INDEX

Absolute number, missing data and, 149
Access issues, specimen analysis, 318–319
ACCTRAN (accelerated transformation),
 parsimony analysis, character optimization, 176–178
Active allopatric speciation, 41–49
Acyclic graphs, 86–87
 Nelson cladograms, 92–99
 node-based phylogenetic trees, 89–91
 unrooted trees, 89–91, 101–102
Adams consensus trees, parsimony analysis, 195
Additive binary coding, character transformation and, 145–146
Additive trees, characteristics of, 103–104
Ahistorical relationships:
 kind properties, 112–113
 shared character states, 111
Akaike criterion, maximum likelihood, parametric phylogenetics, 219
Algorithmic approaches, parsimony analysis, 166–168
Alignment, similarity in position, molecular characters, 126–129
“All A are B” hypothesis, phylogenetic systematics, 17
“All A are B in 1970” hypothesis, phylogenetic systematics, 17
Allopatric speciation:
 basic principles, 41–49
 comparisons of, 44–49
 mode I vs. mode II, 44–49
 mode II peripatric speciation, 44
 punctuated equilibria, 52–54
 vicariance, 42–44
Allopatry, reproductive isolation and, 34–36
Alternating Group Rule, parsimony analysis, 161–162
Anagenesis, phylogenetics and evolution and, 12
Analogs, of organisms, 15
Analogy, homology vs., 114–115
Anatomical singular character:
 conjunction and, 136
 defined, 108
Ancestral species:
 lineage edges, tree graphs and character evolution, 100–101
 phylogenetic classification, Linnean Hierarchy, 241–243
Annotation conventions, phylogenetic classification, Linnean Hierarchy, 236–245
Apomorphy:
 monophyletic tree graphs and, 104–106
 of organisms, 14–15
A posteriori argumentation, parsimony analysis, 166
A priori alignment:
 parsimony analysis, 196–197
 similarity in position, molecular characters, 129
Area cladogram:
 geodispersal and, 267–271
 speciation mode identification, fossil record, 50–54
Area distributions, biogeography, modified Brooks parsimony analysis, 288
Areas, biogeography and, 271–278
Areas of endemism (AOE), biogeography and:
 biotas and, 272–278
 Brooks Parsimony Analysis, 283–285
Aristotelian logic, phylogenetic classification, PhyloCode controversy, 250–253
Asexual reproduction, evolutionary species concept and, 31–34
Atlases, nomenclature rules concerning, 333
Auxiliary principle:
 congruence and, 136–137
 homology discovery and testing and, 123
 maximum likelihood, parametric phylogenetics, 217–218
 phylogenetic characters and homology, 118
Binary coding, character transformation and, 144–146
Binomials:
 evolutionary species concept and, 33–34
 successional species, 39
Biodiversity:
 biogeography and, 308–310
 specimen data on, 327–329
Biogeography:
 areas and biotas, 271–278
 biodiversity crises, 308–310
 Brooks Parsimony Analysis, 293
 climate and geological change hierarchies, 264–265
 component analysis, 294–295
 dispersal concepts, 265–271
 dispersal vicariance analysis, 295–297
 ecological vs. phylogenetic concepts, congruence and, 261–264
 evolutionary theory and, 310–314
 extinction effects, 297–301
 modified Brooks Parsimony Analysis, 280–293
 parsimony analysis of endemity, 297
 phylogenetic analysis:
 techniques, 278–280
 tree comparison, 293–294
 phylogeography, with-species, 307–308
 single-clade tracking, 305–307
 speciation and, 39–41
