SUBJECT INDEX

Page references followed by fig indicate an illustrated figure; followed by t indicate a table; followed by e indicate an exhibit.

A
Active processing principle: applied to multimedia learning, 35fig, 36; description of, 35
Adaptive expertise, 344t–345
Agents. See Pedagogical agents
Air Force Sherlock evaluation, 360
American Management Association survey (2014), 343
Anesthesiology lesson, 358fig
Animations: adding visual cueing to, 84; audio explaining demonstration of telephone system, 116fig; changing static visuals into, 81–84; contiguity principle 1 violation of text viewed separately from, 99fig; learning from video-recorded visual vs., 166fig; used as interpretive graphics, 83–84; used to illustrate procedures, 83
Association of Psychological Science, 79
Asynchronous e-learning: collaborative learning, 300fig; designed for individual self-study, 9; matching collaborative goals of assignments in, 305–307fig; navigational features used for learner control in, 320–322t; potential to customize for learner needs, 15; review of the Excel lesson for small business, 401–405fig; screen capture from Excel lesson, 9fig. See also E-learning
ATD (Association for Talent Development): delivery methods for workforce learning, 11; on increase of technology-delivered instruction, 14; on workforce learning investment, 18
Auditory/verbal material: avoiding e-lessons with extraneous, 168–172; balancing visual and auditory content with narration and graphics, 120fig; better learning when visual are explained with, 123fig; better learning when visual are explained only by, 138fig; dual channel principle applied to learning, 35, 36; evidence supporting use over printed text, 113, 121–126; examining the animated demonstration of the telephone system, 116fig; graphics explained using audio alone, 134fig; graphics explained using identical text and audio narration, 134fig; lightning lesson screen with, 122fig; modality principle on using visuals with, 113–128; overloading visual channel with graphics explained by audio and text, 136fig; providing auditory feedback for visual tasks, 279; redundancy principle on explaining visuals with, 131–146fig; responses to questions in on-screen text vs., 123fig; screenshot from narrated video with and without subtitles, 144fig; sounds of explosions and bullets added to on-screen text narration, 169fig; special situations to consider adding on-screen text to, 139–140; synchronous collaborative learning with, 299fig; visual described by, 117fig; weeding out unnecessary, 151. See also Narration
Automotive troubleshooting simulation: problem-based learning (PBL) used in, 354, 355fig; review of the evidence-based guidelines used in, 409fig–411fig; screen from the, 17fig. See also Brake lessons

B
Behavioral engagement: description of, 16, 219; design dilemma and solution of, 220, 234; learning strategies and, 222t–232;
practice as, 232; three e-learning architectures and, 21t; when it impedes learning, 224–226
Bicycle Pump visual, 77f
Bioworld lesson, 354, 356f–357
Blended learning, description of, 14
Blogs, 298t
Boundary conditions: modality effect and, 124–125; temperature graph demonstrating, 125f
Brake lessons: integrated version of the, 103f; pertaining used in, 212f, 213f; segmenting and pretraining principles used in, 211f; separated version of the, 103f.
See also Automotive troubleshooting simulation; E-lessons (what to look up)
Breakout rooms, 298t, 299f

C
Cache 17 Game, 383f–384
Calibration accuracy: description of, 323; how it affects learning, 323–324
Cambridge Handbook of Multimedia Learning (Mayer), 60
Caption placement, 98f
Change through learning, 32–33
Chats, 298t, 299f
The Circuit Game: base version of, 373f; coaching added to, 374f; self-explanation questions added to, 375f
Coaching topics graphic, 74f
Cognitive consequences research: comparing game control and group control on cognitive skill, 378f; computer games and, 371t, 377–381f; examining if game playing improves cognitive skills, 377–381; on Tetris Game, 381f; on which cognitive skills can be improved with game play, 379t–381
Cognitive load, 40–41
Cognitive processing: cognitive load issue of, 40–41; essential, 37; extraneous, 37; generative, 37; integrating, 35f, 36, 41–42, 43; organizing words and images, 35f, 36, 43; selecting words and images, 35f, 36, 43; summary of, 43; as thinking skills competency, 345t. See also Learning processes
Cognitive processing capacity: essential overload and, 37–38t, 206; extraneous overload and, 36, 38t, 136f, 151–174; generative underutilization, 38t; learning and management of limited, 36–39t, 43; understanding how e-lessons affect learning and, 39–44
Cognitive task analysis (CTA): description of, 361–362; examples of methods for, 362t
Cognitive theory of multimedia learning: evidence for the, 136; on how people learn, 35–36; illustrative diagram of the, 35f
Coherence principle: applied to practice interactions, 286; design dilemma and solution related to, 152f–153, 173–174; the first principle, 153–159; on problem of adding extra material that hurts learning, 151–152; the second principle, 159–168f; the third principle, 168–172; what we don’t know about coherence and the, 172–173
Coherence principle 1: avoid e-lessons with extraneous words, 153–155f; evidence for omitting extraneous words added for interest, 156–157f; evidence for omitting extraneous words added for technical depth, 159; evidence for omitting extraneous words added to expand on key ideas, 158f–159; psychological reasons to avoid extraneous words in e-learning, 155
Coherence principle 2: avoid e-lessons with extraneous graphics, 159–161; considering if interesting graphics are ever helpful, 167–168f; evidence for omitting extraneous graphics added for interest, 162–165; evidence for using simpler visuals, 165f–167; psychological reasons to avoid extraneous graphics in e-learning, 161–163
Coherence principle 3: avoid e-lessons with extraneous audio, 168–169f; evidence for omitting extraneous audio, 170–173; psychological reasons to avoid extraneous audio in e-learning, 170
Collaborative applications, 299t
Collaborative learning: conditions that influence outcomes of, 296t; CSCL (computer-supported collaborative learning), 297–312; description of, 295–
296; design dilemma and solution of, 294, 312; what we don’t know about, 311–312. See also Learning

