INDEX

Ablation, 40
Acidic solutions, wet etching and, 49
Active mixing, 67
Actuators, 247–249
Adaptive grids, 177
Advanced silicon etching (ASE), 52
Alignment, shim and, 306
Alkaline solutions, wet etching and, 49–51
Alkylation, 394–397
All-silicon sensor, 210–211
Alternative energy fields, 5
Alternative energy, 278–279
Alternative solvents, 5
Aluminum exchanger, corrosion, 102
design pressure, 102
design temperature, 102
fatigue, 103
temperature difference, 103
Aniline, 20–21
Anisotropic dry etching, 52, 54
Anistropic mixing, 171
Annular regime, 82
Archiving, 257
ASE. See advanced silicon etching.
Assembly tolerances, 44
Asymmetric photosensitized reactions, 388–392
limonene to methanol, 390–392
photosensitized isomerization of (Z)-cyclo-octene, 388–390
Austenitic stainless steels, 34
Axial dispersion, 196
Backbone concept, 351–353
elements of, 352–353
use of, 355–356
Baker’s map, 171
Batch process, 6–7
Batchelor length scale, 176
Binary mixtures, distillation of, 146
Biocatalysis, 431–441
continuous-flow conditions, 441
enzyme characterization, 440
microfluidic formats, 434–435
microscale bioprocessing methods, 432
microstructured immobilized enzyme reactor, 435–439
microwell formats, 432–434
Biocatalyst immobilization, 436–439
homogeneous vs. patterning, 438–439
methods, 437–438
Bonding, 44–45, 61
diffusion, 61
gluing, 61
soldered, 45, 61
Borosilicate, 55–56
Brazed aluminum plate-fin heat exchangers, 87
C/A sensor. See conductometric/amperometric microsensors.
Calculations, control system logic and, 250
Capacitive silicon pressure silicon, 210
Capex, Opex vs., 20–24
Capsular structure, 371–375
Catalyst coatings, 275
Catalyst integration, 308–310
Catalyst substrate integration, 306
Catalytic process current developments, 422–425
heterogeneous catalytic reactions, 412–419
intensification of, 403–425
randomly packed channels, 419–420
wall reactors, 420–422
CCD camera, 235–237
Cellular process chemistry (CPC), 19–20
Centrifugal pump, 193
CFD tools, 174
evaluation of, 179–182
Channel dimension scale, 88
Mehendale classification, 88
Chaotic advection, 171
Chaotic mixing, 69–70
Characteristic time analysis, 329–332
Chemical cleaning, 114–115
Chemical engineering, process intensification, 4–11
Chemical processing
gamma rule formula, 3
sustainability of, 3
Chemical resistance, 32
Chemical vapor deposition (CVD), 421
technologies, 53
Chloride level, 121
Cleaning design, 124
Closed-loop control, 250
oxygen entering, 121
Closed-loop coolant, 120–121
Coefficient of variance (CoV), 76
Cold side fluid, 98
Compact heat exchangers, 87
Component bonding, 44
Compressibility tolerance, 196
Computational fluid dynamic tools (CFD), 174
Concentration fields, 176
Conductometric/amperometric microsensors (C/A), 223–226
Confinement, 367–368
Continuous-flow conditions, 441
Continuous functions
execution sequence, 258
scanning frequency for, 258
Continuous gas–liquid reactor, 338–342
Continuous process, 6–7
Continuous solution, 362–364
Continuously operated stirred tank reactor (CSTR), 407
Continuous-phase microcontactors, 139–142, 148–151
Control systems, 250–258
archiving, 257
data management, 257–258
examples of, 262–264
HiTec Zang, 264
Mikroglas, 262–264
implementation of, 258–260
continuous function, 258
ergonomics, 259–260
sequential function charts, 259
logic types, 250–251
calculations, 250
closed-loop control, 250
interlocks, 250
open-loop control, 250
closed-loop control, 250
specification languages, 251–255
types, 260–262
distributed control, 260
industrial process, 260–261
PC-based, 261
programmable logic controllers, 260
supervisory control and data acquisition systems, 260
visualization of process, 255–257
Controlled morphologies, 370–377
capsular structure, 371–375
core-shell structure, 371–375
Janus particles, 375–377
Ternary particles, 375–377
Controlled shape synthesis, 367–370
microfibers, 368–370
microtubes, 368–370
nonspherical particles, 367–368
projection lithography, 370
Controllers, 110
Coolant exchange, 125
 Coolant care of, 119–121
 closed-loop, 120–121
 minimum flow, 120
 non-scaling, 121
 pressure, 120
Cooling mediums, 110
Copolymer particles, 377
Core-shell structure, 371–375
Corrosion, 102–103, 194
 Dimethylmercury, 102–103
Corrosion resistance, 32–34
Corrosion-resistant alloy (CRA), 89
Corrosion-resistant discrete piezoresistive sensor, 208–210
Cost incentives, 23–24
Coupled processes, 332–336
CoV. See coefficient of variance.
