phase equilibria simulations 446–7
phase splitting 473
phenols 520–521
phenylalanine 183–5
phospholipids 546
photosynthetic limit 535–6
physical absorption 15
physical adsorption 104–5, 468
phytochemicals 17–18
pinched-wave analysis 177–8, 187
Ping Pong Bi Bi mechanism 384
plate-and-frame modules 209–10, 313–14, 390
Poiseuille flow 314, 388
polyacrylic acid (PAA) 267, 270
polyacrylonitrile (PAN) 261, 267, 270–271
polyamide (PA) 242–4, 272–3, 282
poly(dimethylsiloxane) (PDMS) 272–81, 283, 289, 416–19
polyethylene glycol (PEG) 397
polyimide (PI) 267, 269–70, 282
poly(l-1-trimethylsilyl-1-propyne) (PTMSP) 274–5, 277, 281, 418
polyunsaturated fatty acids (PUFA) 543
poly(vinyl alcohol) (PVA) 242, 244, 261, 267–8, 288
polypropylene (PP) 275, 317
polysaccharides
  lignocellulosic biomass 518
  membrane bioreactors 382, 391
  nanofiltration 236–7
polytetrafluoroethylene (PTFE) 275, 315–16
poly(propylene glycol) (PPG) 420
polypropylene (PG) 457–8
pseudolinear standing-wave analysis 178
radionuclide separation 160
random catalyst packings 442
Raschig ring dumped packings 442
rate-based models 450–1, 469
reaction-enhanced extraction 67
reaction–LLE systems 25–6
reactive absorption 467–84
biodiesel production 467–8, 470–482
biomass conversion processes 15, 27
controller tuning parameters 480
dynamics and plantwide control 478–81
economic importance and challenges 481–2
energy requirements 471–2
fatty ester synthesis 471–6, 478
fundamental principles 468–9
future directions 482
heat-integrated process design 471–3
market and industrial needs 468
mass balance and design parameters 474–5
modeling, design and simulation 469–70, 481
problem statement 471
process intensification 467–8
process intensification 24–7
biopolymers 555–6
membrane bioreactors 404
reactive absorption 467–8
reactive distillation 439
production capacity 67–8
1,3-propanediol 7–8, 73–4
propionic acid 429
propylene glycol (PG) 457–8
pore blocking 224–5
Pore diffusion model 182
pore-flow models 262, 263–4, 387–8
Prandtl numbers 312
precipitation 411
precipitation and crystallization 24
pre-hydrolysis liquor (PHL) 24
pressure equalization (PE) 122
pressure swing adsorption (PSA) 104, 503–12
adsorbent regeneration 117–18, 120–122
adsorption equilibrium and kinetics 504–6
biomass conversion processes 19
dehydration of ethanol 503–12
economic importance and industrial
  challenges 510–11
ethanol PSA process cycle 506–10
fundamental principles 506
future directions 510–11
historical development 503–4
performance and energy needs 507–10
process integration 511
production capacities 509
two-bed cycle steps 506–9
pressure-swing distillation (PSD) 46–9
process intensification 467–8
production capacity 67–8
1,3-propanediol 7–8, 73–4
propionic acid 429
propylene glycol (PG) 457–8
pseudolinear standing-wave analysis 178
pulp and paper mills
  filtration-based separations 329
  membrane separation 206, 221–2
  nanofiltration 234–5, 247–53
  product separation and purification 21–2
pure water flux (PWF) 216–17, 226
pyrolysis 8–9
radionuclide separation 160
random catalyst packings 442
Raschig ring dumped packings 442
rate-based models 450–1, 469
reaction-enhanced extraction 67
reaction kinetics simulations 447–8
reaction–LLE systems 25–6
reactive–separation systems 24–7
  biomass conversion processes 25
elective fermentation 409–37
membrane bioreactors for biofuel
  production 377–407
membrane distillation 318
reactive absorption 15, 27, 467–84
reactive distillation 27, 439–65, 556, 561–4
reactive extraction 560
reactive absorption 467–84
biodiesel production 467–8, 470–482
biomass conversion processes 15, 27
cost controller tuning parameters 480
dynamics and plantwide control 478–81
economic importance and challenges 481–2
energy requirements 471–2
fatty ester synthesis 471–6, 478
fundamental principles 468–9
future directions 482
heat-integrated process design 471–3
market and industrial needs 468
mass balance and design parameters 474–5
modeling, design and simulation 469–70, 481
problem statement 471
process intensification 467–8
radionuclide separation 160
random catalyst packings 442
Raschig ring dumped packings 442
rate-based models 450–1, 469