 statistical approaches, 301–305
 systematics and, 7
 theoretical background, 260–261
 vicariance, 265
Biological classifications, 233–234
Biological diversity, phylogenetic systematics and, 4–6
Biological species concept (BSC):
 basic principles, 30–31
 of Ghiselin, 33
 reproductive isolation and, 34–36
 speciation and ecology and, 54
Biotas, biogeography and, 271–278
 extinction effects, 297–301
Bootstrap techniques, parsimony analysis, 190–192
Botanical literature, nomenclature publication and rules, 335–336
Bracket keys, nomenclature publication and rules, 344
Branch-and-bound algorithm, parsimony analysis, tree search, 171
Branch-swapping, parsimony analysis, tree topologies, 173–175
Bremer support, parsimony analysis, 189–190
Brooks Parsimony Analysis (BPA):
 biogeography and, 293
 historical biogeography, 280–293
Camin-Sokal parsimony, 154
Cataloging procedures:
 nomenclature rules concerning, 333
 specimen curation, 324–326
Categories:
 phylogenetic classification, Linnean Hierarchy, 234–245
 principles of, 16
Center of origin, geodispersal and, 267
Characters:
 continuous data, 138
 discrete data, 138–139
 evolution:
 gene trees, 99
 logical consistency and, 75–79
 Nelson cladograms and variations in, 96–99
 of organisms, 13
 paraphyletic misrepresentation of, 80–81
 phylogenetic systematics and, 7
 population aggregation analysis, 56–57
 tree graphs and, 100–101
 historical states, 111–112
homology and:
 applications, 137–150
 basic concepts, 107–109
 complex or separate characters, 147
 missing data, 147–149
 monophyletic higher taxa, 74–75
 morphometrics and phylogenetics, 140–144
 paraphyletic misrepresentation of, 80–81
 phylogenetics and, 118
 presence-absence coding, 149–150
 qualitative vs. quantitative, 139–140
 theoretical background, 114–122
 transformation series and coding, 144–146
 match, defined, 13
 overlap, 139
parsimony analysis:
 basic principles, 153–154
 elimination-based weighting, 199
 Olenelloid trilobites example, 184–188
 optimization, 176–179
 polarization, 159–162
 a posteriori argumentation, 166
 synapomorphies and independence of, 189
 weighting of, 196–199
 phylogenetic, 118
 as properties, 109–112
 qualitative data, 138–140
 quantitative data, 138–140
 shared states, 110–111
 conjunction and, 133–136
 vague characters, avoidance of, 139–140
Checklists, nomenclature rules concerning, 333
Chronospecies, basic principles, 39
Circularity, congruence and, 136–137
Clade categories:
 phylogenetic classification:
 Linnean Hierarchy, 237–245
 name stability, 253–255
 PhyloCode system, 248–255
 proper names for, 256–257
Cladistic biogeography, dispersal and, 266–271
Cladistic haplotype aggregation (CHA), species limit determination, 64
Cladistic Species Concept (CISC), 34
Cladogenesis:
 monophyletic natural higher taxa and, 73–74
 phylogenetics and evolution and, 11–12
 sympatric speciation and, 49–50
Cladograms:
 basic properties, 92–99
 defined, 104
 historical biogeography, Brooks Parsimony Analysis (BPA), 280–293
Class category, phylogenetic classification, Linnean Hierarchy, 236–245
Classic homology, 117–118
Classification:
 biological, 233–234
 convenience classification, 233
 historical, 231–232
 logical consistency and evolution of, 75–79