CPC. See cellular process chemistry.
CRA. See corrosion-resistant alloy.
Crystallization, 457–459
CSTR. See continuously operated stirred tank reactor.
CVD. See chemical vapor deposition.

Data management, 257–258
DCS. See distributed control systems.
Deep reactive ion etching (DRIE), 52
DEMiS Project, 312–315
Diaphragm pumps, 192
Die sinking erosion, 39
Diffusion bonding, 61, 94–96
 exchangers, 89–91
 solid-phase, 96
Diffusion-joining techniques, 46
Diffusive transfer, Laminar flow and, 151
Dimethylmercury (DMM), 102–103
Direct hydrogen peroxide, 21–22
Direct illumination, 234–235
Direct numerical simulation (DNS), 177
Dispersed-phase microcontactors, 142–145
 microbubble column, 144
 separation of phases, 144–145
Dispersed regime, 82
Distillation of binary mixtures, 146
Distributed control systems (DCS), 260
DMM. See Dimethylmercury.
DNS. See direct numerical simulation.

Dosage equipment, 187–197
 axial dispersion, 196
 compressibility tolerance, 196
 fluid, 195
 micromixing metering, 187–188
 pressure maintenance, 197
 pressure, 195
 pumps, 188–194
 volume, 194, 195
 temperature, 194
 viscosity, 195
DRIE. See deep reactive ion etching.
Droplet dispersion microcontactors, 147
Droplets, 364–380
 controlled sizes, 365–366
 Monomer, 366–367
Dry etching, 52–53, 57
 advanced silicon etching, 52
 deep reactive ion etching, 52
 high aspect ratio micromachining, 52
 plasma, 52–53
 reactive ion etching, 52
DSM/Karlsruhe Reactor, 315–316

Eco-efficiency, 26
Education, 285–295
 academic approaches to, 287–291
 available courses, 293–294
 textbooks, 290–291
 web-based training, 290
 industrial sector, 286–287
 project houses, 286
Electrical discharge erosion, 38
Electron beam welding processes, 45
Emulsification, 459–462
 microchannel structures, 460
Engineering methods, 37–44
 laser-based, 39–41
 machining, 37–39
 photolithography, 41–44
Enzyme characterization, 440
Enzyme reactor, 435–439
Equipment layout, 117
Ergonomics, 259–260
Etched plate, 92
 printed circuit heat exchanger, 92
Excitation light, 232–237
 glass fiber, 232–234
 source, 386–388
Execution sequence, continuous functions and, 258
Exothermal fast reactions, 342–345
 semibatch reactor, 343–344
Exothermic reactions, 173
 thermal effects, 173
Explosive substances, processing of, 277
Exposure techniques, 42
Expoxidation reaction, 16
External mass transfer, 416–419
Fabrication materials, micromixers and, 71
Falling film microcontactors, 140
Fatigue, 103
FBD. See Function Block Diagram.
FFF. See field flow fractionation.
