Index

a
Adiabatic Longitudinal Transport
After Dissociation Engenders
Nuclear Alignment
(ALTADENA) 306
aluminum–nickel–cobalt (AlNiCo)
magnets 11
asymptotic waveform evaluation (AWE) 30

b
back-end-of-line (BEOL) 147
bipolar complementary metal oxide
semiconductor (BiCMOS) technologies
low-noise amplifier (LNA)
design process 149
narrowband applications 163–167
wideband and applications 156–163
low-noise behavior 150
optimum transconductance 150
transit frequency 150
Bode–Fano criterion 280
broadband microcoil system
broadband detection 276
chip and probe setup 269
coil geometries 266
deuterium spectra 267
electroplating 268
heteronuclear 1D NMR experiments 273
homonuclear 1D NMR experiments 269–272
impedance matching and front-end
electronics
coil impedance transformation
network 278
coil Q-factor 280
conventional matched excitation
scheme 280–281
detection schemes 281
Hall effect 278
H-bridge amplifier 283–284
LNA bandwidth 285–286
LNA input voltage 283
magnetoresistive effects 278
impedance transformation 277
inductance vs. frequency 275
self-resonance frequency 275, 276
solenoid and planar spiral 267
2D homo- and heteronuclear
experiments 273
c
capacitive coupling 60
catheter receivers
B_1-field decoupling 241–242
designs 238–239
E-field decoupling 242–244
elongated loop receivers 239–240
internal imaging 238
magnetic resonance imaging
EBG detectors 256–257
MI detectors 257–258
resonant detectors 255–256
thin-film catheter receivers
MR-safe thin film interconnects 246–248

Edited by Jens Anders and Jan G. Korvink.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
catheter receivers (contd.)
 thin-film coils 244–245
 thin-film interconnects 245–246
 tuning and matching 240–241

center-field magnets
 compact NMR 11–13
 Halbach magnet 9
 passive shimming 10

CMOS see complementary metal oxide semiconductor technologies
 (CMOS)

coil fabrication techniques, miniaturized MR detectors
 high filling factor microcoils 128–130
 ink-jet printing
 electroplating 133
 functional ink-jet printing 132
 graphical ink-jet printing 132
 three-dimensional structures 132
 UV-based lithography technique 133
 MACS technique 115–123
 micro-Helmholtz coil pairs 123–128
 magnetic field profile 124–125
 in magnetic resonance 123–124
 micromachining of 125–128
 wire-bonding
 bicone microcoils 112
 coil-winding machines 110
 dry-photoresist lamination 114
 flexibility and cost-effectiveness 109
 microcoil manufacturing 109
 microcontact printing 110
 micro-Helmholtz detector 114
 quasi-planar combinations 114
 reactive ion etching (RIE) 110
 solenoidal microcoils 112, 113
 spiral planar microcoils 110
 3D printer 112
 3D trajectory 109
 2D techniques 113

complementary metal oxide semiconductor technologies
 (CMOS)
 back-end-of-line (BEOL) 147

extrinsic effects 146
 frequency division multiplexer (FDM)
 bandpass filter 66–67
 frequency mixer 65–66
 low-noise amplifier (LNA) 64–65
 MRI experiment 68–70
 integrated circuits 63
 inter-metal dielectric (IMD) 148
 linear mode of operation 145
 low-noise amplifier (LNA) 145
 narrowband applications 163–167
 for wideband and applications 158–161
 metal–insulator-metal (MIM)
 capacitor 148
 MOSFET behavior 145
 NMOS and PMOS transistors 145
 photolithographic process 144
 power amplifier (PA) 145
 saturation mode 145

d
 direct coupling 60
 discretized Maxwell's equations
 Arnoldi mathematical algorithm 26
 Berenger's PML 28
 conductivity parameters 26
 electromagnetic interactions 26
 first-order differential state–space system 26
 integral equation techniques 23
 Laplace domain 23
 magnetic and electric conductivities 24
 magnetic field components 25
 partial differential equation (PDE) 24
 perfect electric conductors (PECs) 26
 uniaxial perfectly matched absorbing layers (UPML) 27
 Yee algorithm 23

DNP see dynamic nuclear polarization (DNP)
 double-quantum magnetometry 414
 3D solenoidal microcoils 109
dual-coil chip 269
dynamic nuclear polarization (DNP) 297
electron donor 298
instrumentation 302–304
microtechnological approaches
alkali metals and noble gases 313
high-field DNP resonators 314–318
low-and intermediate-field DNP 318–322
low-power and compact solid-state
MW sources 312
MEMS technologies 313–314
microfluidics and 322–323
microwave (MW) irradiation 297
polarization transfer 301
theoretical enhancement factor 298