 of natural kinds, 230–232
 principles of, 15–16
 theoretical background, 229–230
 tree, defined, 104
Climate change:
 biodiversity and ecological data management concerning, 329
 phylogenetic biogeography, 264–265
Clustal program, a priori alignment using, 129
Coding:
 character transformation and, 144–146
 complex vs. separate characters, 147
 presence-absence coding, 149–150
Coevolutionary relationships, biogeography
 tracking, 306–307
Cohesion Species Concept (CoSC), 34
 species limit determination, nested clade
 analysis, 65
Collection methodologies, specimen
 collections, 319–327
Comparative biology:
 discipline and basic principles, 8
 nomenclature rules concerning, 342
 renaissance in, 1–3
Compilospecies, basic principles, 37–38
Component analysis, biogeography and,
 294–295
Composite coding, complex vs. separate
 characters, 147
Congruence:
 biogeography and, 261–264
 extinction effects, 298–301
 circularity avoidance and, 136–137
 homology discovery and testing, 124
 phylogenetic homology, 136
Conjunction, homology discovery and
 testing, 124, 132–136
Consensus tree:
 biogeography and, component analysis,
 295
 defined, 104
 parsimony analysis, 193–195
Conserved names, nomenclature rules
 concerning, 347
Consistency indices, parsimony analysis,
 180–184
Constituents, phylogenetic classifications,
 233–234
Continental blocks, biogeography and,
 274–278
Continuous data, character states, 138
Contour mapping, maximum likelihood,
 parametric phylogenetics, 207–209
Convenience classifications, 233
Correlated distance matrix method
 (Coor-D), species limit
 determination, 61
Cost matrices, a priori weighting, parsimony
 analysis, 197
Covariance, areas and areas of endemism,
 272–273
Covering laws, process-based concepts and,
 29–30
Creationism, vulnerability and, 21
CSE Manual for Authors, Editors, and
 Publishers, 337
Curation methods, specimen collections,
 323–326
Cyclic graphs:
 basic principles, 91
 as networks, 104
 theoretical background, 86–87
Cyclic phylogeny, Nelson cladograms,
 96–99
Darwin Core (DwC), specimen access,
 319
Decisive polarity, parsimony analysis,
 160–162
DEC Model of likelihood interference,
 biogeography, 301–305
Deformational morphometrics, character
 states and, 141–144
DELTRAN (delayed transformation),
 parsimony analysis, character
 optimization, 176, 178–179
Descent, homologous relationships and,
 120–121
Description concepts, nomenclature rules
 concerning, 341
Descriptivist naming philosophy, taxa
 proper names, 255–257
Diagnosable clusters, phylogenetic species
 concepts, 36–37
Diagnoses, nomenclature rules concerning,
 340–341
Dichotomous keys, nomenclature
 publication and rules, 343–345
Dichotomous species, Nelson cladograms,
 94–99
Diphyletic homology, 117
Discrete data, character states, 138–139
Disease theory, natural taxa and, 68–69
Dispersal theory, biogeography and,
 265–271
 evolutionary effects, 310–314
 modified Brooks Parsimony Analysis,
 289–293
 statistical analysis, 301–305
Dispersal vicariance analysis (DIVA),
 biogeography, 295–296
Distributional data, nomenclature rules concerning, 342–343
Divergence, parapatric speciation and, 49
Divergent sympatric speciation, 49–50
Dollo parsimony, 154
“Dumbell” vicariance, allopatric speciation, 42–44

