Contents

Foreword, xi

Preface, xv

1 Introduction, 1
 1.1 How may I be thorough yet efficient when considering the possible causes of my patient’s problems? 1
 1.2 How do I characterize the information I have gathered during the medical interview and physical examination? 2
 1.3 How do I interpret new diagnostic information? 5
 1.4 How do I select the appropriate diagnostic test? 5
 1.5 How do I choose among several risky treatment alternatives? 6
 1.6 Summary, 6

2 Differential diagnosis, 7
 2.1 Introduction, 7
 2.2 How clinicians make a diagnosis, 8
 2.3 The principles of hypothesis-driven differential diagnosis, 11
 2.4 An extended example, 21

Bibliography, 26

3 Probability: quantifying uncertainty, 27
 3.1 Uncertainty and probability in medicine, 27
 3.2 Using personal experience to estimate probability, 34
 3.3 Using published experience to estimate probability, 46
 3.4 Taking the special characteristics of the patient into account when estimating probability, 57

Problems, 58

Bibliography, 59

4 Understanding new information: Bayes’ theorem, 61
 4.1 Introduction, 61
 4.2 Conditional probability defined, 64
 4.3 Bayes’ theorem, 65
 4.4 The odds ratio form of Bayes’ theorem, 69
 4.5 Lessons to be learned from Bayes’ theorem, 76
 4.6 The assumptions of Bayes’ theorem, 82
 4.7 Using Bayes’ theorem to interpret a sequence of tests, 84
4.8 Using Bayes’ theorem when many diseases are under consideration, 88
Problems, 90
Bibliography, 91

5 Measuring the accuracy of diagnostic information, 93
5.1 How to describe test results: abnormal and normal, positive and negative, 93
5.2 Measuring a test’s capability to reveal the patient’s true state, 98
5.3 How to measure the characteristics of a diagnostic test: a hypothetical case, 106
5.4 Pitfalls of predictive value, 109
5.5 Sources of biased estimates of test performance and how to avoid them, 110
5.6 Spectrum bias, 116
5.7 Expressing test results as continuous variables, 125
5.8 Combining data from several studies of test performance, 134
Problems, 137
Bibliography, 140

6 Expected value decision making, 143
6.1 An example, 145
6.2 Selecting the decision maker, 148
6.3 Decision trees: structured representations for decision problems, 149
6.4 Quantifying uncertainty, 152
6.5 Probabilistic analysis of decision trees, 156
6.6 Expected value calculations, 158
6.7 Sensitivity analysis, 161
6.8 Folding back decision trees, 163
Problems, 168
Bibliography, 168

7 Markov models and time-varying outcomes, 170
7.1 Markov model basics, 170
7.2 Exponential survival model and life expectancy, 189
Problems, 198
Appendix: Mathematical details, 200
Bibliography, 203

8 Measuring the outcome of care – expected utility analysis, 204
8.1 Basic concept – direct utility assessment, 205
8.2 Sensitivity analysis – testing the robustness of utility analysis, 210
8.3 Shortcut – using a linear scale to express strength of preference, 212
8.4 Exponential utility – a parametric model, 213
8.5 Exponential utility with exponential survival, 218