Field-assisted separations
 field flow fractionation, 151
 Laminar flow and, 151–153
Field flow fractionation (FFF), 132, 151
Filtering, 153–154, 190
Fin heat exchanger, 92, 94
Finishing process, 308
Flexible tube pump, 193
Flow constancy, 190
Flow patterns, 274
Flow rates, 70–71
Flow sensors, 220–223
 conductometric/amperometric, 223–226
 thermal coefficient microdetector, 221
Fluid contacting, 67–70
 chaotic mixing, 69–70
 fluid streams, 69
 hydrodynamic focusing, 68
 multilamination, 68
 T-type, 67
 Y-type, 67
Fluid streams, 69
 recombination of, 69
 splitting of, 69
Fluidic components, mounting of, 61
Fluids, pumps and, 195
Fluorometric sensors, 226–237
Foil, 211
Form ablation, 40
Form erosion techniques, 39
Formed plate, 92, 94
 plate-fin heat exchanger, 92, 94
Formulas, Gamma rule, 3
Foturan glass microreactors, 206–207
Fouling, 103
 abatement, 115–116
 monitoring of, 110–112
 prevention of, 117
 risk reduction of, 117–124
 cleaning ease, 124
 closed-loop coolant, 120–121
 coolant, 119–122
 equipment layout, 117
 hydrates, 123
 monitoring systems, 118–119
 particulate settling and scaling, 122
 polishing system, 119
 pressure drop monitoring, 119
 strainers, 119
 waxes, 123–124
 treating of, 117
FSO. See full-scale-output signal.
 Full-scale-output signal (FSO), 202
 Function Block Diagram (FBD), 251–253
Fused silica glass, 56
 Gamma rule formula, 3
Gas absorption, 139–145
 continuous-phase microcontactors, 139–142
 dispersed-phase microcontactors, 142–145
Gases, membrane separation of, 134–139
Gas–gas exchange, 125–126
Gaskets, 44
Gas–liquid flow type, 464–467
Gas–liquid mixing, 80–82
 annular regime, 82
 dispersed regime, 82
 intermittent regime, 81
 stratified regime, 81
Gas–liquid segmented flow
 inert, 455–457
 reagent, 453–455
Gas-phase reactions, 275
 solid catalysts, 275
 coatings, 275
Gas puffing, 112–113
Gas-utility coolant exchange, 125
Gear-type pump, 192
Geometric splitting, 171
Glass fiber, 232–234
INDEX 479

Glass microfabrication, 56
dry etching, 57
isotropic etching, 56–57
mechanical structurization method, 60
photoetchable glass, 58–60
Glass microreactors, 55–63
joining structured parts, 60–61
mounting, 61
permanent bonding, 61
Glass types, 55–56
borosilicate, 55–56
fused silica, 56
soda lime, 56
Gluing, 61
Grooves, 53
HARM. See high aspect ratio micro machining.
Hastelloy Alloy C-276, 34, 36
Heat transfer enhancement, 276–277
Heterogeneous catalytic processes, 126–127
Heterogeneous catalytic reactions, 412–419
external mass transfer, 416–419
internal mass transport, 413–415
Higee technology, 5
High aspect ratio micromachining (HARM), 52
High thermal input, 38
High-throughput (HTP), 432
High throughput screening, 279
HiTec Zang, 264
Homogenous immobilization, patterning vs., 438–439
Hot isostatic pressing, 96
Hot side fluid, 97
HTP. See high-thoughput.
