CONTENTS

PREFACE xi
CONTRIBUTORS xvii

I INTRODUCTION 1

1 Impact of Microtechnologies on Chemical Processing 3
Jean F. Jenck

1.1 Innovation: An Answer to the Challenges of Sustainable Development / 3
1.2 Process Intensification: A New Paradigm in Chemical Engineering / 4
1.3 Microprocessing for Process Identification / 11
1.4 Intensified Flux of Information (R&D) vs. Intensified Flux of Material (Production) / 15
1.5 Implementation of Microtechnologies in Chemical Processing: A Few Select Examples / 16
1.6 Challenge of Cost Efficiency: Balance between Capex and Opex / 20
1.7 Perspectives / 24
Bibliography and Other Sources / 27
II MICROFLUIDIC METHODS

2 Microreactors Constructed from Metallic Materials 31
 Frank N. Herbstritt
 2.1 Metals as Materials of Construction for Microreactors / 31
 2.2 Material Selection / 32
 2.3 Micro- and Precision Engineering Methods / 37
 2.4 Joining and Mounting Techniques / 44
 Bibliography and Other Sources / 46

3 Microreactors Constructed from Insulating Materials and Semiconductors 47
 Norbert Schwesinger and Andreas Freitag
 3.1 Silicon Microreactors / 47
 3.2 Glass Microreactors / 55
 Bibliography and Other Sources / 63

4 Micromixers 65
 Joëlle Aubin and Catherine Xuereb
 4.1 Introduction / 65
 4.2 Mixing Principles and Fluid Contacting / 66
 4.3 Technical Aspects / 70
 4.4 Evaluating the Performance of a Micromixer / 73
 4.5 Multiphase Mixing / 79
 4.6 Problems and Solutions / 82
 Bibliography / 84

5 Microchannel Heat Exchangers and Reactors 87
 Mark George Kirby and Svend Rumbold
 5.1 Microchannel Heat Exchangers / 87
 5.2 Chemical Reaction and Microchannel Heat Exchangers / 126
 Bibliography / 128

6 Separation Units 131
 Asterios Gavriilidis and John Edward Andrew Shaw
 6.1 Introduction / 131
 6.2 Membrane Separation of Gases / 134
 6.3 Absorption of Gases / 139
 6.4 Stripping of Volatile Components / 145
6.5 Distillation of Binary Mixtures / 146
6.6 Immiscible Phase Liquid–Liquid Extraction / 146
6.7 Particle Separation from Liquids / 151
6.8 Concluding Remarks / 155
Bibliography / 156

7 Calculations and Simulations 165
Dieter Bothe
7.1 Introduction / 165
7.2 Mechanisms and Scales / 166
7.3 Modeling and Computation of Reacting Flows / 172
7.4 Evaluation and Validation of CFD Simulations / 179
Bibliography / 182

III PERIPHERIC EQUIPMENT 185

8 Dosage Equipment 187
Asif Karim and Wolfgang Loth
8.1 Concept and Requirements / 187
8.2 Type of Pumps / 188
8.3 Range of Suitability / 194
Bibliography / 197

9 Micromachined Sensors for Microreactors 199
Jan Dziuban
9.1 Introduction / 199
9.2 Pressure Sensors / 201
9.3 Temperature Sensors / 215
9.4 Flow and Mass Flow Sensors / 220
9.5 Conductometric/Amperometric Sensors / 223
9.6 Optical Photometric and Fluorometric Sensors / 226
9.7 Closing Remarks / 237
Acknowledgments / 239
Bibliography and Other Sources / 239

10 Automating Microprocess Systems 245
Thomas Müller-Heinzerling
10.1 Automation: Why? / 245
10.2 Sensors and Actuators for Microprocess Systems / 247
10.3 Typical Architectures and Functionalities of Control Systems / 250
10.4 Examples of Automated Microprocess Systems / 262
10.5 Summary / 264
Bibliography / 264

IV MICROREACTION PLANTS 265

11 Strategies for Lab-Scale Development 267
Dirk Krischner
11.1 Introduction / 267
11.2 Criteria for Choosing the Correct MRT Device / 269
11.3 Applications for MRT Plants / 275
11.4 Further Aspects of Lab-Scale Development / 279
Acknowledgments / 281
Bibliography / 281

12 Microreaction Systems for Education 285
Marcel A. Liauw and Dina E. Treu
12.1 Introduction / 285
12.2 Influence of the Industrial Sector on Microreactor Education / 286
12.3 Academic Approaches to Teaching about Microreactors / 287
12.4 Academic Courses on Microreactors and Interdisciplinary Classes / 288
12.5 Future Outlook / 295
Bibliography / 295

13 Microreaction Systems for Large-Scale Production 299
Anna Lee Y. Tonkovich and Eric A. Daymo
13.1 Overview of Large-Scale Opportunity and Challenges / 299
13.2 Scale-Up Considerations for Large-Scale Systems / 301
13.3 Competing with Conventional Technology and Economy of Scale / 310
13.4 Examples of Large-Scale Production / 312
13.5 Future of Large-Scale Production Opportunities / 320
Bibliography / 321
14 Process Intensification 325
Michael Matlosz, Laurent Falk, and Jean-Marc Commenge

14.1 Introduction / 325
14.2 Definitions and Objectives / 325
14.3 International State-of-the-Art / 326
14.4 Guidelines / 328
14.5 Case Studies / 338
14.6 Other Intensification Principles / 345
Bibliography / 346

15 Standardization in Microprocess Engineering 349
Alexis Bazzanella

15.1 Introduction / 349
15.2 The MicroChemTec Standardization Initiative / 350
15.3 Conclusion and Outlook / 356
Bibliography / 357

V APPLICATIONS 359

16 Polymerization in Microfluidic Reactors 361
Eugenia Kumacheva, Hong Zhang, and Zhihong Nie

16.1 Introduction / 361
16.2 Polymerization in a Continuous Solution Flowing Through Microchannels / 362
16.3 Polymerization in Droplets / 364
16.4 Conclusions / 380
Bibliography / 380

17 Photoreactions 385
Teijiro Ichimura, Yoshihisa Matsushita, Kosaku Sakeda, and Tadashi Suzuki

17.1 Theory / 385
17.2 Photoreactions in Micoreactors / 387
17.3 Typical Examples of Other Research / 397
Bibliography and Other Sources / 401
18 Intensification of Catalytic Process by Micro-Structured Reactors 403
Lioubov Kiwi-Minsker and Albert Renken

18.1 Introduction / 403
18.2 Characteristics of Microstructured Reactors / 405
18.3 Microstructured Reactors for Heterogeneous Catalytic Reactions / 412
18.4 Main Design Parameters of Catalytic MSR / 419
18.5 Conclusions / 425
Bibliography / 426

19 Microstructured Immobilized Enzyme Reactors for Biocatalysis 431
Malene S. Thomsen and Bernd Nidetzky

19.1 Introduction / 431
19.2 Steps Toward a Microstructured Immobilized Enzyme Reactor / 435
19.3 Selected Examples from the Literature / 440
Acknowledgments / 441
Bibliography / 442

20 Multiphase Reactions 449
J. G. E. (Han) Gardeniers

20.1 Introduction / 449
20.2 Two-Phase Flow Regimes / 450
20.3 Examples of Microreactors Based on Segmented Flow / 453
20.4 Examples of Microreactors Based on Other Flow Types / 464
20.5 Concluding Remarks / 468
Bibliography / 469

INDEX 475