Computer-based training (CBT), 11

Computer games: Cache 17 Game, 383ff–384; cognitive consequences research on, 371t, 377–381ff; Design-A-Plant, 192, 376ff, 377, 384; design dilemma and solution of, 370, 386; features that improve learning effectiveness of, 372ff–377; media comparison research on, 12, 371t, 382ff–385t; Tiritis Game, 381ff; value-added research on, 369–370, 371t, 372–377; what we don’t know about learning with, 385–386

Computer Games for Learning: An Evidence-Based Approach (Mayer), 371

Computer-supported collaborative learning (CSCL): description of, 297; diversity of, 301–302; list of some online facilities for, 298t–299ff; principles of, 302–311; what we don’t know about, 311–312

Concurrent reporting, 362t

Contiguity principle: applied to practice interactions, 286; design dilemma and solution on, 90–91ff, 108–109; explaining the need for the, 89–90; the first principle, 91–104; optimizing benefits of worked examples by using the, 255; the second principle, 104–108; what we don’t know about the, 108

Contiguity principle 1: evidence for, 100–104; on printed words near corresponding graphics, 91–93ff; psychological reasons for, 99–100; violations of, 94–99ff

Contiguity principle 1 violations: displaying captions at the bottom of screens, 98ff; displaying running text in a separate window with animations or video, 99ff; presenting exercise directions separate from the exercise, 97ff; separating content with linked windows, 977; separation of feedback from questions or responses, 96ff; separation of text and graphics on scrolling screens, 94–95ff; using a legend to indicate the parts of a graphic, 98

Contiguity principle 2: evidence for, 107–108; psychological reasons for, 107; synchronize spoken words with corresponding graphics, 104; violations of, 105ff–106

Continue button, 207ff, 208

Conversational language: formal vs. informal lesson introductions compared in research study, 183ff; informal approach using, 180ff; personalization principle on using, 182–187; second personal and informal language leads to, 183ff

Course maps, 333–334ff

Creative thinking/creativity: description of, 344t–345; as thinking skills competency, 346t

Critical decision method, 362t

Critical thinking, 344t, 345

Cued retrospective reporting, 362t

D

Decorative graphics, 71ff, 72, 73t

Deliberate practice, 232

Design-A-Plant game, 192, 376ff, 377, 384

computer games, 370, 386; contiguity principle, 90–91; Excel course development for e-learning initiative, 68–69, 85; HR’s sexual harassment online mini-course, 49–50, 62–63; maximizing benefits of practice, 266–267, 288; modality principle on using audio, 114–115; personalization and embodiment principles, 180–181; 197–198; redundancy principle on using either audio or text with visuals, 132–133, 145–146; segmenting and pretraining principles, 202–203, 215–216; Thrifty Savings and Loan’s technology-centered approach, 30–31, 44–45; worked examples, 240, 261. See also Scenarios

Desirable difficulty, 143

Directions: error of separating exercise assignment from the, 97; optimize worked examples by including instructional explanations and, 245, 252; practice directions provided in on-screen text in virtual session, 118. See also Self-explaining learning strategy

Directive e-learning architecture: description of, 21; 24; interactivity with other architectures, 21–22

Discovery learning, 19

Discussion boards, 298–300

Drawing learning strategy: description of, 222; engagement through supported drawing, 227–228

Dual channel principle: applied to multimedia learning, 35–36; description of, 35

E

E-course assumptions: course design should be based on cognitive theory of learning, 29; course design should be based on valid research studies, 29

E-course design: design dilemma and solution on, 30–31, 44–45; how e-lessons affect human learning consideration of, 39–44; how people learn considerations of, 31–36; managing limited cognitive resources during learning issue of, 36–39; 43; summary of learning processes to be considered in, 43–44; three metaphors for learning and implications for, 33–35; two assumptions driving, 29; what to look for in, 45. See also Instructional design; Multimedia principles

E-course design guidelines: applying the evidence-based guidelines to e-courses, 391–396; e-lesson guidelines checklist, 396; effect sizes for each of the principles, 393–396; in a nutshell, 392–393; review of the asynchronous Excel lesson using, 401–405; review of the automotive troubleshooting simulation, 409–411; review of the synchronous Excel lesson using, 406–408; a summary of the, 397–401

E-courseware: context of, 23; learner differences taken into consideration in, 23; training goals of, 22–23

E-learning: building thinking skills through, 341–364; definition of, 7; early versions of, 11–12; engagement in, 219–234; forms and features of, 8; learning in, 24; leveraging worked examples in, 239–262; the pitfalls of, 18–19; the promises of, 14–18; reflections on past predictions about, 411–413; the what, how, and why of, 8–11. See also Asynchronous e-learning; Multimedia lessons; Synchronous e-learning

E-Learning and the Science of Instruction

(Clark and Mayer), 11, 14, 239, 293

E-learning goals: inform, 19–20; perform, 19–20

E-learning pitfalls: 1: too much of a good thing, 18; 2: not enough of a good thing, 18; 3: losing sight of the goal, 18–19; 4: discovery learning, 19

