active return, 194
actual frontier, 27, 28
AIMMS (Advanced Integrated Multidimensional Modeling Software), 228
alpha
 in factor model, 138
 as performance measure, 192, 193, 204–206
American Stock Exchange (AMEX), 165, 209
annual return, 187–189, 204–206, 211, 212
arithmetic mean, 188, 190, 208
asset(s)
 calculating return on, 6–7
 and financial market movement, 17
 measuring risk/return on, 1, 6
 volatility of, 23
asset allocation. See portfolio composition
asset classes, 166, 169
barrier method, 89–91, 93
Bayesian optimization framework, 54–58, 63
beta
 in CAPM, 55
 in factor models, 18, 138, 143
 as performance measure, 192, 193, 203, 204–206, 214
 in portfolio composition analysis, 174–183
Black-Litterman model, 54–58, 63
book-to-market ratio, 139, 141, 161, 164, 166
box uncertainty
 defined, 84
 and factor exposure, 152, 153, 154, 157
 in robust portfolio problems, 105–111, 121, 220–222
 in robust portfolio strategy, 202, 209
budget uncertainty, 85, 225, 227
capital asset pricing model (CAPM), 54–56, 63, 192
cardinality constrained uncertainty, 85
companies/firms, factors specific to, 139
conditional value-at-risk (CVaR)
 computing, 36, 201
 function of, 34
 as performance measure, 199–201, 204–206, 208, 209, 211, 212, 214
conic programming problems, 74–76, 88, 93, 216
 second-order, 76–79, 216
 semidefinite, 79–81
convex optimization
 barrier method in, 89–91
 conic programming in, 74–76, 88
described, 67–69, 92, 93
duality in, 69–70
linear programming in, 70–72
modeling system for, 95
quadratic programming in, 72–74, 96
in robust portfolio construction, 104, 121, 123
convex optimization
second-order cone programming in, 76–79
semidefinite programming in, 79–81
correlation
function of, 9, 21
in modern portfolio theory, 6
covariance
estimating from factor models, 17, 137
function of, 9
matrix form, 10
in modern portfolio theory, 6
portfolio sensitivity to, 30–33
and skewness, 127
covariance matrix of returns
computing, 8, 10
and ellipsoidal uncertainty, 113
and factor models, 18, 147
and GMV portfolio, 62
in portfolio optimization, 2, 6, 14, 50
in quadratic programming, 73, 93
shifts in, 39
shrinkage applied to, 48–49
CVX
application of, 95, 98–100, 101, 111, 112, 118, 216
description of, 5, 121

Datastream Industry Classification Benchmark (ICB), 182
decision (optimization) variable, 68
dispersion estimators, 46, 63
diversification
function of, 10–13, 21
global, 202
and mean-variance optimization, 6
patterns of, 166
and systematic risk, 192
dividend yield, 139
Dow-Jones Industrial Average (DJIA), 128
downside deviation, 196
drawdown, as performance measure, 196–197, 198, 204–206, 208, 209, 211, 214
duality, 69–70, 93