Ecological data:
biogeography and congruence, 261–264
evolutionary species concept, speciation and, 54
species limit determination, 55–61
in specimens, 327–329
Ecological Species Concept, basic principles, 37
Economic hierarchy, process-based concepts and, 30
Empirical techniques, species limit determination, 54–65
Ensemble consistency indices, parsimony analysis, 183–184
Epiphenotype, of organisms, 15
Equivocal polarity, parsimony analysis, 160–162
Essentialist theory, phylogenetic classification and, 250–253
Etymology, in taxonomic scholarship, 343–344
Event-based modeling, biogeography, 296–297
Evolutionary homology, 117–118
Evolutionary novelty, of organisms, 13–14
Evolutionary species concept (ESC):
basic principles, 30–34
justifications for, 32–33
speciation and ecology and, 54
variations, 33–34
Evolutionary taxonomy, principles of, 3–4
Evolutionary theory:
biogeography and, 310–314
theoretical background, 260–261
vicariance, 265
phylogenetic systematics and, 4–6, 11–13, 18–19
process-based concepts and, 29–30
species as kinds and, 25–26
species as sets and, 26–27
tree graphs and, 85–87
Exchange programs, specimen collections, 322–323
Exhaustive search, parsimony analysis, tree optimality, 171
Extensionality, of sets, 109–110
Extinction, biogeography and, 297–301
Factorization, character analysis and, 108–109
Falsification, phylogenetics theory and, 20–21
Family category, phylogenetic classification, Linnean Hierarchy, 234–245
Faunistic works, nomenclature publication and rules, 332–333
Field data, specimen collection, 321–326
Field for recombination (FFR), species limit determination, 58–59
First Doublet Rule, parsimony analysis, 161–162
Fitch parsimony:
basic principles, 154
biogeography, area states optimization, 285–288
a priori weighting, 197
tree length determination, 170–171
Fixed character, defined, 57–58
Fixed differences, species limit determination, 57–58
Floristic works, nomenclature publication and rules, 332–333
Fossil record:
biogeography and, 300–301
biodiversity issues, 309–310
goodispersal and, 268–271
morphological/genetic discontinuities and, 56
phylogenetic classification, Linnean Hierarchy, 237–245
speciation mode identification through, 50–54
Fusing techniques, parsimony analysis, tree topologies, 175
Gaps in alignment, similarity in position, molecular characters, 126–129
GARP algorithm, biodiversity and ecological data management, 327–329
Gegenbaur’s origin hypothesis, intrinsic similarity and, 129–131
Genealogical descent:
 phylogenetics and evolution and, 11
 systematics and, 4–6
Genealogical Exclusivity Method (EXCL),
 species limit determination, 62–65
General lineage concept (GLC), 34
General parsimony, basic principles, 154
General time reversible (GTR) model,
 maximum likelihood, parametric
 phylogenetics, 216–217
Genetic algorithms, biodiversity and
 ecological data management,
 327–329
Genetic Concordance Concept, basic
 principles, 37
Genetic Distance Good and Wake
 (GenDGW) method, species limit
 determination, 59–61
Genetic Distance Highton (GenDh)
 approach, species limit
 determination, 61
Genetic distance method, species limit
 determination, 60–61
Gene trees:
 basic properties, 99
 Nelson cladograms and, 94–99
Genus category, phylogenetic classification,
 Linnean Hierarchy, 234–245
Geodispersal, biogeography and, 266–271
 modified Brooks Parsimony Analysis,
 289–293
Geographic variation, in specimens,
 316–317
Geological change, phylogenetic
 biogeography and, 264–265
Geometric morphometrics, character states
 and, 141–144
Germ theory, natural taxa and, 68–69
Global biodiversity assessments, species
 limit determination, 55–61
Global optimum, parsimony analysis, tree
 search, 172
Globin evolution, conjunction, 132–136
Goodness-of-fit statistic, maximum
 likelihood, parametric phylogenetics,
 218–219
Graphics, nomenclature rules concerning,
 341
Graph theory:
 node-based phylogenetic trees, 89–91
 tree graphs and, 86–87
Grouping Rule, parsimony analysis, 155
Groups-of-species-as-taxa, relationship
 concepts and, 73
 g-value, parsimony analysis, retention index
 (ri), 181–182