Hydrates, 123
Hydrodynamics, 74
focking, 68
separation, 153–154
Hydrojetting, 113–114

IL. See Instruction List.
Immiscible phase liquid–liquid extraction, 146–151
droplet dispersion microcontactors, 147
continuous-phase microcontactors, 148
segmented flow microcontactors, 148
Industrial process control systems, 260–261
Inert gas, 455–457
In-passage reactor, 127
Instruction List (IL), 251, 252–253
Intensified flux of information, 15
Intensified flux of material, 15
Intensified formulation, 24–26
Interlocks, 250
Intermittent regime, 81
Internal mass transport, 413–415
Isotropic etching, 56–57
photolithography, 56
wet, 57
Janus particles, 375–377
Joining, 307
Joining techniques, 44–46
assembly tolerances, 44
assembly tolerances, secondary frictional connection gaskets, 44
diffusion-joining, 46
permanent component bonding, 44
welded bonds, 44–45
Kapton foil, 211
Lab-scale development, 267–281
microchemical engineering, 268–269
Lab-scale development, 267–281
Ladder Diagram (LD), 251, 253
Laminar flow, 151–153
diffusive transfer, 151
field-assisted separations, 151–153
Laminar mixing principles, 66–67
Large-scale microreaction systems, 299–321
alignment and stacking, 306
catalyst integration, 308–310
catalyst substrate integration, 306
catalyst substrate integration, 306
conventional system advantages, 311–312
examples, 312–320
DEMis Project, 312–315
DSM/Karlsruhe Reactor, 315–316
Velocys Hydrogen, 316–320
Large-scale microreaction systems
(Continued)
joining, 307
machining and finishing, 308
manifolding, 302–304
microsystem advantages, 310–311
process equipment cost, 312
shim selection, 305–306
Laser-based engineering methods, 39–41
ablation, 40
form erosion techniques, 39
laser boring, 39
laser cutting, 39
pulsed Nd:YAG lasers, 39
Laser boring, 39
Laser cutting, 39
Laser patterning process, 58–60
Laser welding processes, 45
LD. See ladder diagram.
LIGA process, 41
Limonen to methanol reaction,
390–392
Liquid–gas applications, 273–275
flow patterns, 274
microchannnels, 274–275
two-continuous-phase contactors,
273–274
two-phase dispersive mixers, 274
Liquid–liquid extraction, immiscible phase,
146–151
Liquid–liquid flow type, 467–468
Liquid–liquid mixing, 80
Liquid–liquid segmented flow, 457–459
crystallization, 457–459
phase-transfer chemistry, 462–464
Liquid–liquid systems, 269–272
mixing quality, 270–272
parallel multilamination, 269
serial multilamination, 269
Liquid–solid applications, 272–273
Low-molecular weight functionalities,
378–380
MAB. See multiple adiabatic bed reactor.
Machining methods, 37–39
die-sinking erosion, 39
electrical discharge erosion, 38
high thermal input, 38
Machining process, 308
Maintenance, 112–116
Manifolding, 302–304
Market segmentation, 27
Masking, 41
Mass sensors, 220–223
Mass transfer enhancement, 276
Mechanical strength, metallic materials
and, 32
Mechanical structurization method, 60
sandblasting, 60
ultrasonic drilling, 60
Mehendel classification, 88
Membrane separation of gases, 134–139
microfabricated, 136–137
palladium micromembranes, 135–137
palladium–silver micromembranes,
135–137
zeolite micromembranes, 137–139
Mesh microcontactors, 140
Metallic materials, 31–63
desired properties
chemical resistance, 32
mechanical strength, 31–32
thermal stability, 32
workability, 31
joining techniques, 44–46
micro engineering methods, 37–44
needed properties, 31–32
physical properties comparison, 35
precision engineering methods, 37–44
selection of, 32–36
corrosion resistance, 32–34
types, 34–36
austenitic stainless steels, 34
Hastelloy Alloy C–276, 34, 36
Monel Alloy 400, 36
nickel, 36
titanium, 36
Metering for micromixing, 187–188
Metering, pumps and, 189–190
MFSC. See microfabricated stripping
column.