efficient frontier
defined, 15
and input estimating, 26–30
and optimization tools, 96, 102–103, 104
in portfolio resampling, 50–52
ellipsoidal uncertainty
defined, 84–85
and factor exposure, 144, 149, 152, 154, 157, 161
and portfolio composition analysis, 166–170, 173, 177, 178
in robust portfolio problems, 93, 111–118, 121, 216, 220, 222, 223, 225
in robust portfolio strategy, 202, 208, 213–214
equality constraints, 68, 71, 88, 93
equality form, 71
equal-weighted (1/N) portfolio, 61–62, 185, 200, 201, 208, 209
equilibrium model, 54–58, 63
equity market
asset classes in, 166, 169
and factor models, 137, 139–143
and higher moments of returns, 127, 136
large-cap, 166, 169, 170, 183
small-cap, 166, 169, 170, 183
volatility of, 1
See also stock(s)
estimated frontier, 26–27, 28
estimation error(s)
and box uncertainty, 104–105
and ellipsoidal uncertainty, 113–116
and factor models, 147
in mean-variance analysis, 36, 37, 62, 63
estimation-error maximizing property, 53–54
estimation of input data for factor models, 17–19
for mean-variance analysis, 23–30
robust, 42–49, 62
estimation period, 203, 209
expected return
defined, 7, 21
estimating, 17, 47–48, 54–58, 141
and estimation error, 62, 104–105
and investor decisions, 13
and portfolio performance evaluation, 122, 201
shifts in, 31–33, 39
uncertainty in, 104, 105, 111, 165, 202, 208
variance around, 8–9, 15
expected shortfall, 199
factor(s)
categories of, 18–19
defined, 17, 21, 137
fundamental, 139
factor exposure
controlling, 158–161
importance of, 137–139, 164
and robust portfolios, 144–158
factor loading, 18, 159
factor models, 6, 17–19, 21, 114, 115, 138–143
Fama-French five factor model, 155
Fama-French three factor model, 139–141, 149, 154, 161
firm characteristic factors, 18–19
size, 139, 158, 164, 166
fmincon function (MATLAB), 97–98, 100, 108, 110–111, 118, 121
fundamental factors, 19, 139
geometric mean, 187–188, 190, 208
global financial crisis, 209–211, 214
global minimum-variance (GMV) portfolio
and efficient frontier, 15
and estimation error, 62
in global financial crisis, 210
and risk/return tradeoff, 96
and shrinkage estimators, 48
as strategy, 185, 201–202, 208, 209
global stock market, 202–203
growth stocks, 141, 166, 169
HML (high minus low) factor, 139, 141, 143
holding period return, 185–186, 187, 208
industry. See sector/industry
industry funds, 165, 174, 176, 178
inequality constraints, 68, 71, 81, 88, 93
inflation, 137
information ratio, 195, 204–206, 209, 214
interest rates, 137, 138
interior point methods, 88–91, 93
interval uncertainty set defined, 84, 85
and portfolio composition analysis, 166–170, 173, 177, 178
in robust portfolio problems, 93
investment decisions factors in, 13, 185
and model input shifts, 33
and skewness, 122, 127
and stochastic data, 58–59
uncertainty vs. risk in, 40–42, 62, 66–67, 92
investment strategies, conventional vs. robust, 200–211
investors’ views of market, 57–58, 63
James-Stein estimator, 48
Karush-Kuhn-Tucker (KKT) conditions, 146
Kenneth R. French Data Library, 165
kurtosis, 122–136

