A
advanced modeling techniques
choice of, 310–11
clinical problems, 308
decision tree, 307
discrete-event simulation
models, 309–10
dynamic transmission models, 309
hybrid modeling strategy, 323
individual-level state-transition
model, 309
individual-patient decision
making
Alchemist decision support
system, 330–1
challenges for, 331–2
decision support systems, 330
microsimulation model, 309
network models, 310
screening policy problem
analysis
HIV screening see HIV
screening
objectives and perspectives, 312
policy question, 311
steps involved in, 311–12, 312
solitary pulmonary nodule
diagnosis
biopsy and surgery subtrees, 324–5, 325
computed tomography, 323
costs and cost-effectiveness
calculation, 327–9, 328, 329
costs and discount outcomes
estimation, 326–327
decision tree representation, 323–4, 324
ethical issues, 330
expected utility, 327
hybrid modeling strategy, 323
objectives and perspectives, 323
positron emission
tomography, 323
probability of chance events, 325
QALYs, 325
uncertainty evaluation, 327–9
state-transition models, 308–9
age-adjusted survival probabilities
alive health state, 178
annual mortality rate, 177, 178
dead from leukemia health state, 178
three-state Markov model, 178, 179, 179–80
two-state Markov model, 177, 177
Alchemist decision support system, 330–1
algorithmic model of diagnosis, 10
additive model of diagnosis, 9, 10
Bayesian model of diagnosis, 10
Bayes’ theorem
 assumptions of Bayes’ theorem
 conditional independence, 83
 independent of prior
 probability of disease, 82–3, 83
 clinically useful forms
 negative test result, 67–8
 positive test result, 67, 68
 sensitivity, defined, 66
 simplification, 67
 specificity, defined, 66–7
 threshold test result for taking action, 66
 derivation, 65–6
 diagnostic test interpretation
 confirmation of diagnosis, 77–8
 disconfirmation of diagnosis, 78
 negative test result, 77–8, 78
 positive test result, 76–7
 sequence of tests, 84–5 see also conditional independence
 example, 153–4
 for many diseases, 88–9, 89
 odds ratio form
 derivation, 69–70
 likelihood ratio, 70–2, 71
 odds and probability, 72
 test sensitivity, significance of, 80–2
 test specificity, significance of, 78
 screening tests and, 79–80, 80
 branching, 16

discrimination and calibration, 54
face validity, 55
quality of, 55
recursive partitioning see recursive partitioning
regression analysis see regression analysis
test and training sets, 54
clustering in differential diagnosis, 20
cognitive heuristics, 38–46
conditional independence
 assumptions of, 83–4
 definition, 85
conditional probability, 155
 definition, 64–5
 for multiple diseases, 88–9, 89
cost-benefit analysis
 vs. cost-effectiveness analysis, 298–9
definition, 298
monetary value on human life
 human capital method, 299
 past decisions, 299
 willingness-to-pay method, 300
 principal drawback, 299
resource allocation role, 301
cost-effectiveness analysis
definition, 291
flat-of-the curve medicine, 297–8, 298
HIV screening, 319–20, 321
hospital-based group practice
 example, 291–7
 solitary pulmonary nodule diagnosis, 327–8
costs of medical care
 clinician’s role in, 288–9
cost-benefit analysis see cost-benefit analysis
cost-effectiveness analysis see cost-effectiveness analysis
direct costs of care, 301–2
Index

discounting future costs, 303, 318–9, 326–7
health insurance, 289–90
productivity costs, 303
scarce resource allotment, 290
cross-examination, history-taking, 15
cut-point for tests, 95–6