E-lessons (what to look for): building thinking skills, 363–364; coherence principle on avoiding extraneous material, 174; collaborative learning, 311–312; computer games, 387; contiguity principle, 109–110; dominant architecture of, 24; engagement in learning, 234; evidence-
based criteria for selecting e-lessons, 63; formal versus informal introductions compared in research study, 185ff; guidelines checklist for, 396–401; learner control, 336–337; modality principle for use of audio, 128; multimedia principle on using words and visuals for instruction, 85–86; personalization and embodiment principles, 198; practice opportunities, 288–289; redundancy principle, 146; unique features of e-learning, 24; when making theory-based choices for course design, 45; worked examples, 261. See also specific lesson

E-mail, 298t

Education for Life and Work (Pellegrino and Hilton), 344

_Educational Psychology Review, _60

Ego feedback, 278, 279t

Electro-mechanical principles lesson, 221ff

 Embodiment principle: design dilemma and solution on, 180ff–181ff, 197–198; design importance of the, 179–180; implications for e-learning, 196–197; on pedagogical agents, 180ff; 190–193ff; on using effective on-screen coaches to promote learning, 189–197; what we don’t know about, 197

Enacting learning strategy, 222t

Engagement: behavioral, 16, 21t, 219–234; collaborative observations of skill tutoring, 228–229; description of, 221–223; design dilemma and solution of, 220, 234; eight generative learning strategies for, 222t–233; four quadrants of the engagement grid, 223ff–224, 267ff–268; leading to generative processing, 226–232; a new view of, 233; psychological, 16, 219–234; three e-learning architectures and, 21t. See also Learners

Engagement matrix: four quadrants of the, 223ff–224; practice exercises falling into Quadrant 4 of the, 267ff–268

English-as-a-second language learners: evidence supporting redundant on-screen-text for, 143–144; screenshot from narrated video with and without subtitles for, 144ff

Essential cognitive processing, 37

Essential overload: instructional design issue of, 37–38t; sequencing to minimize, 206; techniques for minimizing, 38–39t

Evidence-based guidelines: applied to e-courses, 391–396; effect sizes for each of the principles, 393r–396; in a nutshell, 392–393; review of the asynchronous Excel lesson using, 401–405ff; review of the automotive troubleshooting simulation, 409ff–411ff; review of the synchronous Excel lesson using, 406ff–408ff; a summary of the e-learning, 397e–401e

Evidence based practice: description of, 50–51; design dilemma and solution on, 49–50, 62–63; practical versus theoretical research on, 61ff–62; research on instructional effectiveness, 51r–60; what we don’t know about, 62

Excel lessons: graphics first draft, 68ff; graphics revision with visual and words, 70ff; pretraining to teach formula format before procedure, 210ff; review of the small business asynchronous, 401–405ff; review of the synchronous, 406ff–408ff; screen capture from asynchronous, 9ff; screen capture from synchronous, 10ff; a screen to add interest to the, 152ff–153; sequencing how to construct a formula in, 204, 205ff; sequencing the, 202ff–203, 215–216; spreadsheet concepts explained using extensive text, 154ff; spreadsheet concepts explained using lean text and relevant visual, 155ff; storyboard applying the contiguity principle for, 109ff; storyboard first draft for, 91ff; visual described by on-screen text, 115ff; visual described by on-screen text and narration, 132ff–133; visual explained by one-screen text when audio off is selected, 146ff. See also E-lessons (what to look up)

Exercises: error of presenting directions separate from the, 97ff; practice directions provided in on-screen text in virtual session, 118ff. See also Practice exercises

Experiment research method, 53t

Expertise: adaptive, 344r–345; problem-focused instruction and acceleration of, 358; scenarios used to accelerate, 17ff; Sherlock computer-coached practice environment and accelerated, 360–361

Expertise reversal effect, 80–81
Explanatory feedback: description of, 276; evidence for learning benefits, 277–278; two examples of, 276f–277f
Extrinsic audio: avoid e-lessons with, 168–169; evidence for omitting, 170–172; psychological reasons to avoid, 170
Extraneous cognitive processing, 37
Extraneous graphics: avoid e-lessons with, 159–161; evidence for omitting those added for interest, 162–165; evidence for using simpler visuals, 165f–167; irrelevant graphics added as emotional design, 167–168; psychological reasons to avoid, 161–162
Extraneous overload: coherence principle applied to avoid, 151–174; instructional design issue of, 37, 38t; overloading visual channel with graphics explained by audio and text, 136f; techniques for minimizing, 38–39t
Extraneous words: avoid e-lessons with, 153–155; evidence for omitting added for technical depth, 159; evidence for omitting extraneous words added to expand key ideas, 158f–159; evidence for omitting words added for interest, 156–157; psychological reasons to avoid, 155
Eye-tracking studies: on best integration of text and visual, 102f; showing different attention patterns in visuals, 54t–55; supporting modality principle, 124

F

Face-to-face learning: advantages of e-learning over, 14–15; distribution of effect sizes of e-learning vs., 13f; percentage of learning hours available via e-learning and, 15f
Factorial experiment research method, 53t
Far transfer guidelines: 1: use varied context worked examples, 257f; 2: include self-explanation questions, 258; 3: require active comparison of varied context examples, 258–259f
Far transfer (strategic) learning: description of, 343–344; 397t; design guidelines for worked examples, 256–259f; perform goals for, 19t, 20
Feedback: assigning guided peer feedback as practice exercise, 280–281; explanatory, 276f–278f; four types or categories of, 278–279; given for incorrect responses to problem-focused instructions, 357–358, 359f; ineffective vs. effective placement of, 96f; providing auditory feedback for visual tasks, 279; providing effective practice exercise, 275–281; providing step-by-step feedback when steps are interdependent, 279–280; tips for providing, 281
Formal language: formal approach that omits the agent and uses more, 181f; formal vs. informal lesson introductions compared in research study, 183f; passive voice leading to a more formal tone and, 182f