Lagrangian function, 69–70
large-cap growth equities, 166, 169, 170, 183
large-cap value equities, 166, 169, 170, 183
L-estimators, 45–46, 63
linear matrix inequalities (LMIs), 79
linear programming problems, 70–72, 80, 93
linear regression
 to compute beta, 192
 and estimation errors, 115
Lorentz cones, 76
losses
 estimating extreme, 34
 maximum, 197
 and robust portfolio strategy, 209
 and value-at-risk, 198–199
 worst-case, 33, 62, 67, 208, 209
macroeconomic factors, 18, 137, 139
market(s)
 crash/recovery in, 209–211
downturns in, 203
equilibrium state of, 54–55, 63
 See also specific markets
market capitalization, 139, 161, 166
market factor returns, 141, 161, 174
market indices
 as benchmarks, 200, 208, 209, 210
global, 202–203
S&P 500, 192, 193, 202–203
market portfolio, in CAPM, 56, 192
Markowitz, Harry, 1, 6
Markowitz model, 1, 96–104, 201
MATLAB
 description of, 4–5
 Financial Toolbox, 95–96
 fmincon function, 97–98, 100, 108, 110–111, 118, 121
 norminv function, 108
 quadprog function, 97, 99, 108, 109, 118, 121
 regress function, 139
 and ROME, 222
to solve optimization problems, 72, 74, 88, 95, 121, 216
 and YALMIP, 216, 217
MATLAB examples
 computing annual returns, 188
 computing CVaR, 36, 201
 computing holding period returns, 186
 computing information ratios, 195
 computing maximum drawdowns, 198
 computing portfolio alpha/beta, 193
 computing portfolio volatility, 190
 computing Sharpe ratios, 191
 computing Sortino ratios, 197
 computing tracking errors, 194
 computing VaR, CVaR, 36
 finding optimal mean-variance portfolio, 16–17
 plotting efficient frontier and finding portfolio with maximum Sharpe ratio, 102–103
 plotting efficient frontiers, 29–30
 return/risk computation, 8
 robust portfolio computation, 8
 robust portfolio problem written as QCQP, 131
setting upper/lower bounds on portfolio weights using `quadprog`, 99
solving constrained nonlinear programming, 92
solving linear programming, 72
solving mean-variance problem using closed-form solution, 98
solving mean-variance problem using `fmincon`, 100
solving mean-variance problem using `quadprog`, 99
solving quadratic programming, 75
solving robust problem with box uncertainty using CVX, 112
solving robust problem with box uncertainty using `fmincon`, 110–111
solving robust problem with box uncertainty using `quadprog`, 109
solving robust problem with ellipsoidal uncertainty using CVX, 120
solving robust problem with ellipsoidal uncertainty using `fmincon`, 119
max-factor portfolio, 147, 149
maximum drawdown, 196–197, 198, 204–206, 208, 209, 211, 212
maximum likelihood estimation (MLE), 45, 47
maximum return portfolio, 50
mean arithmetic, 188, 190, 208
calculating, 7
estimating, 137
in factor models, 159
geometric, 187–188, 190, 208
vs. median, 43–44
in modern portfolio theory, 6
portfolio sensitivity to, 30–33
mean absolute deviation, 46, 63
mean-variance
defined, 6
and return skewness, 124–129
mean-variance (M-V) portfolio(s)
defined, 15
function for finding, 20
in global financial crisis, 210, 214
as investment strategy, 185, 201–202, 208, 209
and Monte Carlo simulation, 50
sensitivity of, 1, 30–33, 39, 50, 53
mean-variance portfolio analysis
calculations for, 13–17, 21, 42, 93, 123
estimating input values, 17–19, 23–30, 54, 62–63
example, 19–20
function of, 6, 13, 21, 22, 122
with higher moments, 123–129, 136
improvements on, 34–37
optimization tools used in, 1–2, 96–104, 121
robust formulation for, 124
robustness of, 39, 211
shortcomings of, 22–33, 37, 39
median, as robust metric, 43–44
median absolute deviation, 46, 63
M-estimators, 44–45, 62
minimization/maximization (min/max) problems, 68, 104, 106, 111
minimum-variance portfolios, 15, 40, 50, 62, 74, 82
modern portfolio theory, 1, 6, 9, 13, 192
moments (of portfolio returns), 122–136
momentum, 170–171
momentum funds, 165, 171–174
Monte Carlo simulation, 49–52, 63
MSCI Barra US Total Market
Equity Model, 143
multifactor model, 18
multistage stochastic program, 59–60
NASDAQ, 165, 209
Newton’s method, 88, 89, 90
New York Stock Exchange (NYSE), 165, 209
nondiversifiable risk, 192
normal distribution, 23, 77–78
norminv function (MATLAB), 108
Northfield U.S. Fundamental Equity
Risk Model, 143
objective function, 68, 71, 88, 106, 108, 123, 213
1/N portfolio. See equal-weighted
(1/N) portfolio
optimization. See portfolio
optimization; robust portfolio
optimization
optimization tools
application to mean-variance
problems, 96–104
application to robust portfolios, 104–121
importance of, 95
limitations of, 216
See also software
optimization (decision) variable, 68
optimize function (YALMIP), 217, 220
overall market factor, 139
performance. See robust portfolio
performance
performance benchmarks, 193–194
performance metrics, 185–200, 213, 214
portfolio(s)
calculating return on, 7, 8
comparing multiple, 187
diversification example, 10–11
factor exposure of, 137–139, 158
Fama-French weighted, 141
higher moments of returns in, 122–136
rebalancing, 59, 203
robust performance of, 39, 185, 211
strategies for, 200–202
portfolio composition
approaches to, 185
based on investment style, 166–170
based on momentum, 170–174
based on stock beta attributes, 178–183
based on stock betas, 174–178
datasets used in, 164–166
portfolio management
computer tools used in, 4
and factor exposure, 137–138, 161
and higher moments of returns, 122, 125, 132
and industry/sector expertise, 54
and momentum, 171
and performance benchmarks, 193
and robust performance, 1–2
portfolio optimization
and market performance, 179
reformulating problems in, 216, 228
robust (see robust portfolio
optimization)
software for (see MATLAB; software)
portfolio resampling, 50–52
portfolio selection
Bayesian approach to, 54–58
calculations for, 13–17
equal-weighted, 61–62
in historical performance
example, 203
and input estimation, 26–30, 42–49, 62–63
mean-variance (see mean-variance portfolio analysis)
Monte Carlo simulation approach to, 49–52
robustness in, 39–40
stochastic programming in, 58–61
uncertainty in, 40–42, 58–61
portfolio weights
in composition analysis, 164, 166–183
constraining, 52–54, 63, 71, 97, 159, 160, 165
and resampling, 51
robustness of, 39
price-earnings ratio, 139
principal components analysis, 19
probability distributions
in Bayesian statistics, 54
for stock returns, 22–23, 32–34, 40, 77–78, 199
quadprog function (MATLAB), 97, 99, 108, 109, 118, 121
quadratically constrained quadratic program (QCQP), 129–130, 131
quadratic programming problems, 15–16, 72–74, 87, 93, 96, 97, 108, 118, 121, 144–145
R^2 value (goodness of fit), 139, 141, 150–152, 155, 156
randomness, as portfolio optimization factor, 58–61
regress function (MATLAB), 139
regression analysis, in factor models, 138, 139, 149, 150, 155
return(s)
active, 194
annual, 187–189
benchmark, 193–195
defined, 7
estimating, 17–19
higher moments of, 122–136
holding period, 185–186
and momentum, 171
in portfolio strategy comparison, 208–209
portfolio vs. factor, 139, 143, 147, 164
probability distributions for, 22–23, 33–34, 40, 54, 77–78, 199
rebalancing based on, 203
uncertainty of, 40
worst, 33, 62, 67, 208, 209
See also expected return
risk
and diversification, 10–11
and factor exposure, 161, 164
and investment strategy, 201, 208
measuring, 8–10, 21, 22–23, 33–37, 189, 190, 214
minimization calculation for, 13–15
and portfolio weights, 166
systematic, 192
vs. uncertainty, 40, 62
risk-adjusted performance, 190, 195, 208, 214
risk aversion, 40–42, 50, 156, 166, 167, 202
risk-free rate, 139, 190, 193
risk/return tradeoff, 15, 22, 42, 96, 189, 208, 214
robust counterparts, 81–87, 93, 104, 106–108, 121
robust estimators, 42–46
robustify function (YALMIP), 220
robustness
defined, 39–40, 62
increasing, 148–149, 151–152, 155–156, 158, 160, 161, 165
measuring, 211–214
robust portfolio(s)
asset allocation in, 166–170
datasets for composing, 164–165
robust portfolio(s) (Continued)
performance of (see robust portfolio performance)
as strategy, 185
robust portfolio optimization
and factor exposure, 137–139, 144–161
framework for, 37, 62–63
function of, 67–68, 225
and higher moments of returns, 122, 123–129, 136
optimization tools used in, 4, 104–121
and portfolio performance, 202, 209
skills required for, 2
software for (see MATLAB; software)
solving, 88–92, 228
stock-level analyses in, 164–166
robust portfolio performance
historical, 200–211, 214
metrics for, 185–200
ROME (Robust Optimization Made Easy), 222–227, 228