d
DEALE analysis see Declining Exponential Approximation for Life Expectancy (DEALE) analysis
decision maker, 148
decision tree, 149–52
decision support system, 330
chance nodes, 149
decision nodes, 149
folding back, 163–7
HIV screening, 315, 315–16, 316
outcomes, 149
probabilistic analysis, 156–8
two disease states and treatment alternatives, 149
Declining Exponential Approximation for Life Expectancy (DEALE) analysis, 193–4
delta property see exponential utility model
diagnosis-review bias, 114
diagnostic test
Bayes theorem
negative test result, 77–8, 78
positive test result, 76–7
sequence of tests, 84–8 see also conditional independence
brain tumor example, 265–75, 279–81
choosing between tests, 259–61
combinations of tests principles, 261–2, 263
decision-making, three basic principles, 244–6
conditional probability notation, 254–5
decision alternatives, 254, 254
decision problem, 254, 254
diagnostic criteria, 252–3, 252–3
expected utility, 255–6
preferred decision option, 257, 258
threshold probabilities for testing, 256–9, 257
harms of tests
adverse effect of test, 276–7, 277
cost of the test, 275–6
defensive medicine, 276
reassurance, 276
utility assessment of a test, 277–9, 277–9
interpretation, definition of, 243
sensitivity analysis, 281–4
basic principle of, 281
for pre-test probability, 281–3, 282
for treatment-threshold probability
harms to benefits ratio, 263–5
life expectancy and \(p^* \) calculation, 265–6, 265
patient’s utilities for disease-treatment states, 267–75
\(p^* \) subjective estimation, 263
treatment-threshold probability decision tree, 248, 248
definition, 246–7
diagnostic test (continued)
disease-treatment states, 247, 247
expected utility, 248–9
patient’s utilities, 251
\(p^* \) calculation, 248–9
pneumococcal pneumonia example, 250–1, 251
diagnostic test performance
biased estimate sources of diagnostic test characteristics, 111
gold standard test and index test, 113–14
post-test probability, 111
retrospective study assembly, 112
source population, 112
test ordering decisions, 111
definition, 98
diagnostic test characteristics
gold standard test, 106
index test, 106
limitations of, 108–9
source populations, 106
true-positive and negative rate, 107
verified sample, 106
false-negative rate, 102, 102
false-positive rate, 103, 103
frequency of results, 99–100
measurement of clinically relevant population, 99
gold standard test, 99
index test, 99
likelihood ratio, 98–9
verified sample, 99–100
predictive value
negative predictive value, 104, 105
pitfalls, 109, 109–10, 110
positive predictive value, 104, 105
vs. posterior probability, 105, 105–6
prevalence of target condition and, 106
sensitivity and summary ROC curve, 135–6, 136
spectrum bias
definition, 116
disease severity bias, 118
exact adjustment for, 122–3
false-positive rate, effects on, 119–21, 120, 124–5
heuristics for estimating, 122
importance of accurate measurement, 124–5
post-test probability, 123, 124, 125
sensitivity and specificity adjustments, 121–2
sickest of the sick, wellest of the well, 116–17
test-referral bias, 117–18
test sensitivity, effects on, 118, 118–19, 119, 120
spleen scan study example, 106–9
systematic review, 134–6
meta-analysis, 135
ROC plot, 134, 134
test results as a continuous variables, 93–4
cut-off value, 131–3
false-positive and false-negative results, 97–8
normal distribution curve, 94, 94
receiver operating characteristic curve, 128–31, 130
standard deviation, 94, 94
test results as a dichotomous variable, 95–6
true-negative rate, 101, 102
true-positive rate, 100–1, 101
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>differential diagnosis</td>
<td>341</td>
</tr>
<tr>
<td>clinical aphorisms</td>
<td>25</td>
</tr>
<tr>
<td>concept of</td>
<td>7</td>
</tr>
<tr>
<td>cyclic process of</td>
<td>11–12, 12</td>
</tr>
<tr>
<td>diagnostic reasoning</td>
<td>8–11</td>
</tr>
<tr>
<td>algorithmic model</td>
<td>10</td>
</tr>
<tr>
<td>associative model of disease</td>
<td>9, 10</td>
</tr>
<tr>
<td>Bayesian model of disease</td>
<td>10</td>
</tr>
<tr>
<td>clinical experience and skill</td>
<td>11</td>
</tr>
<tr>
<td>heuristics</td>
<td>11</td>
</tr>
<tr>
<td>hypothesis-driven data collection</td>
<td>9</td>
</tr>
<tr>
<td>information misinterpretation</td>
<td>10</td>
</tr>
<tr>
<td>logical reasoning</td>
<td>8</td>
</tr>
<tr>
<td>medical education</td>
<td>8</td>
</tr>
<tr>