E
E-field decoupling 242–244
electromagnetic bandgap (EBG) detectors 256–257
electron paramagnetic resonance (EPR) sensors
MOR model 21
asymptotic waveform evaluation (AWE) 30
degrees of freedom (DOF) 30
discretized Maxwell’s equations 23–29
Gram–Schmidt process 32
Krylov subspace algorithms 31
Lanczos method 32, 33
Laplace domain impulse response 29
nonsymmetrical Arnoldi algorithm 31
Padé approximation 31
elongated loop receivers 239–240

F
ferromagnetic resonance (FMR) 387
finite difference frequency domain (FDFD) method 22
force-detected nuclear magnetic resonance (NMR)
AFM 381
“Boomerang” experiment 389
diphenylpicrylhydrazyl (DPPH) 387
displacement oscillations 387
ferromagnetic resonance (FMR) 387
magnetic resonance force microscopy (MRFM) 382
microfabricated cantilevers and nanoscale ferromagnets 387
nanometer-scale polystyrene sample 389
nanowire (NW) transducer 389
pulsed magnetic resonance schemes 389
radio-frequency (RF) magnetic field 382
scanning probe microscopy (SPM) 382
sensitive transducers 386
signal-to-noise ratio (SNR) 385
single electron spin detection 388
statistical fluctuations 387
3D image reconstruction technique 388
frequency division multiplexer (FDM)
bandpass filter 66–67
frequency mixer 65–66
low-noise amplifier (LNA) 64–65
MRI experiment 68–70

G
gradient echo-based imaging
EPI 219–220
FLASH-type gradient echoes 214–219
Gram–Schmidt process 32

H
Hall effect 278
high-field magnets 1
hyperpolarization methods 2
hyperpolarization techniques
dynamic nuclear polarization (DNP)
electron donor 298
instrumentation 302–304
microtechnological approaches 312–323
Index

hyperpolarization techniques (contd.)
microwave (MW) irradiation 297
polarization transfer 301
theoretical enhancement factor 298
hydrogenative PHIP 298
metabolomics 299
microtechnology 299
para-hydrogen-induced polarization (PHIP) 298
ALTADENA 306
anti-symmetric wave functions 304
Born–Oppenheimer approximation 304
exothermic conversion process 306
level anticrossing (LAC) condition 308
microtechnological approaches 324–333
ortho-to-para conversion rate 305–306
PASADENA 306
Pauli’s principle 304
SABRE method 308
thermal H2 molecule 306
SABRE 298
spin-exchange by optical pumping (SECOP)
alcohol metal atomic energy levels 310
collisional interactions 309
hardwarerequirement 312
parameter descriptions 310
photon remission 310
rubidium and cesium 312
spin–orbit coupling 310
129Xe and 3He polarization 312
xenon application 300
hyphenation
capillary isotachophoresis (CITP) 354
chip-based microseparations 355
continuous monitoring of in situ biological systems 368
electrically driven microseparations
capillary electrophoresis NMR 360–362
capillary isotachophoresis NMR 362–363
flowcells and micro channels 370–371
in-line ultraviolet/visible light detector 354
microfluidic mixing and reaction kinetics 368, 370
off-line hyphenation
EC–SPE–stripline-NMR setup 367
flow-loading micro samples 365
fused silica capillaries 368
high chromatographic resolution 364
LC-MS-NMR platform 366
LC-UV-MS-NMR platform 367
microdroplet techniques 363
nano-Splitter LC-MS method 364
segmented flow 354
stripline detector 364
zero-dispersion segmented flow 363
optimum approach 353
pressure-driven microseparation
capillary gas chromatography 358
capillary high-pressure liquid chromatography 357–359
radio-frequency coils geometries
planar coils 356
solenoids 355–356
stripline and microslot resonators 357

i
inductive coupling 60
ink-jet printing
electroplating 133
functional ink-jet printing 132
graphical ink-jet printing 132
three-dimensional structures 132
UV-based lithography technique 133
integrated circuits (ICs)
CMOS 63
intravascular NMR systems 173
monolithic transceiver electronics, μNMP applications 151–155
MR imaging and microscopy systems 171–173
NMR spectroscopy 170–171
portable NMR systems 167–169
technological considerations and device models
BiCMOS technology 148–150
complementary metal oxide semiconductor technologies (CMOS) 143–148

coil-winding process 120
conventional CPMAS 119
cost of inductive coupling 116–117
double-resonant MACS insert 120–123
efficiency approaches 116
Larmor frequency 116
NMR experiments 118
solid-state NMR spectroscopy 115
wafer-level process 119
wire-bonded MACS resonators 120
magnet development
magnet construction and passive shimming 11
permanent magnet materials 10–11
magnetic resonance force microscopy (MRFM)
AFM cantilever 382
cantilever's mechanical oscillations 382
cryo-electron microscopy 415
2D nano-MRI 414
double-quantum magnetometry 414
fluorescent labeling 412
magnetic field gradients 398–400
magnetic fields and Fourier transform techniques 382
measurement protocols 405–408
mechanical transducers 400–405
nuclear magnetization 413
nuclear MRI, with nuclear spin imaging organic nanolayers 396–398
micro-fabricated components 391
MRI resolution 391–392
virus particles 392–396
NV center 412–413
polymer films and self-assembled monolayer 416
radio-frequency (RF) magnetic field 382
single-electron MRFM
mass-loaded cantilevers 389
OSCAR 389