reaction-enhanced extraction 67
reaction kinetics simulations 447–8
reaction–LLE systems 25–6
reactive–separation systems 24–7
  biomass conversion processes 25
elective fermentation 409–37
membrane bioreactors for biofuel
  production 377–407
membrane distillation 318
reactive absorption 15, 27, 467–84
reactive distillation 27, 439–65, 556, 561–4
reactive extraction 560
reactive absorption 467–84
biodiesel production 467–8, 470–482
biomass conversion processes 15, 27
cost controller tuning parameters 480
dynamics and plantwide control 478–81
economic importance and challenges 481–2
energy requirements 471–2
fatty ester synthesis 471–6, 478
fundamental principles 468–9
future directions 482
heat-integrated process design 471–3
market and industrial needs 468
mass balance and design parameters 474–5
modeling, design and simulation 469–70, 481
problem statement 471
process intensification 467–8
property model and kinetics 473–4
quantitative comparison 467–8, 477–8
residue curves map and ternary diagram 473–4
sensitivity analysis 476–8
steady-state simulation results 474–6
reactive azeotropes 449
reactive distillation 27, 439–65
acetal formation 451, 457–8
application in biorefineries 451–8
biodiesel production 452–3
biopolymers 556, 561–4
catalyst bales 443–4
catalytic distillation trays 442–3
column internals 441–6
commercial processes 458
design of reactive distillation systems 450–451
equilibrium stage models 450
esterification and transesterification 451–6, 458
etherification 451, 456–7
fundamental principles 439–40
glycerol esterification 455–6
homogeneous and heterogeneous catalysis 441–6
internally finned monoliths 446
lactate esterification 453–4
limitations and disadvantages 440–441
long-chain fatty acid esterification 453
motives for application 440
phase equilibria 446–7
process intensification 439
quantitative comparison 467–8, 477–8
random or dumped catalyst packings 442
rate-based models 450–451
reaction kinetics 447–8
reactive properties 440
residue curve maps 448–9
separating properties 440
short-chain organic acid esterification 454–5
simulation of reactive distillation systems 446–51
structured catalyst packings 443–5
thermochemical conversion pathways 457
reactive extraction 560
reciprocating-plate columns 69
recovery-dehydration pervaporation 286–8
Rectisol process 15
refined oils, fats and waxes 83
reflection coefficients 239
reflection curves 239–40
reflux extraction 355, 359
regeneration of adsorbents 111, 117–22
repressurization 122
residue curve maps (RCM) 448–9
residue curves maps 473–4
resistance-in-series model 217
response surface methodology (RSM) 357
reverse osmosis
biopolymers 560
membrane bioreactors 377, 386–7
membrane distillation 305–7, 321
membrane separation 205–6
pervaporation 262
reverse osmosis membranes 22
reversed micelles 397–9
Reynolds numbers 123–4, 219, 312
ring simulated moving-bed (SMB) chromatography 189
rotary extractors 367–8
rotary-impeller columns 69
rotary valves 186
rotating-disk columns 69
rotating and vibrating modules 209–10
saccharification 5, 488
see also simultaneous saccharification and fermentation
scale up
cellulosic bioethanol production 498–500
liquid-liquid extraction 68
membrane bioreactors 397
membrane distillation 321–2
solid–liquid extraction 363
Schmidt numbers 219
second-generation biofuels 4
selectivity
adsorption 111
cellulosic bioethanol production 495
extractive fermentation 417
membrane distillation 314–15
pervaporation 264–5, 268–70, 285, 417
reactive distillation 440
Selexol process 15
sensitivity analysis 476–8
separating agents 45–6, 50–54
separation factors 63, 264–5, 268–9, 271–3, 275–80
sequential hydrolysis and fermentation (SHF) 381–2
Sherwood numbers 219
short-chain organic acid esterification 454–5
shrinking core model 89
sieve plate columns 69
silica gel 113, 135
silica-based membranes 266–7, 272, 275–6, 278–9
simulated annealing and genetic algorithm (SAGA) 181
simulated annealing (SA) 181
simulated moving-bed reactors (SMBR) 190
simulated moving-bed (SMB) chromatography 19, 167–202
advanced operations 188–90
advantages 169
application in biorefineries 169–70, 191–7