<td>patient's findings vs. internal representation of</td>
<td>9</td>
</tr>
<tr>
<td>pattern recognition</td>
<td>8</td>
</tr>
<tr>
<td>hypothesis generation</td>
<td>12</td>
</tr>
<tr>
<td>hypothesis testing</td>
<td>15–21</td>
</tr>
<tr>
<td>test/treat decision</td>
<td>21, 24</td>
</tr>
<tr>
<td>medical interview, purpose of</td>
<td>7</td>
</tr>
<tr>
<td>direct costs of care</td>
<td>301–2</td>
</tr>
<tr>
<td>direct probability assessment</td>
<td>35, 36</td>
</tr>
<tr>
<td>direct utility assessment</td>
<td>301–2</td>
</tr>
<tr>
<td>input data collection</td>
<td>209</td>
</tr>
<tr>
<td>intermediate outcome</td>
<td>206–207</td>
</tr>
<tr>
<td>perianal Paget's disease</td>
<td>210</td>
</tr>
<tr>
<td>cured with colostomy</td>
<td>207</td>
</tr>
<tr>
<td>cured without colostomy</td>
<td>207</td>
</tr>
<tr>
<td>decision tree</td>
<td>208–9, 208</td>
</tr>
<tr>
<td>local disease without colostomy</td>
<td>209–10</td>
</tr>
<tr>
<td>metastatic disease with colostomy</td>
<td>207</td>
</tr>
<tr>
<td>process of</td>
<td>206</td>
</tr>
<tr>
<td>standard reference gamble</td>
<td>205–6</td>
</tr>
<tr>
<td>discounting future costs</td>
<td>303</td>
</tr>
<tr>
<td>discrete-event simulation models</td>
<td>309–10</td>
</tr>
<tr>
<td>disease severity bias</td>
<td>118, 120</td>
</tr>
<tr>
<td>disjunctive events</td>
<td>46</td>
</tr>
<tr>
<td>dynamic transmission models</td>
<td>309</td>
</tr>
<tr>
<td>expected utility analysis</td>
<td>204–35</td>
</tr>
<tr>
<td>constant time tradeoff vs. constant risk aversion</td>
<td>232–4</td>
</tr>
<tr>
<td>utility models</td>
<td>232–4</td>
</tr>
<tr>
<td>direct utility assessment</td>
<td>206</td>
</tr>
<tr>
<td>input data collection</td>
<td>209</td>
</tr>
<tr>
<td>intermediate outcome</td>
<td>206–7</td>
</tr>
<tr>
<td>process of</td>
<td>206</td>
</tr>
<tr>
<td>standard reference gamble</td>
<td>205–6</td>
</tr>
<tr>
<td>exponential utility model assessment</td>
<td>214–15</td>
</tr>
<tr>
<td>computation of</td>
<td>241–2</td>
</tr>
<tr>
<td>delta property</td>
<td>215–16, 241</td>
</tr>
<tr>
<td>exponential survival</td>
<td>218–20</td>
</tr>
<tr>
<td>lengths of survival</td>
<td>213–14, 214</td>
</tr>
<tr>
<td>life expectancy and annual mortality rate</td>
<td>213</td>
</tr>
<tr>
<td>parametric model</td>
<td>213</td>
</tr>
<tr>
<td>risk attitudes</td>
<td>216–18, 217</td>
</tr>
<tr>
<td>multidimensional outcomes</td>
<td>212–13</td>
</tr>
<tr>
<td>patient’s strength of preference</td>
<td>212–13</td>
</tr>
<tr>
<td>sensitivity analysis</td>
<td>210–212, 211</td>
</tr>
<tr>
<td>expected value analysis</td>
<td>143–67</td>
</tr>
<tr>
<td>calculations</td>
<td>158–61, 160, 161</td>
</tr>
<tr>
<td>concept of</td>
<td>6</td>
</tr>
<tr>
<td>decision maker</td>
<td>148–9</td>
</tr>
<tr>
<td>decision trees</td>
<td>145–8</td>
</tr>
<tr>
<td>definition</td>
<td>143</td>
</tr>
<tr>
<td>example</td>
<td>145–8</td>
</tr>
<tr>
<td>life expectancy</td>
<td>143</td>
</tr>
<tr>
<td>probabilistic analysis</td>
<td>156–9, 157, 158</td>
</tr>
<tr>
<td>sensitivity analysis</td>
<td>161–3</td>
</tr>
<tr>
<td>life expectancy, treatment alternatives</td>
<td>162, 162, 163</td>
</tr>
</tbody>
</table>
expected value analysis (continued)
on-one-way sensitivity analysis, 162–3
validity of decision analysis, 161–2
uncertainty quantification
extent of disease, 153
Paget’s cells in anal mucosa, 153–6
successful reconstructive
surgery, 153
exponential survival model, 189–96
definition, 189
life expectancy, 189–93
and annual mortality rate, 213
constant mortality rate model, error measurement, 194, 194
DEALE analysis, 193
length of life, 189, 189
simple two-state Markov
model, 190, 190
stage IV prostate cancer data, 194, 195
survival probability, 195–6
three-state Markov model, 192–3, 193
time periods and survival probability, 190–92, 191
linear regression techniques, 196
vs. Markov model, 190–2
parameter estimation, 193–4
exponential utility model assessment, 214–15
computation of, 241–2
delta property, 215–16, 241
exponential survival, combined with, 218–20
lengths of survival, 213–14, 214
parametric model, 213
risk attitudes, 216–18, 217
underlying assumption, 215–16
false-positive rate (FPR)
definition, 102–103
effect of uncertainty in, 284
post-test probability, effect on, 123–5, 125
sensitivity analysis for, 283
spectrum bias and disease severity bias, 120
test-referral bias, 120–1, 120
flat-of-the curve medicine, 297–8, 298