Handbooks and field guides, nomenclature
 rules, 334
Haplotype mapping:
 cyclic graphs, 91
 Nelson cladograms and, 94–99
 nested clade analysis, 65
Haszprunar’s homology thesis, 115–117
 phylogenetic homoplasy and, 120–121
Hawaiian terrestrial floras and faunas,
 allopatric speciation, 48–49
Hennigan Species Concept (HSC),
 reproductive isolation and, 35–36
Hennigian argumentation, parsimony
 analysis, 154–166
 algorithmic vs. optimality approaches,
 166–168
Leysera phylogenetic relationship
 example, 162–166
 polarization, 156–162
Hennig’s relationship concepts:
 congruence with Patterson, 136
 historical context, 72–73
 paraphyly and polyphyly, 82–83
 phylogenetic classification and, 230
 Linnean Hierarchy, 239–245
Heritable characters, systematics and,
 108–109
Hertzsprung-Russell (H-R) diagram,
 natural kind classification,
 231–232
Heteropatric speciation, sympatric
 speciation and, 50
Heuristic search, parsimony analysis, tree
 search, 171–172
Historical biogeography:
 areas and biotas, 271–278
 biodiversity crises, 308–310
 Brooks Parsimony Analysis, 293
 climate and geological change hierarchies,
 264–265
 component analysis, 294–295
 dispersal concepts, 265–271
 dispersal vicariance analysis, 295–297
 ecological vs. phylogenetic concepts,
 congruence and, 261–264
 evolutionary theory and, 310–314
 extinction effects, 297–301
Historical biogeography (cont’d)
modified Brooks Parsimony Analysis, 280–293
parsimony analysis of endemicity, 297
phylogenetic analysis:
 techniques, 278–280
 tree comparisons, 293–294
phylogeography, within-species, 307–308
single-clade tracking, 305–307
statistical approaches, 301–305
theoretical background, 260–261
vicariance, 265
Historical character states, properties as, 112–113
Historical classifications, 231–233
 of groups, 113–114
 natural kinds, 113–114
 shared character states, 111
Holomorphology, of organisms, 15
Homeostatic cluster kinds, theory of, 24–26
Homolog, defined, 114–115
Homology:
 characters and:
 applications, 137–150
 basic concepts, 107–109
 complex or separate characters, 147
 missing data, 147–149
 monophyletic higher taxa, 74–75
 morphometrics and phylogenetics, 140–144
 paraphyletic misrepresentation of, 80–81
 phylogenetics and, 118
 presence-absence coding, 149–150
 qualitative vs. quantitative, 139–140
 theoretical background, 114–122
 transformation series and coding, 144–146
 di- and polyphyletic homology, 117
 discovery and testing of, 122–137
 congruence, 136–137
 conjunction, 132–136
 Patterson’s tests, 124
 phylogenetics, 136–137
 similarity and Remane’s criteria, 124–132
 Haszprunar’s synthesis, 115–117
 historical classifications and, 231–233
 iterative, 115–116
 ontogenetic, 115–116
 of organisms, 14
 phylogenetic characters and, 118
 presence-absence coding and, 149–150
 supraspecific, 117
 systematics and, 7, 117–118
 taxic homologies, monophyletic groups, 119–121
 theoretical background, 114–122
 transformational, 121–122
Homonomous structures, 115
Homonyms, nomenclature rules concerning, 339–340, 347
Homoplasy:
 of organisms, 14–15
 parsimony analysis and rules for, 155
 phylogenetic, 119–121
 similarity in position, molecular characters, 125–129
Homoplasy, paraphyletic misrepresentation of homologies as, 80–81
Homoploid speciation, sympatric speciation and, 49–50
Hull’s criteria, logical consistency and, 75–79
Humphries’ hypothesis, phylogenetic classification, Linnean Hierarchy, 244–245
Hybridization:
 Nelson cladograms, 96–99
 parapatric speciation and, 49
 phylogenetic classification, Linnean Hierarchy, 244–245
Hybrid zone barrier analysis (HZB), species limit determination, 61
Identification procedures, specimen curation, 323–324
Identity, shared character states and, 110–111
Illustrations, nomenclature rules concerning, 341
Immigration theory, dispersal and biogeography, 266–271
Incertae sedis convention, phylogenetic classification, Linnean Hierarchy, 240–245
Inclusion/Exclusion Rule, parsimony analysis, 155
Incongruence length difference. See also Congruence parsimony analysis, 193
Indented keys, nomenclature publication and rules, 344