G

Gamification: cognitive consequences research on, 371t, 3/3/–381f; features that improve learning effectiveness of, 372f–377; learning through, 17–18; media comparison research on, 12, 371t, 382f–385t; value-added research on, 369–370, 371t, 5/2–5/3
Generative cognitive processing, 37
Generative learning strategies: drawing, 222t, 227–228; enacting, 222t; imagining, 222t; mapping, 222t; self-explaining, 222t; 231–232, 245, 249–252, 258, 374–375f; self-testing, 222t; summarizing, 222t, 225f; teaching, 222t, 228–231f; what we don’t know about, 233. See also Learning
Generative underutilization: instructional design issue of, 38t; techniques for minimizing, 38–39t
Google Scholar, 60
Graphic examples: balancing visual and auditory content with narration and graphics, 120f; better understanding from simple vs. anatomically correct visual, 165f; contiguity principle on embedded printed words with printed graphics, 90–109f; a decorative graphic that does not improve learning, 71f; evidence for using words and graphics, 77f; Excel course first draft, 68f; Excel course revision with visuals and words, 70f; graphics explained using audio alone, 134f; graphics explained using identical text and audio narration, 134f; interesting but unrelated graphics added...
to lightning lesson, 163fg; learning from schematic animations vs. video-recorded visuals, 166fg; overloading visual channel with presentation of text and graphics, 120fg; relational graphic, 73t; standard and enhanced graphics for virus lesson, 168fg; transformational graphic, 73fg; ways in which learning is promoted by graphics, 74fg–75fg. See also specific lesson
Graphic learning applications: group problem solving process graphic interface, 301fg; as lesson interfaces, 75; to show relationships, 73fg; as topic organizers, 74fg
Graphic types: decorative, 71fg, 72, 73t; interpretive, /2, /3t, 83–84; organizational, 72, 73t
Graphs: animations used as interpretive, 83–84; avoiding extraneous, 159–168fg; changing static illustrations into animations, 81–84; engagement through relevant, 226–227fg; error of using a legend to indicate parts of a, 98; evidence for using words and, 77fg–80; how learners often misjudge the value of, 79–80; modality principle on using audio/verbal with, 113–128; multimedia principle on including both words and, 70fg–74, 113–128, 254fg–255, 285–286, 376fg; overloading visual channel with presentation of text and, 120fg; the reasons for using both words and, 71; redundancy principle on using either audio or text to explain, 131–146fg; relational, 72, 73t; selecting ones that support learning, 72–74; transformational, 72, 73t; ways in which learning is promoted by, 74fg–75fg; weeding out unnecessary, 151
Group problem solving process graphic interface, 301fg
Guided discovery e-learning architecture: description of, 21t, 24; interactivity with other architectures, 21–22
Guidelines. See Evidence-based guidelines

H

Handbook of Research on Educational Communications and Technology (Spector, Merrill, Elen, and Bishop), 60
Handbook of Research on Learning and Instruction (Mayer and Alexander), 60

High interest statements: added to a lesson, 157fg; added to a lesson that depress learning, 157fg

I

Imagining learning strategy, 222t
Information: how visual convey information, 69; information acquisition theory on using multiple ways to present, 135; methods for directing selection of important, 40; multimedia principle on including words and graphics to convey, 70fg–74; need to exclude interesting but irrelevant-to-learning, 160fg; organizing words and images, 35fg, 36, 43; selecting words and images, 35fg, 36, 43; visual clues helping learners find important lesson, 41fg
Information acquisition: implications for designing instructional programs, 34; learning metaphor of, 33, 34r–35
Information acquisition theory, 135
Institute of Education Sciences, 79
Instruction: definition and purpose of, 33; limitations of human cognitive system for, 18; media comparison studies on computer vs. conventional, 12, 371t, 382, 382fg–385t; wall of words approach to, 18
Instructional control, 319
Instructional delivery technology: comparison and trade-offs of different media for, 13–14; electronic distance learning vs. face-to-face instruction, 12–13fg; origins and early development of, 11–12
Instructional design: essential overload issue of, 37–39t, 206; extraneous overload issue of, 37, 38r–39t, 136fg; generative underutilization issue of, 38r–39t; guiding transformation from working memory to long-term memory, 39–44; learning as the result of instructional methods and, 13–14; minimizing cognitive overload to facilitate learning, 38–39t, 43. See also E-course design
Instructional effectiveness: description and focus on, 51; design dilemma and solution on, 49–50, 62–63; practical versus theoretical research on, 61fg–62; research on, 51t–60
Instructional effectiveness research: boundary conditions in experimental
comparisons of, 60; criteria of good experimental comparisons, 55–57; different research methods, 53–55; eye-tracking data showing different attention patterns in visuals, 54–55; how to identify relevant, 59–60; interpreting research statistics on, 57–59; practical versus theoretical, 61–62; three approaches to, 51–53

Instructional effectiveness research statistics:
calculation of effect size for the two groups illustrated, 59; how to interpret, 57–59; means and standard deviations from two lessons, 58; practical significance: effect size greater than .5, 58–59; statistical significance: probability less than .05, 58

Integration: cognitive process of, 35; methods for, 41–42

Interpretive graphics: animations used as, 83–84; description of, 72, 73

K

Knowledge: methods for retrieval from and transfer to long-term memory, 42–44; as thinking skills competency, 346

Knowledge construction: cognitive theory of multimedia learning for, 35; e-lessons guiding transformation from working memory to long-term memory and, 39–44; implications for designing instructional programs, 35; learning metaphor of, 33, 34; three principles of, 35–36