H
health states, 170–1
average time spent in state, 172
heuristics
anchoring and adjustment, 45, 45–6
availability heuristics, 39
cognitive heuristics, 38
definition, 38
representativeness heuristics
definition, 38
factors affecting, 39, 39
ignoring prior probability, 39–40
inaccurate clinical cues, 40–1
redundant predictors, 41–2
regression to the mean, 42–3, 43
small unrepresentative experience, 43–4
HIV screening
decision tree representation, 315
policy problem analysis
costs and cost-effectiveness calculation, 319–20, 321
costs and discount outcomes estimation, 318–19
dynamic transmission model, 313
ethical issues, 322
expected utility, 319–20, 321
HIV disease course, Markov model, 313–14, 314
F
false-negative rate (FNR), 102
microsimulation model, 313
natural history, 312
objectives and perspectives, 312
policy question, 311
probability of chance events, 317–18
quality-adjusted life years, 318
steps involved in, 311–12, 312
uncertainty evaluation, 320
human capital method, 299–300
hybrid modeling strategy, 323
hypothesis-driven differential diagnosis
cost of information, 17
equation, 21–5
gathering data
memory failure, 15
vague and non-specific complaints, 14–15
hypothesis generation, 12–15
hypothesis testing, 17–21
pathognomonic findings, 16–17
screening and branching examination, 16