Micro engineering methods, 37–44
Microbubble column, 144
Microchannel, 53, 274–275
CVD technologies, 53
PVD technologies, 53
Microchannel heat exchangers, 87–128
brazed aluminum plate-fin, 87
channel dimension scale, 88
characteristics of, 98–103
chemical reaction, 126
compact, 87
construction, 89–96
construction
diffusion bonding, 94–96
diffusion-bonded exchangers, 89–91
construction, plate forms, 92–94
control requirements, 106
controllers, 110
cooling medium, 110
corrosion-resistant alloy, 89
design methodology, 96–98
thermal calculations, 96–98
fouling, 103, 110–112, 117
gas–gas exchange, 125–126
gas-utility coolant exchange, 125
heterogeneous catalytic processes, 126–127
in-passage reactor, 127
instrumentation, 107
maintenance, 112–116
chemical cleaning, 114–115
fouling abatement, 115–116
gas puffing, 112–113
hydrojetting, 113–114
storage, 116
strainers, 112–116
materials, 101–103
aluminum exchanger, 102–103
 brazed alloy, 101
multiple adiabatic bed reactor, 128
printed circuit, 88
straining, 107–108
maintenance, 110
system design, 106–108
thermal fatigue, 105–106
training, 108–109
Microchannel, silicon direct bonding, 54
Microchannel structures, 460
Microchemtec Standardization Initiative, 350–356
backbone concept, 351–353
module compatibility, 353
Microcontactors, 139–142
continuous-phase, 148–151
dispersed-phase, 142–145
droplet dispersion, 147
falling film, 140
mesh, 140
overlapping microchannel, 140
segmented flow, 147
Microeffects, 165
Microfabricated membranes, 136–137
Microfabricated stripping column (MFSC), 145
Microfibers, 368–370
Microfluidic formats, 434–435
Microfluidic reactors, polymerization, 361–380
Microfluidic separation processes, 131–134
maturity level, 155
Micromachined sensors, 199–239
flow and mass, 220–223
fluorometric sensors, 226–237
NIR spectrophotometric, corrosion-resistant, 229–231
optical photometric, 226
parameters, 200
pressure, 201–215
temperature, 215–220
T-Type fluorometric, 232
T-type NIR sensor, 235–237
T-type VIS/NIR spectrofluorometric, 234–235
VIS spectrophotometric, 227–229
VIS type, 232–234
Micromixers, 65–84
available types, 71–73
Baker’s map, 171
chaotic advection, 171
dimensions of, 70
efficiency of, 79
fabrication materials, 71
flow rates, 70–71
fluid contacting, 67–70
geometric splitting, 171
hydrodynamics, 74
mixing
principles, 66–67
quality, 75–79
multiphase, 79–82
operation al problems with, 82–84
performance evaluation, 73
pressure drop, 73–74
Micromixers (Continued)
residence time distribution, 74–75
secondary flow, 171
stretching and folding, 171
Micromixing metering, 187–188
microprocess engineering, 188
miniplant laboratory scale, 188
Microprocess component suppliers, 11
Microprocess engineering, 188
standardization of, 349–356
standardization of, Microchemtec
Standardization Initiative, 350–356
Microprocess systems, automation of,
245–264
actuators, 247–249
control systems, 250–258
justification of, 245–247
sensors, 247–249
Microprocessing, 11–15
Microreaction engineering (μRE), 187
Microreaction systems
education, 285–295
large-scale production, 299–321
Microreactor chips, 388
Microreactor technology (MRT), 21
alternative energy, 278–279
explosive substances, 277
gas-phase reactions, 275
heat transfer enhancement, 276–277
high throughput screening, 279
liquid–gas applications, 273–275
liquid–liquid systems, 269–272
liquid–solid applications, 272–273
mass transfer enhancement, 276
new process windows, 277–278
unstable substances, 277
Microreactors
assembly of, 53–54
grooves, 53
microchannels, 53
design rules, 54–55
Foturan glass, 204–206
gas–liquid flow type, 464–467
glass, 55–63
liquid–liquid flow type, 467–468
metallic materials, 31–63
photoreactions and, 387–388
silicon, 47–55
silicon–glass, 204–206
Microstructured immobilized enzyme
reactor, 435–439
biocatalyst immobilization, 436–439
fabrication, 435–436
Microstructured reactors, characteristics
of, 405–412
chemical processes timescale,
405–406
physical processes timescale,
405–406
pressure drop, 406–407
residence time distribution, 407–412
Microtechnologies, 5
aniline, 20–21
Capex vs. Opex, 20–24
direct hydrogen peroxide, 21–22
eco-efficiency of, 26
fine chemicals, 22–23
implementation of
cellular process chemistry, 19–20
expoxidation reaction, 16
nitroglycerin microstructured pilot
plant, 19
radical polymerizations, 17
intensified flux of information, 15
intensified formulation, 24–26
nitrobenzene hydrogenation, 20–21
process cost incentives, 23–24
Microtubes, 368–370
Microwell formats, 432–434
Mikroglas, 22–264
Miniplant laboratory scale, 188
Microtechnologies, market
segmentation, 27
Mixing, 171
anisotropic, 171
Mixing principles, 66–67
active, 67
Laminar, 66–67
passive, 67
Mixing quality, 75–79
coefficient of variance, 76
homogeneity of, 75–78
striation thickness, 78
MLR. See monolith loop reactor.