L

Language: formal approach that omits the agent and uses more formal, 181; formal vs. informal lesson introductions compared in research study, 183; informal approach using agent and conversational, 180; passive voice leading to a more formal tone and language, 182; personalization principle on using conversational, 182–187; promoting personalization through polite speech, 187–189; use of second personal and informal language leads to conversational tone and, 183

Learner-centered approach: cognitive theory of multimedia learning, 35; to using technology for learning, 31, 32

Learner control: asynchronous e-learning navigational techniques used for, 320–322; debate over learner instructional decisions and, 323–327; design dilemma and solution for, 318–319, 335–336; navigational features used for, 317, 318; over manipulation of a mechanical device, 325; principles to optimize learning, 327–335; program control versus, 319–323; three types of, 320; tradeoffs to, 322–323; what we don’t know about, 325; when to consider, 336

Learner control alternatives: advisement, 330; recommender systems, 330–331; shared control, 330

Learner control principles: 1: give experienced learners control, 327–328; 2: make important instructional events the default, 328–329; 3: consider alternative forms of learner control, 330–331; 4: give pacing control to all learners, 331–332; 5: offer navigational support in hypermedia environments, 332–335

Learner decisions: calibration accuracy and, 323; do learners chose instructional methods that lead to learning, 325–326; how does calibration affect learning, 323–324; overconfidence and, 324; psychological reasons for poor choices, 326–327

Learner differences, 23

Learners: better learning when visuals are explained only by audio, 138; Continue button allowing them to progress at their own rate, 207; e-courseware consideration of differences among, 23; English-as-a-second language, 143–144; how they often misjudge the value of graphics, 79–80; instructional decisions makes by, 323–327; multimedia principle working best for novice, 80–81; pretraining them on key concepts, 209–215; test scores for more complex problems with examples for novice, 246; use links sparingly in lessons for novice, 333. See also Engagement

Learning: change as the center of, 32–33; cognitive theory of multimedia, 35; with
136; coherence principle on extra material that can hurt, 151–174; computer games used for, 369–387; discovery, 19; e-course design consideration of how e-lessons affect, 39–44; face-to-face, 135; 14–15; gamification for, 17–18; graphics that support, 72–75; high- and low-complexity tasks and collaborative vs. solo, 303; how calibration affect, 323–324; instructional methods that result in, 13–14; PBL (problem-based learning), 353–361; process during e-courses, 29–45; technology role in process of, 31–32; what we don’t know about, 44; when behavioral engagement impedes, 224–226. See also Collaborative learning; Generative learning strategies Learning hours: percentage available in an instructor-led classroom and technology, 155; steadily increasing market share of digital, 14–15 Learning metaphors: information acquisition, 33, 34t–35; knowledge construction, 33, 34; response strengthening, 33, 34t Learning processes: cognitive load reduction techniques to facilitate, 38–39t, 43; selection of important information, 35; 36, 40, 41; 43; summary of, 43; transfer of information from working memory to long-term memory, 42–44. See also Cognitive processing Learning research: on benefits of explanatory feedback, 277–278; on benefits of practice, 270–271; on better learning from personalized narration, 186; on better learning when non-essential text is excluded, 158; on computer games, 369–370, 371; course design should be based on valid, 29; formal versus informal introductions comparisons, 185; how presence or absence of social cues affects learning, 184–185; on instructional effectiveness of evidence based practice, 51t–60; on learning is better when sounds and music are excluded, 171; memories studies on redundancy effects on, 138–139; on multimedia principle, 67; on pedagogical agents and impact on student learning, 192–195; practical versus theoretical evidence-based practice, 61; U.S. Army instruction delivery research (1947), 12. See also Multimedia research trends; Research Learning Science Through Computer Games and Simulations (Honey and Hilton), 371, 384 Learning styles hypothesis: lack of evidence for the, 135; as popular myth, 15 Learning to Think Spatially, 380 Learning transfer: design guidelines for far transfer worked examples, 256–259; far transfer (strategic) learning, 19t, 20, 256–259; 343–344, 397; near transfer (procedural) learning, 19t, 20, 343–345, 397; optimizing worked examples by supporting, 245, 256 Legend (graphic), 98 Lightning lessons: integrated text and graphics vs. separated text and graphics, 101; interesting but unrelated graphics added to, 163; on-screen text explanations used for, 122; screens with audio narration, 122; sequencing screens from, 204; static visual used to teach, 82. See also E-lessons (what to look for) Limited capacity principle: applied to multimedia learning, 35t, 36; description of, 35; managing limited cognitive resources during learning, 36–39t, 43; understanding how e-lessons affect learning under the, 39–44 Long-term memory: e-lessons guiding transformation from working memory to, 39–44; methods for retrieval from and transfer to, 42–43. See also Memory Low interest statements, 157