M
Markov independence, 173–5
definition, 173
revising Markov model so that independence holds, 174–5
validity, 174
Markov model, 309
acyclic, 180
age-adjusted survival probabilities
alive health state, 178
annual mortality rate, 177, 178
death from leukemia health state, 178
three-state Markov model, 178, 179, 179–180
two-state Markov model, 177, 178
HIV screening
decision tree representation, 315–16, 316
time course of disease, 313–14, 314
life expectancy, acyclic and time invariant models, 184
life expectancy, Monte Carlo simulation see Monte Carlo simulation
local relapse management, 172–3, 173
Markov independence
regional relapse health state, 174, 174–5
statement of, 173
systemic relapse health state, 175
postoperative survival, 170–71, 171
survival probability, 171–2
symptom free state, 172
systemic relapse state, 171, 172
time-invariant, 180
transition probability estimation empirical approach, 175

I
incremental cost-effectiveness, 291, 297, 298, 298
individual-level state-transition model, 309
individual-patient decision making
Alchemist decision support system, 330–1
challenges for, 331–2
decision support systems, 330

L
life expectancy see expected value analysis
likelihood ratio, 41
definition, 70
likelihood ratio negative, 75
likelihood ratio positive, 73
test discrimination measure, 71–2
Markov model (continued)
 survival probability, 175–7
 symptom free health state, 176, 176–7
Monte Carlo simulation, 184–9
 advantage, 188–9
 regional relapse health state, 185, 186
 symptom free health state, 184–5, 185
 three-state Markov model, 186, 187
 life expectancy vs. recovery rate, 188, 188
paths, 186, 187, 188
well and sick health state, 186–8
multidimensional outcomes, 220–34
 direct utility assessment, 220–3, 221
 exponential utility, 223–8, 232–4
 quality-adjusted life years, 228–34
 decision maker’s risk attitudes, 229
 linear approximation for, 230–1
 symptom-free life, 229–30
 sensitivity analysis, 226–8
 simplified assessment, 223–8

P
 pattern recognition see additive
 model of disease
 posterior probability, 5, 5, 64
 post-test probability, 32, 32
 predictive value
 negative predictive value, 104, 105
 pitfalls, 109, 109–10, 110
 positive predictive value, 103, 105
 vs. posterior probability, 105, 105–6
 prevalence of target condition, 106
 pre-test probability, 32, 32
 prior probability, 5, 5, 63
 probability
 clinical prediction rules
 computer-intensive statistical
 analysis, 53–5
 cross-validation, 54–55
 development process, 49–50
 discrimination and calibration, 53
 face validity, 55
 quality of, 55
 recursive partitioning see
 recursive partitioning
 regression analysis see
 regression analysis
 test and training sets, 53
 definition, 29
 estimation using personal
 experience
 direct probability assessment, 35–7, 36
 indirect probability
 assessment, 35
 probability assessment, 34
 sources of error see heuristics
 estimation using published
 experience
 clinical findings, 47
 clinical syndrome, 48

N
 network models, 310

O
 objective probability, 33–4
 odds ratio form of Bayes theorem
 continuous variable result, 72–3
 derivation, 69–70
 example with continuous variable, 73
 example with dichotomous variable, 73–4
 likelihood ratio, 70–2, 71
 odds of event, definition, 72
symptom and physical findings, 47
limitations of, 55–6
objective, 33–4
odds, 30, 30–1
patient’s special characteristics, 57
present state vs. future events, 29
published report, estimate from, 46
subjective, 33–4
time to estimate, 33
productivity costs, 303
pulmonary embolism example, 40–1

Q
quality-adjusted life years
decision maker’s risk attitudes, 229
HIV screening example, 319–20
linear approximation for, 230–1
solitary pulmonary nodule
diagnosis example, 327
symptom-free life, 229–30

R
receiver operating characteristic
curve, 128–31, 130
for comparing tests, 131
derivation of, 137–40
optimal cut-off point for a test, 132
recursive partitioning
definition, 53
myocardial infarction example, 53, 53
streptococcal infection
probability of, 53, 54
uses of, 51–2
regression analysis
discriminant score
cardiac complications for, 50,
51
chest pain for, 50, 51
patient groups, 50
score for diseased and non-diseased patients, 50, 50
function of, 49
numerical weight, 49
regression to the mean, 42
representativeness heuristics, 18
rule of parsimony in diagnosis, 19