Individuals:
species as, 27
 morphological species concept and, 28
 phenetic species concept, 28
tree graphs and, 99–100

Ingroup comparisons:
 basic principles, 10–11
 parsimony analysis, 158

Ingroup node, parsimony analysis, 158

Instantaneous rate component, maximum likelihood, parametric phylogenetics, 215–216

Intermediate stacking transformation, homology discovery and testing, 131–132

Internet, specimen access on, 318–319

Intrinsic similarity, homology discovery and testing, 129–131

Invasive species, predictions concerning, 329

Iterative homology, 115–116

Jackknife techniques, parsimony analysis, 190–191

Joint probabilities, parametric phylogenetics, Bayesian analysis, 219–226

Jukes-Cantor model, maximum likelihood, parametric phylogenetics, 211–212, 215–219

Keys, nomenclature publication and rules, 332, 343–345

Kimura model, maximum likelihood, parametric phylogenetics, 215–216

Kinds, species as, 24–26
 ahistorical properties, 112–113
 natural kinds, 113–114
 “speciesness” principles and, 27–29

Kingdom category, phylogenetic classification, Linnean Hierarchy, 236–245

Lineage concept, evolutionary species concept and, 31–34
Lineage splits, speciation and, 4–6
Linear coding, character transformation and, 144–146

Linnean Hierarchy, 16
 naturalness of, 67–68
 phylogenetic classification, 234–245
 ancestors, 241–243
 annotation conventions, 236–241
 category definitions, 235–236
 future trends, 257–258
 hybrid taxa and species, 244–245

PhyloCode vs., 248–255

Literature sources:
nomenclature publication and rules, 334–336
 specimen analysis, 318

Loan programs, specimen collections, 322–323

Locality data, specimen collection, 321–326

Local optimum search, parsimony analysis, tree search, 172

Logical consistency:
 natural supraspecific taxa, 74–79
 nonmonophyletic paraphyletic and polyphyletic groups, 81–83
 phylogenetic classification, 258

Log likelihood ratio test, maximum likelihood, parametric phylogenetics, 218–219

Long branch attraction, parametric phylogenetics, likelihood models, 226–227

Machine learning algorithms, biodiversity and ecological data management, 327–329

Macroecology, species limit determination, 55–61

Macroevolutionary theory:
 speciation and, 19
 species limit determination, 55–61