M McMaster’s University (Canada), 353–354 Mapping learning strategy, 222 Media comparison studies: on Cache 17 Game, 383–384; comparing game group and conventional group learning outcomes, 382–385; description of, 371t, 382; U.S. Army instruction delivery research (1947), 12 Memory: long-term, 39–44; research on the redundancy effect on learning and, 138–139; working, 35–37, 39–44. See also Long-term memory; Working memory
Meta-analysis of multimedia interactivity practice, 270
Metacognition, 344t, 346
Microsoft Word editing lesson, 204, 205fig
Mind at Play (Lofrus and Lofrus), 377
Mini-blogs, 298t
Mistakes: feedback on, 358; problem-focused instruction and freedom to make, 357
Mitosis lesson graphics, 166fig
Modality principle: applied to practice interactions, 285–286; balancing visual and auditory content with narration and graphics, 120fig; Design-A-Plant Game, 376fig; design dilemma and solution using the, 114–115fig, 128; evidence supporting the, 113, 121–126; limitations to the, 117–118fig; optimizing benefits of worked examples by using the, 254fig–255; overloading visual channel with presentation of text and graphics, 120fig; practice directions provided in on-screen text n virtual session, 118fig; on presenting words as speech and not as on-screen text, 115–117fig; psychological advantage of the, 114; psychological reasons for the, 119–120fig; what we don’t know about, 127; when to apply the, 126–127
Multimedia Learning Second Edition (Mayer), 67
Multimedia lessons: cognitive theory of learning applied to, 35fig–36; e-learning ability to present, 16; three important cognitive processes taking place during, 35fig, 36. See also E-learning
Multimedia principles: applying to practice, 285–287; coherence principle, 151–174, 286; contiguity principles, 89–109, 255, 286; description of the, 78–79; design dilemma scenario on, 68fig–69, 85; embodiment principle, 189–198; evidence for using words and pictures, 77fig–80; how visual make a difference in learning, 69; illustrate worked examples with relevant visuals, 253fig–254; on including words and graphics to convey information, 70fig–74; modality principle, 113–128, 254fig–255, 285–286, 376fig; optimizing worked examples by using the, 245, 252–256; personalization principle, 179–189, 197–198, 377; pretraining principle, 209fig–216, 375–376; psychological reasons for the, 76; redundancy principle, 131–146fig, 254fig–255, 285–286; research findings on the benefits of, 67; segmenting principle, 202fig–208, 211fig, 214–216, 255–256; ways to use graphics to promote learning, 74fig–75fig; what we don’t know about using visuals, 84; when to change static illustrations into animations, 81–84; why it works best for novice learners, 80–81. See also E-course design
Multimedia research trends: increased emphasis on metacognitive aspects of e-learning as, 415; increased emphasis on motivational aspects of e-learning as, 415; increased focus on efficiency of e-learning as, 415–416; increased transfer of research-based guidelines into practice as, 416–417; longer experimental treatments with measures of delayed learning as, 414; more productive research questions as, 413–414; more research conducted in authentic environments as, 414–415. See also Learning research

N
Narration: balancing visual and auditory content with graphics and, 120fig; better learning from personalized, 186fig; better learning when visual are explained with audio, 123fig; content presented with text and redundant, 141fig; contiguity principle on synchronizing graphics with, 104–108; continuous presentation with separation of graphics and, 106; graphics explained using identical text and audio, 134fig; lightning lesson screen with audio, 122fig; responses to questions in audio, 123fig; responses to questions in on-screen vs. audio, 123fig; screenshot from narrated video with and without subtitles, 144fig; separation of graphics and, 105fig–106; sounds of explosions and bullets added to on-screen text, 169fig; special situations to consider adding on-screen text to audio, 139–140. See also Auditory/verbal material
National Research Council, 344, 371, 380
Navigational features: asynchronous e-learning, 320–322t; designed for high,
318fig. learning control through, 317; a lesson with multiple control elements, 321fig; make the important ones the default, 328–329fig

Navigational support: headings and introductory statements as, 332–333; providing basic options for, 335; use course and site maps, 333–334fig; use links sparingly in lessons for novice learners, 333

Near transfer (procedural) learning: description of, 343–345, 397e; perform goals of, 19t, 20

Novice learners: multimedia principle works best for, 80–81; test scores for more complex problems with examples for, 246fig; use links sparingly in lessons for, 333

O

Observational-qualitative research method, 53t
Observational-quantitative research method, 53t
Online conferencing, 298t
Organizational graphics, 72, 73t
Overconfidence of learners, 324

P

Pasteur's quadrant, 61fig–62
Pedagogical agents: description of, 190–192; do they need to look and sound real?, 193–194; formal approach that omits the agent and uses formal language, 191fig; human-like gestures used by, 194–195; informal approach using conversational language and, 180fig; puppy character plays no instructional role so it is not a, 196fig; standing to left in slideshow on solar cells, 195fig; student learning and role of, 192–193
Peer feedback, 280–281
Peer teaching, 230–231fig
Perform e-learning goals: description of, 19t–20; near vs. far transfer, 20

Personalization principle: better learning from personalized narration, 186fig; design dilemma and solution on, 180fig–181fig, 197–198; design importance of the, 179–180; how presence or absence of social cues affects learning, 184–185fig; promoting personalization through conversational style, 185–187; promoting personalization through polite speech, 187–189; promoting personalization through voice quality, 189; psychological reasons for using the, 183–184; on using conversational rather than formal style language, 182fig–183fig; value-added research on computer games and, 377; what we don't know about, 197

Pharmaceutical sales lessons: Jeopardy game design for, 266fig; multiple-select question in the, 268fig–269fig; sales representative tells the learner what to watch for in video example, 351fig; self-explanation question encouraging deep processing in, 250fig. See also E-lessons (what to look for)

Polite speech personalization, 187–189

Practice: among elite performers, 270–271; engagement through, 232; meta-analysis of multimedia interactivity, 270; principles of, 271–287; Sherlock computer-coached practice environment, 360–361; what we don't know about, 287–288

Practice exercises: assigning guided peer feedback as, 280–281; design dilemma and solution for designing, 266fig–267, 288; effective e-learning, 267–270; evidence on benefits of the, 270–271; examining how to maximize the benefits of, 265–266; falling into Quadrant 4 of the engagement matrix, 267fig–268; formats of, 269–270; multiple-select question, 268fig–269fig. See also Exercises

