Contents

Preface XIII
List of Contributors XV

1 Application of Iridium Catalysts in the Fine Chemicals Industry 1
Hans-Ulrich Blaser
1.1 Introduction 1
1.2 Industrial Requirements for Applying Catalysts 1
1.2.1 Characteristics of the Manufacture of Enantiomerically Pure Products 1
1.2.2 Process Development: Critical Factors for the Application of Catalysts 2
1.2.3 Requirements for Practically Useful Catalysts 3
1.2.3.1 Preparation Methods 3
1.2.3.2 Catalysts Cost 3
1.2.3.3 Availability of the Catalysts 3
1.2.3.4 Catalytic Performance 3
1.2.3.5 Separation 4
1.3 Enantioselective Hydrogenation of C≡N Bonds 4
1.3.1 Catalysts and Scope 4
1.3.2 Industrial Applications 6
1.4 Enantioselective Hydrogenation of C≡C Bonds 8
1.4.1 Catalysts and Scope 8
1.4.2 Industrial Applications 9
1.5 Miscellaneous Catalytic Applications with Industrial Potential 10
1.6 Conclusions and Outlook 13
References 13

2 Dihydrido Iridium Triisopropylphosphine Complexes: From Organometallic Chemistry to Catalysis 15
Luis A. Oro
2.1 Introduction 15
2.2 [Ir(COD)(NCMe)(PR₃)]BF₄ (PR₃ = PPr₃, PMe₃) and Related Complexes as Catalyst Precursors: Is 1,5-Cyclo-Octadiene an Innocent and Removable Ligand? 16
Contents

2.3 The Dihydrido Iridium Triisopropylphosphine Complex

\[[\text{IrH}_2(\text{NCMe})_3(\text{PPr}_3)]\text{BF}_4\] as Alkene Hydrogenation Catalysts 21

2.4 The Dihydrido Iridium Triisopropylphosphine Complex

\[[\text{IrH}_2(\text{NCMe})_3(\text{PPr}_3)]\text{BF}_4\] as Alkyne Hydrogenation Catalysts 26