Monel Alloy 400, 36
Monitoring systems, 118–119
Monolith loop reactor (MLR), 9
Monomer droplets, 366–367
Moving silicon membrane, 213–214
Moving thin-film dielectric/metal membrane, 214
MRT. See microreactor technology. (μRE). See microreaction engineering.
Multifunctionality, 5
Multilamination, 68
Multiphase micromixers, 79–82
gas–liquid mixing, 80–82
liquid–liquid mixing, 80
Multiphase mixing, solids, 82
Multiphase mixing, 393–394
Multiphase reactions, 449–469
segmented flow, 453–464
two-phase flow regimes, 450–453
Multiphase reactions, solids, 82
Multiphase mixing, 393–394
Multiphase reactions, 449–469
segmented flow, 453–464
two-phase flow regimes, 450–453
Multiple adiabatic bed reactor (MAB), 128
Multiple phase separations, 132
Multiple-head pumps, 192
Nickel, 36
NIR spectrophotometric corrosion-resistant sensor, 229–231
Nitrobenzene hydrogenation, 20–21
Nitroglycerin microstructured pilot plant, 19
Non-scaling coolant, 121
chloride level, 121
Nonspherical particles, confinement, 367–368
On site on demand production, 7
Open-loop control, 250
Opex, Capex vs., 20–24
Optical fiber pressure sensors, 212
Optical photometric sensors, 226–237
Oven soldering, 45
Overlapping microchannels, 140
Oxidation, 392–394
Oxygen, closed-loop coolant and, 121
Palladium micromembranes, 135–137
Palladium–silver micromembranes, 135–137
Parallel multilamination, 269
Partial differential equations, 174
Particle separation, 151–154
filtering, 153–154
hydrodynamic separation, 153–154
Laminar flow, 151–153
Particulate settling and scaling, 122
Passive mixing, 67
PC based control systems, 261
PCHE. See printed circuit heat exchanger.
Phase creation, 132
Phase intermixing, 273–274
Phase separation, 144–145
Phase-transfer chemistry, 462–464
Photocatalytic oxidation
multiphase, 393–394
reduction, 392–393
Photocatalytic reactions, 392–397
alkylation, 394–397
oxidation and reduction, 392–393
Photoetchable glass, 58–60
laser patterning process, 58–60
Photolithography, 56
Photolithography-based processes, 41–44
exposure techniques, 42
LIGA process, 41
masking, 41
synchrotron radiation, 42
wet-chemical etching, 42
Photoreactions, 385–400
analysis and detection methods, 387
asymmetric photosensitized reactions, 388–392
current research, 397–400
excitation light source, 386–387
microreactors, 387–388
chips, 388
Photoreactions, photocatalytic reactions, 392–397
Photosensitized isomerization of (Z)-cyclo-octene, 388–390
Pt. See process intensification.