S
screening (see also HIV screening), 16
screening policy problem analysis
HIV screening see HIV screening
objectives and perspectives, 312
policy question, 311
steps involved in, 311–12, 312
sensitivity analysis, 161
biased estimate adjustment, 121–2
diagnostic tests
for decision analysis stability, 281
for pre-test probability and \(p^* \), 281–3, 282
for true-positive rate and false-positive rate, 283, 284
for utility of the test, 283–4
expected value decision making
life expectancy, treatment alternatives, 162, 162, 163
one-way sensitivity analysis, 162–3
validity of decision analysis, 161–2
one-way, 162–3
outcome measure, 210–11, 211
performance of, 279
principle of, 279
two-way, 281
sensitivity of a test
adjust for spectrum bias, 123
clinical significance, 80
definition, 100
sensitivity of a test (continued)
importance of accurate measurement, 123, 124
sensitivity analysis, when to test, 283, 284
spectrum bias, and, 118
specificity of a test
adjust for spectrum bias, 121
clinical significance, 78
definition, 101
importance of accurate measurement, 124–5, 125
sensitivity analysis, when to test, 283, 284
spectrum bias, and, 118
standard gamble see standard reference gamble
standard reference gamble, 206, 209, 268–72, 277–8
state-transition models, 308–9
strength of preference analysis, 212–13
subjective probability, 37–38
survival probability
age-adjusted, 177–80
average time spent in health state, 175
estimation, 175
exponential survival model, 190–2, 191, 195–6
life expectancy, 200–2
regional relapse health state, 174–5
symptom free state, 171–2
systemic relapse health state, 172
transition probability estimation, 175–7

t
test referral bias
definition, 117
false-positive rate of disease, 120–1, 120
test sensitivity, 118, 118–19, 119, 120

test-review bias, 113
therapeutic trial as a test, 42
three-state Markov model
age-adjusted survival probabilities, 178, 179, 179–80
life expectancy, 192–3, 193
Monte Carlo simulation, 186, 187
generated paths, 186, 187, 188
life expectancy vs. recovery rate, 188, 188
well and sick health state, 186–8
time-invariant acyclic Markov model
constant transition probability, 180
life expectancy
average time spent in health state, 180, 181
local relapse health state, 182–3, 183
regional relapse health state, 181–2, 182
symptom free health state, 183, 184
system relapse health state, 181, 181
time-varying outcomes, 170–98
transition probability, 170
estimation, 175–7
treatment error, 244–5, 244–5
treatment-threshold probability (p^*)
brain tumor
clinical outcomes for treated, 268
decision tree with chance nodes, 267–8, 268, 274, 274–5
disease-treatment state
outcome identification, 268–70, 271
disease-treatment states, 266–7
expected utility, 269, 272–3, 273
net harms and benefits of treatment, 270, 273
patient’s indifference probability, 267, 268
patient utility assessment, 268–72, 271
\(p^* \) calculation, 269, 273
standard reference gamble for, 269, 272, 277
treatment/diagnostic test, decision on, 273–4
decision tree for, 247, 248
definition, 246–7
disease-treatment states, 247, 247
expected utility as decision criterion, 247–8
harms to benefits ratio and, 263–4
life expectancy and, 265–6
patient’s utilities for disease-treatment states and, 250, 267–75
\(p^* \) calculation, 248–9, 263
\(p^* \) interpretation, 250
pneumococcal pneumonia example, 250–1, 251
preferred decision option, 248, 249
symbols for treatment, 252
treatment harms and benefits, 250
true-negative rate (TNR)
definition, 101
gold standard test result, 102
true-positive rate (TPR)
definition, 100
gold standard test results, 101
post-test probability, 123, 124
sensitivity analysis, 283, 284
spectrum bias, 123
two-state Markov model, 190, 190
U
uncertainty see also probability
clinical information, 27–8
decision making principles, 244–6
expected value decision making extent of disease, 153
paget’s cells in anal mucosa, 153–6
successful reconstructive surgery, 153
HIV screening, policy problem analysis, 320
new information interpretation, 61
utility, 6 see also expected utility analysis
utility assessment, 205–7
W
willingness-to-pay method, 300