sample interquartile range (IQR), 46, 63
S&P 500, 192, 193
scenario uncertainty set, 83–84, 93
Schur complements, 80, 81
sdptar function (YALMIP), 217
second-order cone programming, 76–79, 80–81, 91, 93, 216
sector/industry
in factor models, 138–139, 149
in historical performance example, 210
in portfolio composition analysis, 174
in portfolio management, 54
in portfolio optimization problems, 114–115, 164
semidefinite programming, 79–81, 91, 93
semi-deviation
in performance measurement, 196
and positively skewed portfolios, 122
semivariance, 33
Sharpe, William, 190
Sharpe ratio, 100–104, 190–192, 195, 204–206, 208, 209, 214
short-selling
restricting, in optimization problems, 97, 104
in worst-case optimization, 106
shrinkage estimators, 47–49, 63
shrinkage intensity, 47, 48
shrinkage target, 47
simplex method, 68, 71
single-factor model, 17–18
skewness, 122–136
Slater’s condition, 70
small-cap growth equities, 166, 169, 170, 183
small-cap value equities, 166, 169, 170, 183
SMB (small minus big) factor, 139, 141, 143
software
advantages of using, 4
AIMMS, 228
ROME, 222–227, 228
YALMIP, 216–222, 228
See also MATLAB
Sortino ratio, 122, 196, 197, 204–206, 208, 209, 214
standard deviation
defined, 8
and ellipsoidal uncertainty, 113–114
function of, 21, 46
and higher moment controllability, 124–125
and negative correlation, 11
and performance measurement, 194, 196
in portfolio composition analysis, 166–167
and risk measurement, 189, 208
and stock momentum, 171, 172