k
Krylov subspace method 31
k-space imaging
FOV 203
frequency spectrum 201
Larmor frequency 200
nonuniform fast Fourier transform (NUFFT) 204
Nyquist theorem 201

l
Lanczos method 32, 33
level anticrossing (LAC) condition 308
low-noise amplifier (LNA)
BiCMOS technologies
design process 149
narrowband applications 163–167
for wideband and applications 156–163
CMOS technologies 145
narrowband applications 163–167
for wideband and applications 158–161

m
magic angle coil spinning (MACS) technique
anisotropic spin interactions 115
automatic wire-bonding process 119
magnetic resonance force microscopy (MRFM) (contd.)
 TMV experiment 398
 Zeeman splitting 382
magnetic resonance imaging
 EBG detectors 256–257
 MI detectors 257–258
 resonant detectors 255–256
magnetic resonance microsensor
 compact model simulation results 46
 device–circuit co-simulation 46–54
 model description 40–42
 parametric model order reduction 43–45
microarrays
 brain-imaging array 60
 capacitive coupling 60
 direct coupling 60
 geometrical configuration 59
 inductive coupling 60
 microfabrication techniques
 conventional printed circuit board (PCB) technology 61
 decoupling 62
 solenoidal microcoils 63
 thin film technology 62
 mutual coupling 60
 RF array coils 60
 single-array coils 59
microcoils
 broadband microcoil system
 broadband detection 276
 chip and probe setup 269
 coil geometries 266
 deuterium spectra 267
 2D homo- and heteronuclear experiments 273
 electroplating 268
 heteronuclear 1D NMR experiments 273
 homonuclear 1D NMR experiments 269–272
 impedance matching and front-end electronics 276–287
 impedance transformation 277
 inductance vs. frequency 275
 self-resonance frequency 275, 276
 solenoid and planar spiral 267
 microfabrication techniques
 conventional printed circuit board (PCB) technology 61
 decoupling 62
 solenoidal microcoils 63
 thin film technology 62
 micrometer-scale yttrium iron garnet (YIG) film 387
 microscopic flow imaging techniques
 experimental setup 186
 limitations
 spatial resolution 185–186
 temporal stability 184
 velocity range 183–184
 liquid exchange in aneurysm models
 methods 186–187
 optimization, of sequence parameter 189
 results 187–189
 mean flow 182
 PC measurements, with constant flow
 flow and wall shear stress,
 aneurysm model 190–193
 laminar flow in pipe 189–190
 phase contrast 181–182
 pulsatile flow
 dark curve marking 193
 data acquisition 192
 repetitive flow patterns 192
 ToF technique 193
 volume flow 194
 time of flight 180–181
 miniaturization 11, 13, 16
 model order reduction (MOR)
 EPR resonators, fast simulation of 21
 asymptotic waveform evaluation (AWE) 30
 degrees of freedom (DOF) 30
 discretized Maxwell’s equations 23–29
 Gram–Schmidt process 32
 Krylov subspace algorithms 31
 Lanczos method 32, 33
Laplace domain impulse response 29
nonsymmetrical Arnoldi algorithm 31
Padé approximation 31
magnetic resonance microsensor, system level simulation compact model simulation results 46
device–circuit co-simulation 46–54
model description 40–42
parametric model order reduction 43–45
planar coil EPR resonator 34–39
structure-preserving model order reduction 33–34
mutual coupling 60
n
neodymium–iron–boron (NeFeB) magnets 11
nuclear magnetic resonance imaging nanowire force sensor 408–411
with nuclear spin imaging organic nanolayers 396–398
micro-fabricated components 391
MRI resolution 391–392
virus particles 392–396
nuclear magnetic resonance (NMR) microscopy
contrast mechanisms
T_2^*-decay 207–211
T_1-relaxation 206–207
T_2-relaxation 207
diffusion 221–229
gradient echo-based imaging EPI 219–220
FLASH-type gradient echoes 214–219
k-space imaging
FOV 203
frequency spectrum 201
Larmor frequency 200
nonuniform fast Fourier transform (NUFFT) 204
Nyquist theorem 201
motion artifacts and compliance 199
pulse sequences
3D acquisition 211
sampling efficiency 212
spin echo sequences 212–214
slice selection 204–206
susceptibility mapping and QSM 231–232
time-of-flight imaging 230
ultrashort TE 220–222
velocity phase imaging 229–230
o
off-line hyphenation
EC–SPE–stripline-NMR setup 367
flow-loading micro samples 365
fused silica capillaries 368
high chromatographic resolution 364
LC-MS-NMR platform 366
LC-UV-MS-NMR platform 367
microdroplet techniques 363
nano-Splitter LC-MS method 364
segmented flow 354
stripline detector 364
zero-dispersion segmented flow 363
Overhauser’s theory 297
p
Padé approximations 31
Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment (PASADENA) 306
para-hydrogen-induced polarization (PHIP) 298
ALTADENA 306
antiisymmetric wave functions 304
Born–Oppenheimer approximation 304
exothermic conversion process 306
level anticrossing (LAC) condition 308
microtechnological approaches
index