Practice principle 1: add sufficient practice interactions to achieve the objective, 271–275; adjust the amount of practice based on task critically, 273–275; learning benefits of practice, 271–272fig; practice benefits diminish rapidly, 272–273fig

Practice principle 2: mirror the job, 275

Practice principle 3: assign guided peer feedback as a practice exercise, 280–281; emphasize three categories of feedback, 278–279fig; evidence for benefits of explanatory feedback, 277–278fig; provide auditory feedback for visual tasks, 279; provide effective feedback, 275–281; provide explanatory feedback, 276fig–277fig; provide step-by-step feedback when steps are interdependent, 279–280; tips for feedback, 281
Practice principle 4: distribute and mix practice among learning events, 281–285; distribute practice throughout learning environment, 282–283; mix practice types in lessons, 283–284; tips for determining the number and placement of practice events, 285
Practice principle 5: apply multimedia principles, 285–287; coherence principle, 286; contiguity principle, 286; modality and redundancy principles, 285–286; tips for applying multimedia principles to your practice interactions, 287
Pretraining principle: computer games and, 375–376; ensuring learners know names and characteristics of key concepts, 209; evidence for providing pretraining in key concepts, 212; psychological reasons for the, 210–212; what we don't know about, 214–215
Problem assignments: benefit of pairing worked examples with, 245; fade from worked examples to, 245, 247–248; when to provide worked examples in lieu of, 245, 246
Problem-based learning (PBL): automotive troubleshooting example of, 354, 355; bioworld example of, 354, 356; features of problem-focused instruction, 357–358; McMaster’s University (Canada) use of, 353; as thinking skills training, 355–361
Procedural (near transfer) learning: description of, 343–345, 397; perform goals of, 19, 20
Process feedback, 278, 279
Program control: description of, 319; learner control versus, 319–323; when to consider using, 336–337
Psychological engagement: description of, 16, 219–220; design dilemma and solution of, 220, 234

Q
Qualitative research: measures used in, 53; observational, 53; synthetic, 53
Quantitative research: measures used in, 53, 54–55; observational, 53; synthetic, 53

R
Receptive e-learning architecture: description of, 21, 24; interactivity with other architectures, 21–22
Redundancy effect: description of the, 139; memory studies on learning and, 138–139
Redundancy principle: applied to practice interactions, 285–286; description and purpose of, 131–132; design dilemma and solution of using the, 132; evidence for including redundant on-screen text, 142–144; the first principle, 133–139; optimizing benefits of worked examples by using the, 254; psychological reasons for, 135–137; psychological reasons for exceptions to the, 140–141; the second principle, 139–140; what we don't know about redundancy, 144–145
Redundancy principle 1: do not add on-screen text to narration, 133–134; evidence for omitting redundant on-screen text, 137–139; psychological reasons for the, 135–137
Redundancy principle 2: consider adding on-screen text to narration in special situations, 139–140; evidence for including redundant on-screen text, 142–144; psychological reasons for exceptions to the, 140–141; when to not and when to use redundant on-screen text, 140
Relational graphics, 72, 73
Representational graphics, 72, 73
Research: qualitative, 53; quantitative, 53; 54–55; redundancy effect on learning and memory, 138–139; trends for multimedia, 413–417. See also Learning research
Response strengthening: implications for designing instructional program, 34–35; learning metaphor of, 33, 34
Retrospective reporting, 362
Review of Educational Research, 60

S
Scenario-Based e-Learning (Clark), 357
Scenarios: acceleration of expertise through, 17; simulated automotive shop, 17; 354, 355; 409–411. See also Design dilemma scenarios
Segmenting principle: on breaking a continuous lesson into bite-size segments, 203–206; Continue button allowing learners to progress at their own rate, 207fig, 208; design dilemma and solution using, 202fig–203; evidence supporting the, 207–208; optimizing benefits of worked examples by using the, 255–256; psychological reasons for, 206–207fig; what we don’t know about, 214–215

Self-explaining learning strategy: asking questions during explanations, 232; description, 222r; far transfer guideline on self-explanation questions, 258; optimizing benefits of worked examples by promoting, 245, 249–252; prompted self-explanations, 231–232; value-added research on computer game use of, 374–375fig. See also Directions

Self-regulation feedback, 278, 279r

Self-testing learning strategy, 222r “Seven plus or minus two” (Miller), 37

Sherlock computer-coached practice environment, 360–361

Simulation. See Automotive troubleshooting simulation

Site maps, 333–334fig

Social networks, 299r

Static visuals: changing into animations, 81, 83–84; teaching how lightning forms, 82fig

Strategic (far transfer) learning: description of, 343–344, 397r; design guidelines for worked examples, 256–259fig; perform goals for, 19r, 20

Structured controversy: adapting to computer-mediated collaboration, 311; how to implement, 309–310fig; optimizing team outcomes through, 309–311

Structured expert interview, 362t

Summarizing learning strategy: comparing verbal and pictorial summaries, 295fig; description of, 222t

Synchronous e-learning: collaborative learning, 299fig; description of, 9; matching collaborative goals of assignments in, 305–307fig; review of the Excel lesson, 406fig–408fig; screen capture from Excel lesson, 10fig. See also E-learning

Synthetic-qualitative research method, 53r

Synthetic-quantitative research method, 53r

T

Task feedback, 278, 279r

Teaching learning strategy: collaborative observations of skill tutoring, 228–229; description of, 222r; peer teaching, 230–231fg

Technology: early computer-based training (CBT), 11; taking a learner-centered approach to using, 31, 32

Technology-centered learning approach: description of, 31–32; design dilemma and solution on, 30–31, 44–45; the problem with, 32