2.5 Dihydrido Arene Iridium Triisopropylphosphine Complexes 29

2.6 Dihydrido Iridium Triisopropylphosphine Complexes as Imine Hydrogenation Catalysts 34

2.7 Conclusions 37

Acknowledgments 37

References 37

3 Iridium N-Heterocyclic Carbene Complexes and Their Application as Homogeneous Catalysts 39

Eduardo Peris and Robert H. Crabtree

3.1 Introduction 39

3.2 Types of Ir—NHC and Reactivity 40

3.2.1 Mono-NHCs and Intramolecular C—H Activation 40

3.2.2 Chelating bis-NHCs 43

3.2.3 Abnormal NHCs 46

3.3 Catalysis with Ir—NHCs 49

3.4 Conclusions 52

References 52

4 Iridium-Catalyzed C=O Hydrogenation 55

Claudio Bianchini, Luca Gonsalvi and Maurizio Peruzzini

4.1 Introduction 55

4.2 Homogeneous C=O Hydrogenations 55

4.2.1 Chemoselective Hydrogenations 56

4.2.2 Enantioselective Hydrogenations 63

4.2.3 Transfer Hydrogenation (TH) 69

4.2.4 Asymmetric Transfer Hydrogenation (ATH) 81

4.3 Heterogeneous, Supported and Biocatalytic Hydrogenations 99

References 103

5 Catalytic Activity of Cp* Iridium Complexes in Hydrogen Transfer Reactions 107

Ken-ichi Fujita and Ryohei Yamaguchi

5.1 Introduction 107

5.2 Hydrogen Transfer Oxidation of Alcohols (Oppenauer-Type Oxidation) 108

5.3 Transfer Hydrogenation of Unsaturated Compounds 112

5.3.1 Transfer Hydrogenation of Quinolines 112

5.3.2 Transfer Hydrogenation of Ketones and Imines 113

5.4 Asymmetric Synthesis Based on Hydrogen Transfer 113

5.4.1 Asymmetric Transfer Hydrogenation of Ketones 113

5.4.2 Dynamic Kinetic Resolution 118
5.5 Hydrogen Transfer Reactions in Aqueous Media 119
5.6 Carbon–Nitrogen Bond Formation Based on Hydrogen Transfer 123
5.6.1 N-Alkylation of Amines with Alcohols 123
5.6.2 Cyclization of Amino Alcohols 126
5.6.3 Cyclization of Primary Amines with Diols 127
5.6.4 Amidation of Alcohols with Hydroxylamine 128
5.7 Carbon–Carbon Bond Formation Based on Hydrogen Transfer 130
5.7.1 β-Alkylation of Secondary Alcohols 130
5.7.2 Alkylation of Active Methylene Compounds with Alcohols 131
5.8 Carbon–Oxygen Bond Formation Based on Hydrogen Transfer 135
5.8.1 Oxidative Lactonization of Diols 135
5.8.2 Inter- and Intra-Molecular Tishchenko Reactions 137
5.9 Dehydrogenative Oxidation of Alcohols 138
5.10 Conclusions 140
References 140

6 Iridium-Catalyzed Hydroamination 145
 Romano Dorta
6.1 Introduction 145
6.2 Iridium-Catalyzed Olefin Hydroamination (OHA) 146
6.2.1 The Ir(III)/Secondary Amines/Ethylene System 146
6.2.2 The Ir(I)/ZnCl₂/Aniline/Norbornene System 146
6.2.3 The Chiral Ir(I)/‘Naked Fluoride’/Norbornene/Aniline System 147
6.2.4 The Chiral Ir(I)/Organic Base/Anilines/Olefins System 150
6.2.5 The Ir(I)/Piperidine/Methacrylonitrile System 151
6.3 Iridium-Catalyzed Alkyne Hydroamination (AHA) 152
6.3.1 Intramolecular Aliphatic Systems 152
6.3.2 Indoles via Intramolecular AHA 153
6.3.3 Intermolecular Alkyne Hydroamination 153
6.4 Proposed Mechanisms 156
6.4.1 Olefin Hydroamination 156
6.4.2 Alkyne Hydroamination 158
6.5 Complexes and Reactions of Ir Relevant to Hydroamination 160
6.5.1 Ir(I)–Amine Complexes 160
6.5.2 Ir(I)–Anilido complexes 161
6.5.3 N—H Bond Activation Leading to Ir(III)–Amido-Hydrido Complexes 162
6.5.4 Alkyl–Amino-Hydrido Complexes of Ir(III) 165
6.5.5 Iridium–Fluoride Complexes 168
6.6 Conclusions 169
References 170

7 Iridium-Catalyzed Boron-Addition 173
 Elena Fernández and Anna M. Segarra
7.1 Introduction 173
7.2 Iridium–Boryl Complexes 173
7.3 Hydroboration 176
7.4 Diboration 184
7.5 Borylation 185
References 191

8 Iridium-Catalyzed Methanol Carbonylation 195
Philippe Kalck and Philippe Serp
8.1 Introduction 195
8.2 Rhodium-Based Processes 197
8.2.1 The Monsanto Process 197
8.2.2 The Celanese Process 199
8.3 Iridium Reactivity in the Methanol Carbonylation Reaction 200
8.4 The Iridium-Based Cativa Process 204
8.5 The Iridium–Platinum-Based Process 206
8.6 The Iridium–Cocatalyst Mechanism, and Conclusions 207
Acknowledgments 207
References 208

9 Iridium-Catalyzed Asymmetric Allylic Substitutions 211
Günter Helmchen
9.1 Introduction 211
9.2 Ir-Catalyzed Allylic Substitutions: Fundamentals 212
9.2.1 Reactivity and Regioselectivity 212
9.2.2 Steric Course 214
9.2.3 Asymmetric Catalysis: The Beginnings with Phosphinoxazolines as Chiral Ligands 215
9.2.4 Phosphoramidites as Ligands for the Ir-Catalyzed Allylic Substitution 216
9.2.4.1 Survey 216
9.2.4.2 Catalyst Preparation, Reaction Conditions and Catalytic Cycle 217
9.2.4.3 Preparation of Phosphoramidites 219
9.2.4.4 Variation of the Phosphoramidite Ligands 219
9.2.4.5 Further Ligands Used in Ir-Catalyzed Allylic Substitutions 220
9.3 C-Nucleophiles 221
9.3.1 Stabilized Enolates as Nucleophiles 221
9.3.1.1 Malonates and Related Pronucleophiles 221
9.3.2 Aliphatic Nitro Compounds as Pronucleophiles 224
9.3.2.1 A Glycine Equivalent as Pronucleophile 225
9.3.3 Allylic Substitutions with Nonstabilized Enolates, Enamines and Organozinc Compounds 226
9.3.3.1 Ketone Enolates Derived from Silyl Enol Ethers as Nucleophiles 226
9.3.3.2 Allylation of Enamines 227
9.3.3.3 Decarboxylative Allylic Alkylation 227
9.3.3.4 Reactions with Aryl Zinc Compounds 228
9.4 N-Nucleophiles 229
11 Iridium-Catalyzed Cycloadditions 277
Takanori Shibata
11.1 Introduction 277
11.2 [2+2+2] Cycloaddition 278
11.3 Enantioselective [2+2+2] Cycloaddition 281
11.4 [2+2+1] Cycloaddition 283
11.5 [4+2] and [5+1] Cycloadditions 288
11.6 Cycloisomerization 289
11.7 Ir(III)-Catalyzed Cyclizations 291
11.8 Miscellaneous Cycloadditions 293
11.9 Conclusions 295
References 296