para-hydrogen-induced polarization (PHIP) (contd.)
- catalyst solubility in water 331
 gas-phase characterization 324–327
- liquid phase 327–330
 quantification 331–332
 SABRE method 330–331, 332–333
- ortho-to-para conversion rate 305–306
 PASADENA 306
- Pauli’s principle 304
 SABRE method 308
 thermal H2 molecule 306
- parametric model order reduction (pMOR) method
 Arnoldi method 45
 frequency moments 43
 Krylov techniques 44–45
 Laplace variable 43
 system transfer function 43
- passive shimming
 center-field magnets 10
 strategies for 13–14
 permanent magnets
 center-field magnets
 Halbach magnet 9
 passive shimming 10
 homogeneity and lower field 3
 stray-field magnets
 bulk-volume analysis 7–8
 classification 5–6
 1D and 2D imaging 6–7
- pulse sequences
 sampling efficiency 212
 spin echo sequences 212–214
 3D acquisition 211

r
- reactive ion etching (RIE) 110
- resonant detectors 255–256

s
- Samarium–cobalt (SmCo) magnets 11
 shim coils 14–16
 spatial resolution

field, stability of 184–185
- self-diffusion 184
- signal-to-noise ratio 185
- transverse spin relaxation 184–185
- spin alignment by reversible exchange (SABRE) 298
- spin-exchange by optical pumping (SECOP)
- alkali metal atomic energy levels 310
- collisional interactions 309
- hardware requirement 312
- hyperpolarization techniques
 laser diode systems 333
 online determination 336
 Ti:sapphire and dye lasers 333
 volumetric holographic grating 333
 X-factor 335
 Zeeman splitting 335
- microtechnological approaches
 laser diode systems 333
 online determination 336
 Ti:sapphire and dye lasers 333
 volumetric holographic grating 333
 X-factor 335
 Zeeman splitting 335
- parameter descriptions 310
- photon reemission 310
- rubidium and cesium 312
- spin–orbit coupling 310
- 129Xe and 3He polarization 312
- stray-field magnets
 bulk-volume analysis 7–8
 classification 5–6
 1D and 2D imaging 6–7
 system-level simulation 39, 50

T
- thin-film catheter receivers
 MR-safe thin film interconnects 246–248
 thin-film coils 244–245
 thin-film interconnects 245–246
 thin-film device fabrication
 design and modeling 249
electrical performance 252–255
materials and fabrication 249–251
mechanical performance 251–252
time-of-flight imaging 230

U
u: ultrashort TE 220–222

V
v: velocity phase imaging 229–230

W
w: waveguides, micromagnetic resonance
characteristic impedance and transport characteristics 79
direct induction method 75
dynamic nuclear polarization 98–100
flattened solenoid probes 76
Fourier spectroscopy method 75
lab-on-a-chip (LoC) approach 77
Larmor frequencies 76
lithographic techniques 77
mass sensitivity 77
microfluidic culture assays 77
microfluidic NMR 87
microstrip detectors 88–90
microstrip NMR probes 84–87
nonresonant detectors 90–92
parallel plate transmission lines 96–97
planar detectors 87–88
planar TEM transmission lines 82–83

propagating electromagnetic modes 77–78
radio-frequency and microwave circuits 78
solid-state physics 97–98
stripline detectors 92–96
superconducting solenoids 75
TEM wave modes
Ampere’s law 81
axis of transmission line 79
electric and magnetic field distributions 80
independent of frequency 80
power losses in transmission line 82
transmission line detectors and resonators 83–84
ultraviolet–visible (UV/vis) techniques 76
wire-bonding
bicone microcoils 112
coil-winding machines 110
dry-photoresist lamination 114
flexibility and cost-effectiveness 109
microcoil manufacturing 109
microcontact printing 110
micro-Helmholtz detector 114
quasi-planar combinations 114
reactive ion etching (RIE) 110
solenoidal microcoils 112, 113
spiral planar microcoils 110
3D printer 112
2D techniques 113
3D trajectory 109