Piezoresistive pressure sensors, 207–208
Piezoresistive sensor, corrosion-resistant discrete, 208–210
Piezoresistive silicon pressure sensors, 201–203
full-scale output signal, 202
Piston pumps, 190–192
multiple-head, 192
plunger, 191
rotary, 192
single-head, 192
syringe, 190–191
Plasma dry etching, 52–53
Plate forms, 92–94
etched plate, 92
formed, 92, 94
Platinum resistors, 216
PLC. See programmable logic controllers.
Plug-flow reactor, 344–345
Plunger pumps, 191
p–n junction based, 218–219
temperature-dependent voltage
drift, 218
Poiseuille-like velocity, 168
Polishing system, 119
Polycrystalline silicon, 216
Polymer microspheres, 378–380
low-molecular weight functionalities, 378–380
Polymerization, 361–380
continuous solution, 362–364
controlled morphologies, 370–377
controlled shape synthesis, 367–370
copolymer particles, 377
droplets, 364–380
controlled sizes, 365–366
Monomer, 366–367
polymer microspheres, 378–380
reactant mixing, 364
reaction temperature control, 364
segmented flow and, 459–462
Precision engineering methods, 37–44
Preparative separations, 131
Pressure, coolant and, 120
Pressure drop, 406–407
coefficient, 169
micromixers and, 73–74
monitoring, 119
Pressure maintenance, 197
Pressure, pumps and, 195
Pressure sensors, 201–215
all-silicon, 210–211
capacitive silicon, 210
corrosion-resistant discrete
piezoresistive, 208–210
foil, 211
Foturan glass microreactors, 206–207
Kapton foil, 211
moving silicon membrane, 213–214
moving thin-film dielectric/metal
membrane, 214
optical fibers, 212
piezoresistive, 207–208
silicon, 201–203
silicon–glass microreactors,
204–206
Pressure stability, 189
Printed circuit heat exchanger (PCHE),
88, 92
Process cost incentives, 23–24
Process equipment cost, overall system cost
vs., 312
Process identification, microprocessing,
11–15
component supply, 11
system integration, 11–15
Process intensification (PI), 4–11,
325–326
batch process, 6–7
case studies, 338–345
continuous gas-liquid reactor,
338–342
exothermal fast reactions, 342–345
plug-flow reactor, 344–345
commercial offer, 8–11
monolith loop reactor, 9
continuous process, 6–7
current technology, 326–327
definition of, 5, 325–326
guidelines, 328–338
characteristic time analysis, 329–332
coupled processes, 332–336
uniformity vs. dispersity, 336–338
Higee technology, 5
on-site on-demand production, 7
other types, 345–346
principles of, 5
alternative energy fields, 5
alternative solvents, 5
microtechnologies, 5
multifunctionality, 5
safety, 6
transfer rates, 5
Process safety, 6
Programmable logic controllers
(PLC), 260
Progressive cavity pump, 193
Projection lithography, 370
Pulsation, 189–190
Pulsed Nd:YAG lasers, 39
Pump volume, 194, 195
Pumps, 188–194
 corrosion, 194
 design of, 188–189
 diaphragm, 192
 flexible tube, 193
 metering, 189–190
 filtering system, 190
 flow constancy, 190
 pressure stability, 189
 pulsation, 189–190
 piston, 190–192
 rotating displacement, 192–193
 wetted part materials, 193–194
PVD technologies, 53

Radical polymerizations, 17
Reactant mixing, 364
Reacting flows
 Batchelor length scale, 176
 computation of, 172–179
 computational fluid dynamic tools, 174
 concentration fields, 176
 direct numerical simulation, 177
 exothermic, 173
 modeling of, 172–179
 scale calculations, 175
 viscous heating, 173
Reaction flows, adaptive grids, 177
Reaction temperature control, 364
Reactive ion etching (RIE), 52
Reagent, gas as, 453–455
Regimes, gas–liquid mixing and, 81–82
Research and development, 16
Residence time distribution (RTD), 74–75, 407
Residence time distribution,
 mixing, 407–412
 continuously operated stirred tank reactor, 407
Reynold’s number, 168
RIE. See reactive ion etching.