12 Pincer-Type Iridium Complexes for Organic Transformations 299
Martin Albrecht and David Morales-Morales
12.1 Introduction 299
12.2 Iridium PCP-Catalyzed Activation of C(sp3)—H Bonds in
Unfunctionalized Alkanes 300
12.2.1 Scope of the Reaction 300
12.2.2 Mechanistic Considerations 302
12.2.3 Catalyst Optimization 307
12.2.4 Application of Alkane Functionalization 309
12.2.4.1 Alkane Metathesis 309
12.2.4.2 Polymer Functionalization 310
12.3 Arene C(sp2)—H and Alkyne C(sp1)—H Bond Activation 311
12.3.1 Activation of C(sp3)—H Bonds 312
12.3.2 Activation of C(sp1)—H Bonds 315
12.4 C—E Bond Activation 317
12.4.1 Activation of Carbon–Halogen Bonds 317
12.4.2 Activation of Carbon–Oxygen Bonds 318
12.4.3 Activation of Carbon–Carbon Bonds 318
12.5 Ammonia Borane Dehydrogenation 319
12.6 Conclusions 321
Acknowledgments 321
References 321

13 Iridium-Mediated Alkane Dehydrogenation 325
David Morales-Morales
13.1 Introduction 325
13.1.1 The Beginning 326
13.2 Alkane C—H Activation with Ir Derivatives 327
13.3 Alkane Dehydrogenation with Ir Complexes 328
13.4 Alkane Dehydrogenation Catalyzed by Ir Pincer Complexes 333
13.4.1 Ir-PCP Pincer Compounds 333
13.4.2 Ir-POCOP Pincer Compounds 336
13.5 Final Remarks 342
Acknowledgments 342
References 342

14 Transformations of (Organo)silicon Compounds Catalyzed by Iridium Complexes 345
Bogdan Marciniec and Ireneusz Kownacki
14.1 Introduction 345
14.2 Hydrosilylation and Dehydrogenative Silylation of Carbon–Carbon Multiple Bonds 346
14.2.1 Hydrosilylation and Dehydrogenative Silylation of Alkenes 346
14.2.2 Application of Hydrosilylation in Polymer Chemistry 348
14.2.3 Hydrosilylation and Dehydrogenative Silylation of Alkynes 349
14.3 Asymmetric Hydrosilylation of Ketones and Imines 352
14.4 Transformation of Organosilicon Compounds in the Presence of Carbon Monoxide 356
14.4.1 Hydroformylation of Vinylsilanes 356
14.4.2 Silylcarbonylation of Alkenes and Alkynes 357
14.5 Silylation of Aromatic Carbon–Hydrogen Bonds 359
14.6 Silylation of Alkenes with Vinylsilanes 360
14.7 Alcoholysis and Oxygenation of Hydrosilanes 361
14.8 Isomerization of Silyl Olefins 361
14.9 Addition of silylacetylenes $\equiv\mathrm{C}-\mathrm{H}$ Bonds into Imines 362
14.10 Conclusions 364
References 365

15 Catalytic Properties of Soluble Iridium Nanoparticles 369
Jackson D. Scholten and Jairton Dupont
15.1 Introduction 369
15.2 Synthesis of Soluble Iridium Nanoparticles 369
15.2.1 Polyoxoanions 369
15.2.2 Surfactants 370
15.2.3 Imidazolium Ionic Liquids 372
15.3 Kinetic Studies of Iridium Nanoparticle Formation: The Autocatalytic Mechanism 377
15.4 Catalytic Applications of Soluble Iridium Nanoparticles 380
15.5 Conclusions 387
References 388

Index 391