Standard Industrial Classification (SIC), 165, 174

statistics
in factor models, 19
robust, for portfolio selection, 42–46

stochastic programming, 58–61, 63

stock(s)
analysis datasets for, 164–165
beta(s) of (see beta)
distribution of returns on, 23, 24–25, 40
estimating model inputs for, 25–28, 43–44
factor models for, 17–19, 114, 138–139, 161
large-cap, 138, 140, 141, 166, 169, 170, 183
in mean-variance example, 19–20
momentum of, 170–171
and portfolio diversification, 10–13
and portfolio resampling, 51–52
small-cap, 166, 169, 170, 183

See also portfolio weights; U.S. stock market

stock markets
global, 202
U.S., 140, 164, 171

See also specific markets

systematic risk, 192

target return, 13

tracking error, as performance measure, 192–194, 195, 204–206, 209, 211, 212, 214

Treasury bill rate, 141
trimmed mean, 46, 63
turnover, as performance measure, 204–206, 208, 209, 214
two-stage stochastic linear program with recourse, 59

uncertainty
aversion to, 40–42, 62
in optimization problem data, 58–61, 81, 121
and optimization software, 216
and portfolio factor control, 158
and portfolio resampling, 51
and portfolio strategy, 202, 208, 214

See also specific types

uncertainty sets
in AIMMS, 228
in factor models, 151, 156
and higher moment returns, 123, 136
in robust optimization, 2, 82–87, 93, 104, 121, 212
in ROME, 222, 225, 227
in YALMIP, 216, 218–219

unemployment rates, 137

U.S. stock market
categories within, 164
momentum funds in, 171
performance data from financial crisis, 209–211, 214
returns in, 140

value-at-risk (VaR)
function of, 33–36
as performance measurement, 197–199, 204–206, 208, 209, 211, 212, 214

value stocks, 141, 166, 169

variability, measures of, 46, 139

variance
calculating, 8–9
in factor models, 17, 137, 147–148, 160
variance (Continued)
function of, 8, 21
and investor decisions, 13
limitations in risk measurement, 22–23
matrix form, 9–10
in modern portfolio theory, 6
and portfolio performance
evaluation, 122, 196
portfolio sensitivity to, 30–33
volatility
in asset return calculation, 23
of equity market, 1, 127
and factor models, 139
during global financial crisis, 210–212, 214
of interest rates, 138

and momentum extremes, 171
as performance measure,
189–190, 204–206, 208,
209, 214
of portfolio, 201–202
and skewness, 125, 127, 128

Wilshire 5000 Total Market Index, 193
Winsorized mean, 46, 63
worst-case loss, 33, 62, 67, 208, 209
worst-case optimization, 62,
66–67, 83, 92, 93, 104, 106,
116–117, 136, 179

YALMIP, 216–222, 228