Rotary piston pump, 192
Rotary pump, 193
Rotating displacement pumps, 192–193
 centrifugal, 193
 gear-type, 192
 progressive cavity, 193
 rotary, 193
RTD. See residence time distribution.
Silicon direct bonding (SDB), 54
Silicon membrane, 213–214
Silicon microreactors, 47–55
Silicon, 47–48
 advantages, 47–48
 microstructuring, 48–49
 properties of, 48
 structuring of, 49–53
 dry etching, 52–53
 wet etching, 49–51
Silicon–glass microreactors, 204–206
Single-head pump, 192
Single-phase separations, 132
 field flow fractionation, 132
Soda lime glass, 56
Solder, 61
 bonds, 45
 oven, 45
Solid catalysts, 275
Solid-phase diffusion bonding, 96
 hot isostatic pressing, 96
Solids systems, 82
Solvents, alternative, 5
Specification languages, 251–255
 Function Block Diagram, 251, 253
 Instruction List, 251, 252–253
 Ladder Diagram, 251, 253
 Sequential Function Chart, 251, 254
 Structured Text, 251, 254
Split flow FFF (SPLITT), 151
SPLITT. See split flow FFF.
ST. See Structured Text.
Stacking, shims and, 306
Stainless steels, 34
Steam methane reformer, 316
Steels, 34
Storage, 116
Strainers, 107–108, 119
 maintenance, 110
Stratified regime, 81
Striation thickness, 78
Structured Text (ST), 251, 254
Supervisory control and data acquisition systems (SCADA), 260
Synchrotron radiation, 42
Syringe pumps, 190–191
system cost, process equipment
 cost vs., 312
System integration, microprocessing and, 11–15
TCD. See thermal coefficient microdetector.
TCU. See temperature-dependent voltage drift.
Temperature-dependent voltage drift (TCU), 218
Temperature, pumps and, 194
Temperature sensors, 215–220
 $p-n$ junction based, 218–219
 thermistors, 219–220
 thin-film thermosensors, 215–217
Temperature streams, 103
Ternary particles, 375–377
Thermal calculations, 96–98
 cold side fluid, 98
 hot side fluid, 97
Thermal coefficient microdetector (TCD), 221
Thermal effects, 173
Thermal fatigue, 105–106
Thermal stability, 32
Thermistors, 219–220
Thermosensors, 215–217
 Wheatstone’s bridge configuration, 217
Thin-film dielectric/metal membrane, 214
Thin-film thermosensors, 215–217
 platinum resistors, 216
 polycrystalline silicon, 216
Timescale, 166
 chemical and physical processes, 405–406
Titanium, 36
Training, 108–109
Transfer rates, 5
T-type contacting, 67
T-type fluorometric sensor, 232
T-type NIR Sensor, 235–237
 CCD camera, 235–237
 excitation light, 235–237
T-type VIS/NIR spectrophotometric sensor, 234–235
direct illumination, 234–235
Two-continuous phase contractors, 273–274
 phase intermixing, 273–274
Two-phase dispersive mixers, 274
Two-phase flow regimes, 450–453

Ultrasonic drilling, 60
Unstable substances, processing of, 277

Velocys Hydrogen, 316–320
 steam methane reformer, 316
VIS sensor, 232–234
 excitation light, 232–234
VIS spectrophotometric sensor, 227–229
Viscosity, 195
Viscous heating, 173

Volatile component stripping, 145–156
 microfabricated stripping column, 145
Volumetric conveyance, 187

Wall reactors, 420–422
Waxes, 123–124
Web-based training, 290
Welded bonds, 44–45
 electron beam, 45
 laser, 45
Wet etching, 49–51, 54, 57
 acidic solutions, 49
 alkaline solutions, 49–51
Wet-chemical etching process, 42
Wetted part materials, 193–194
Wheatstone’s bridge configuration, 217

Y-type contacting, 67
Zeolite micromembranes, 137–139