batch chromatography 167–9, 182
chromatographic simulation 172–3, 181–5, 197
commercial manufacturers 190–191
comprehensive optimization with standing-wave 172, 178, 181, 192, 197
design and optimization for multicomponent separation 173–81
design principles and tools 171–3
disadvantages 171
equipment 184–8
fundamental principles 167–9
future directions 197
glycerol by-product from biodiesel processing 196
historical development 167, 169–70
knowledge-driven design 172–3, 191–2
lactic acid purification in fermentation broth 195–6
linear, ideal systems 175–6
linear, nonideal systems 176–8
nonlinear systems 189
pinched-wave analysis 177–8
pseudolinear standing-wave analysis 178
simulated moving bed reactors 190
splitting strategies 178–80
standing-wave analysis 172–8, 193–5, 197
sugar hydrolyzate and sulfuric acid separations 192
sugar isolation from dilute-acid hydrolyzate 193–5
tandem and ring schemes 189–90
simultaneous enzymatic hydrolysis and fermentation (SHF) 488–90, 496–7, 499
simultaneous saccharification and fermentation (SSF)
cellulosic bioethanol production 488–91, 495–7, 499
filtration-based separations 335
membrane bioreactors 382, 391, 395–6
membrane distillation 320
single solvent fraction extraction 67
single-stage membrane plants 208
size exclusion chromatography (SEC) 186–8
slant-hole trays 41–2
sliding-cell extractors 367
slip-stream product recovery 409
soap removal 162–4
sodium alginate 267, 268–9, 273
sodium hydroxide 254
solid salt extractive distillation 50–52, 54
solid–liquid extraction (SLE) 23–4, 351–74
application in biorefineries 351–2, 368, 371
design and modeling of SLE process 357–63
economic importance and industrial challenges 371
equipment and operational setup 360–361
extraction mode 353–4, 361, 364–8
extraction techniques 355, 359–60
fundamental principles 352–5
industrial extractors 363–8
market and industrial needs 368
multistage countercurrent flow 354, 361
multistage crosscurrent flow 354, 361
pretreatment of raw materials 357–9
process modeling 361–3
scale up 363
single-stage, batch mode 354, 361, 364–5
specialty chemicals 365, 368
state-of-the-art technology 356–7
solubility parameters 263
solution-diffusion models 262–3, 387–8
solvent extraction
extractive fermentation 411
microalgae 540–545, 546, 549
pervaporation 261
solid–liquid extraction 355, 359
see also liquid-liquid extraction
solvent recovery and recycling 84
solvent-resistant membranes 244
solventless extraction 545
sonication 543
sorbitol 12
sorption 149–50
Soxhlet extraction 364–5, 540
soybean oil 534–5
specific resistance 340–344
spent sulfite liquors 207, 222, 252–3, 255
spiral-wound modules 209–10, 313–14, 390, 402
spray columns 69
standard extraction 65–6
standing-wave analysis (SWA) 172–8, 193–5, 197
starch-based adsorbents 115–16, 134
starchy biomass
biomass conversion processes 3–4
cellulosic bioethanol production 487–8
hydrolyzate separation and purification 513–14
supercritical fluid extraction 80, 90
static extraction columns 68–9
static liquid holdup 445
steam distillation 16, 356, 364–5
steam explosion 333, 518
steam-stripping distillation 130–131, 423
stirred ceramic membrane reactors (SCMR) 319
strong acid cation resins 154–5
strong base anion resins 155
structured catalyst packings 443–5
submerged membrane bioreactors 399, 400–402
succinic acid 7, 17, 73, 455
sugar permeation 395–6
sugar platforms 4–8, 513–14
sugar-rich biomass
  biomass conversion processes 3
  cellulosic bioethanol production 487–8
  hydrolyzate separation and purification 513–14
  membrane distillation 317, 321
  nanofiltration 251
  supercritical fluid extraction 80, 90
sugar separations 170, 192–5
sulfite pulp mill liquors 252–3, 255
sulfuric acid 189, 192
sunflower seeds 92–3
supercritical fluid extraction (SFE) 17–18, 79–100
  agricultural wastes 92–3, 96
  application in biorefineries 89–93
  economic importance 93–6
  film theory 88
  future directions 96
  industrial challenges 93–6
  lignocellulosic biomass 80–81, 91–2
  liquid-liquid extraction 74–5
  market and industrial needs 83–5
  microalgae 81, 84, 86–7, 92–5, 540, 542–3, 547
  penetration theory 88–9
  principles and properties of supercritical fluids 81–2