Tetris Game, 381fig

Text: avoiding extraneous, 153–159; content presented with redundant narration and, 141fig; contiguity principle on graphics embedded with printed, 90–109fig; evidence for including redundant on-screen, 142–144fig; evidence for omitting redundant on-screen, 137–139; evidence for using pictures and, 77fig–80; evidence supporting auditory over printed, 113, 121–126; Excel course first draft using, 68fig; Excel course revision with graphics and, 70fig; modality principle on using visuals with, 113–128; multimedia principle on including both graphics and, 70fig–74; on-screen text explanations used for lightning lesson, 122fg; overloading visual channel with graphics explained by audio and, 136fig; overloading visual channel with presentation of graphics explained by audio and, 120fig; the reasons for using both graphics and, 71; redundancy principle of explaining visuals with either audio or, 131–146fig; responses to questions in audio narration vs. on-screen, 123fig; special situations to consider adding to audio, 139–140; weeding out unnecessary, 151; when to use and not sue redundant on-screen, 140

Thinking skills: cognitive competencies of, 345r–346t; description of, 343–344; generic versus domain-specific, 346–347; three types of, 344r–345

Thinking skills training: benefits of building workforce, 341; design dilemma and
solution on, 342–343\textit{fig}, 363–364; examining the process of, 347–349; example of online, 344\textit{fig}; principles of, 349\textit{fig}–362\textit{r}; sample thinking test item for, 347–348\textit{fig}; what we don’t know about teaching and, 363

Thinking skills training principle 1: display expert thinking models, 350\textit{fig}; focus learner attention to behaviors of expert models, 351\textit{fig}; focus on explicit teaching of job-relevant thinking skills, 349\textit{fig}–352; promote active engagement with expert models, 352

Thinking skills training principle 2: automotive troubleshooting example, 354, 355\textit{fig}; bioworld example, 354, 357; design lessons around authentic works tasks or problems, 353\textit{fig}–361; evidence for problem-focused instruction, 358–360; evidence from Sherlock computer-practice environment, 360–361; features of problem-focused instruction, 357–358\textit{fig}; problem-based learning (PBL), 353\textit{fig}–354; summary of evidence for PBL, 361

Thinking skills training principle 3: define job-specific thinking processes, 361–362; examples of cognitive task analysis methods, 362\textit{r}

Thought bubble display, 350\textit{fig}

Transformational graphics, 72, 73\textit{t}

Tutoring learning strategy, 228–229

Twitter, 298\textit{t}

\textit{U}

\textit{The Ultimate History of Video Games} (Kent), 371

U.S. Army instruction delivery research (1947), 12

U.S. Census quantitative relationships, 75\textit{fig}

U.S. Department of Education, 14

U.S. workforce learning: delivery methods for, 11; investment made in, 18

\textit{V}

Value-added research: on computer game coaching, 372; description of, 369–370, 372; on features that improve computer game’s effectiveness, 372\textit{fig}–377; on pretraining for computer games, 375–376; research question of computer gram, 371\textit{r}; on self-explanation principle, 374–375\textit{fig}

Videos: displaying running text in a separate window with animations or, 99\textit{fig}; error of text view separately from, 99\textit{fig}; learning from video-recorded visual vs. animations, 166\textit{fig}; sales representative tells the learner what to watch for in, 351\textit{fig}; screenshot from narrated video with and without subtitles, 144\textit{fig}

Visual cueing graphics, 168\textit{fig}

Visual/pictorial material: avoiding extraneous, 159–168\textit{fig}; balancing visual and auditory content with narration and graphics, 120\textit{fig}; better learning when explained by audio alone, 138\textit{fig}; better learning when visual are explained with audio narration, 123\textit{fig}; changing static illustrations to animations, 81–84; dual channel principle applied to learning, 35, 36; Excel course first draft, 68\textit{fig}; Excel course revision with words and, 70\textit{fig}; eye-tracking data showing different attention patterns in, 54\textit{e}–55; How a Bicycle Pump Works, 72\textit{fig}; how they make a difference in learning, 69; modality principle on using audio/verbal with, 113–128; overloading visual channel with presentation of graphics and text, 120\textit{fig}; Redundancy principle of using either audio or text to explain, 131–146\textit{fig}; what we don’t know about, 84

Voice quality personalization, 189

\textit{W}

Wall of words approach, 18

Weeding, 151

Wikis, 299\textit{r}, 300\textit{fig}

Words. See Text

Worked examples: average effect size of, 245; benefits of pairing with problem assignments, 245; description of, 240–241; design dilemma and solutions using, 240, 261; design guidelines for far transfer, 256–259\textit{fig}; evidence for the benefits of, 243–244; modeled worked example from a sales lesson, 242\textit{fig}; modeling examples, 242–243; principles to optimize benefits of, 245–256; of a probability problem,
Subject Index

241 fig.: the psychology of, 243; for strategic tasks, 241; what we don’t know about, 260; without practice problems, 244 fig.

Working memory: cognitive load burden on, 41; e-lessons guiding transformation to long-term memory from, 39–44; integration processing and, 35 fig., 36, 41–42 fig., 43; limits of, 36–37; methods for managing limited capacity in, 40–41; “Seven plus or minus two” (Miller) on capacity limits of, 37. See also Memory

Worked examples optimization principles:
1: when to provide worked examples in lieu of problems assignments, 245, 246 fig.–247; 2: fade from worked examples to problems, 245, 247–248 fig.; 3: promote self-explanations, 245, 249–252; 4: include instructional explanations of worked examples in some situations, 245, 252; 5: apply multimedia principles to examples, 245, 252–256; 6: support learning transfer, 245, 256