  process design and modeling 79–80, 84–9
  raw materials 80–81, 90–93
  solid samples 83–4, 86
  solid–liquid extraction 355
  sugar/starch-based biomass 80, 90
  vegetable oil 80, 90–91
  superheated steam drying of solids 498
supervisory control and data acquisition (SCADA) 561
supported liquid membranes 417, 418
surface-active impurities 67
sweeping gas membrane distillation (SGMD) 303–4, 305, 310
syngas 9–10, 12
synthetic diesel 9–10

T-x-y phase diagrams 47
tandem simulated moving-bed (SMB)
  chromatography 189–90
tartaric acid 73
tea bag packings 443
temperature polarization 311–12, 314–16, 322
temperature swing adsorption (TSA) 104, 110, 117–20, 142–3, 504
ternary diagrams 473–4
textile industry 235
thermochemical biorefineries 8–11
thermochemical conversion pathways 457
third-generation biofuels 4
three-bed temperature swing adsorption 119
three-phase centrifugation 542
total dissolved solids (TDS) 248–9
total electrolyte removal from water 157
transesterification
  membrane bioreactors 378, 382–4, 398
  microalgae 537–8, 541, 547
  reactive distillation 451–2
  supercritical fluid extraction 90–91, 96
transition metal catalysis 9–10
transmembrane pressure (TMP) 216, 217–20, 238, 399
triacetin 455–6
triacylglycerols (TAG) 537, 540, 547
triangle phase diagrams 63–5
triglycerides
  adsorption 135
  membrane bioreactors 383–4, 397, 403
  microalgae 537, 542, 547
  reactive distillation 452
  simulated moving-bed chromatography 196
trimethoxynilsilane (TMVS) 273
triostylamine (TOA) 418
trioctylphosphine oxide (TOPO) 522, 526
tryptophan 183–5
tubular membrane modules 313–14
tubular modules 209–10
two-bed ethanol PSA cycle 506–9
two-bed temperature swing adsorption 119
ultrafiltration 205–22
  adsorption 129–30
  application in biorefineries 206–7
  biomass conversion processes 20, 28
  economic considerations 210–212
  fouling and cleaning 221, 224–6
  membrane bioreactors 377, 387, 391–3, 395–9
  operating parameters 216–22
  pervaporation 288
  plant design 207–10
  process design 213–15
  qualitative comparison 321
ultrasonic-assisted extraction (UAE) 355, 356, 358–9
uranium recovery 159
utilities processes 6

vacuum membrane distillation (VMD) 301, 304–5, 307–8, 310, 315, 320
van der Waals’ adsorption 104
vanillic acid 520
vapor permeation 494–5
vapor-phase water adsorption 133–4
vapor–liquid equilibrium (VLE) 446–8
variable-rate filtration 337
vegetable oils
  feedstock markets 534–5, 537
  ion exchange 163–4
  membrane bioreactors 384–5
  solid–liquid extraction 356–7, 363
  supercritical fluid extraction 80, 90–91
versatile reaction and separation (VERSE) simulations 172–3, 182–5, 197
vertical column extractors 368–9
Vessel dispersion numbers 123–4
viscose production 254
viscous flux 308, 315, 320
vitamins 543
volatile fatty acids 385
volumetric efficiency 67
VSMB simulations 172–3, 186–7, 195, 197

waste cooking oil
  biomass conversion processes 3
  feedstock markets 534–5, 538
  ion exchange 163–4
  membrane bioreactors 384–5
  reactive absorption 470–471
  supercritical fluid extraction 80, 90–91
wastewater treatment
  biomass conversion processes 5
  ion exchange 152, 160–161
  liquid-liquid extraction 73
  membrane bioreactors 400–402
  membrane distillation 306
  membrane separation 206–7
water purification
  membrane distillation 305
  membrane separation 205–6
  nanofiltration 243–4
  pervaporation 261
water softening 156–7
water-splitting electrodialysis 424
weak acid cation resins 154
weak base anion resins 155
winterization 546

x–y phase diagrams 46
xylan 251, 253–4, 331
xylitol 6, 12
xyloisosaccharinic acid 250
xylose
  adsorption 125–7
  filtration-based separations 345–6
  lignocellulosic biomass 517–18, 521, 523
  nanofiltration 242, 252, 254–5
  simulated moving-bed chromatography 189

yeast recovery 496–7

zeolites
  adsorption 104, 113–14, 128–30, 134–42
  cellulosic bioethanol production 493–4
  extractive fermentation 417–18, 422
  ion exchange 160–1
  pervaporation 266–7, 270, 272, 275–6, 278–80
  pressure swing adsorption 504–5
  zeolitic imidazolate frameworks (ZIF) 116, 289
zero current condition 241
zeta potentials 344