Maddison character polarity, parsimony analysis, 160–162

MAFFT program, a priori alignment using, 129

Majority-rule consensus trees, parsimony analysis, 194–195

Mantel tests, species limit determination, 61
Mapping techniques, specimen collection, 320
Markov Chain Monte Carlo (MCMC) integration, parametric phylogenetics, Bayesian inference, 223–226
Markov processes, maximum likelihood, parametric phylogenetics, 217–218
Match (character match), of organisms, 13
Matrix building and analysis, homology discovery and testing and, 123
MaxEnt algorithm, biodiversity and ecological data management, 327–329
Maximum likelihood analysis:
biogeography, 302–305
parametric phylogenetics, 203–219
model selection, 218–219
simplicity, 209–210
tree topologies, 212–218
tree structures:
defined, 104
parsimony analysis, 166–168
Mayr’s Law:
naturalness concepts and, 67–68
reproductive isolation and, 34–36
McKenna’s proposal, phylogenetic classification, Linnean Hierarchy, 239–245
Mean values, maximum likelihood, parametric phylogenetics, 206–209
Mendelian population:
natural taxa and, 69
species as kinds and, 24–25
Microvicariance, allopatric speciation, 42–49
Milankovitch cycles, phylogenetic biogeography and, 264–265
Millian naming philosophy, taxa proper names, 255–257
Minimal redundancy, phylogenetic classification, Linnean Hierarchy, 237–245
Minimum monophyly:
nonmonophyletic paraphyletic and polyphyletic groups and, 83
supraspecific taxa, 71
Minimum tree length, parsimony analysis, 166–168
Misinformative classification, logical consistency and evolution of, 76–79
Missing data, character states, 147–149
Mitochondrial DNA (mtDNA) clusters, species limit determination, 61
Modified Brooks Parsimony Analysis (MBPA), historical biogeography, 280–293
flowchart, 282–284
Molecular characters, similarity in position, 125–129
Monophyletic groups:
basic principles, 9
congruence and, 136–137
evolutionary species concept and, 32–34
historical context, 72
logical consistency, 74–79
natural higher taxa as, 73–74
naturalness of, 67–68
natural taxa and, 70–72
Nelson cladograms, 93–99
node-based and stem-based groups, 83
parsimony analysis, synapomorphies, 188–189
phylogenetic classification, 229–230
constituents and grouping, 233–234
phylogenetic species concepts, 36–37
process-based concepts and, 29–30
speciation and, 18–21
taxic homology and, 119–121
tree graphs and, 104–106
Monotypic taxa, naturalness concepts and, 68
Monte Carlo techniques, parametric phylogenetics, Bayesian inference, 223–226
Morphological/ genetic discontinuities (M/GC), species limit determination, 55–56
Morphological Species Concept (MSC), basic principles, 37
Morphology:
conjunction and, 134–136
similarity in position, 124–125
Morphometrics, character states, 140–144
Most parsimonious resolutions (MPRs), parsimony analysis, character optimization, 176–179
Multilocus allelic frequency data, genetic distance Good and Wake (GenDGW) method, 59–61
MUSCLE program, a priori alignment using, 129
Museum collections, importance of, 326–327
Name presentation, nomenclature rules concerning, 338–339
conserved names, 347
correct/valid name, 346
name endings, 347
Natural kind theory:
 ahistorical relationships, 112–113
classification, 230–232
historical groups and, 113–114
species as kinds and, 25–26
Naturalness, supraspecific taxa and concepts of, 67–68
Natural taxa:
 basic properties, 68–69
 historical context for, 72
 logical consistency criterion, 74–79
 as monophyletic groups, 73–74
 relationship classifications, 70–72
Nearest-neighbor interchanges (NNI), parsimony analysis, tree topologies, 173–175
Nelson cladograms:
 basic properties, 92–99
 character evolution, 100–101
 phylogenetic classification, Linnean Hierarchy, 239–245
Nelson trees, basic properties, 92–99
Neo-Darwinian Synthesis, 3
NEODAT database, specimen access, 319
Nested clade analysis (NCA), species limit determination, 65
Network, defined, 104
Noble gas, natural kind theory and, 26
Node-based monophyletic groups, 83
tree graphs and, 104–106
Node-based phylogenetic trees:
 basic properties, 89–91
 character evolution, 100–101
 Nelson cladograms and, 96–99
Node rotation, tree graphs, 102–103
Noise sources, biogeographic analysis, 279–280
Nomenclature codes:
 phylogenetic classification:
 Linnean Hierarchy, 234–245
 PhyloCode stability in clade content, 253–255
taxa proper names, 255–257
publication and rules of, 331–348
 atlases, 333
catalogs, 333
checklists, 333
faunistical and floristic works, 332–333
handbooks and field guides, 334
keys, 332
literature sources, 334–336
new species descriptions, 331–332
phylogenetic analyses, 334
revisionary studies, 332
systematics studies publications, 337–345
taxonomic scholarship, 334
Nominal kinds, characteristics of, 25–26
Nonadditive binary coding, character transformation and, 145–146
Nonmonophyly, paraphyletic and polyphyletic groups, 81–83
Nonparametric bootstrap technique, parsimony analysis, 191–192
Nontransformational phylogenetics, parsimony analysis, 199–202
Nontree-based techniques, species limit determination, 55–61
North American freshwater fishes, allopatric speciation, 48–49
Nuisance parameters, parametric phylogenetics:
 Bayesian analysis, 222–226
 maximum likelihood, 218–219
Numerical identity, shared character states, 110–111
Numerical prefix systems, phylogenetic classification, 245–248
Observation, scientific hypotheses and, 20–21
Olenelloid trilobites example, parsimony analysis, 184–188
Ontogenetic homology, 115–116
Ontological issues:
 phylogenetic systematics and, 6
taxa hypotheses, 19–21
Operational concepts, species theory and, 28–29
Optimality approaches:
 biogeography, Fitch parsimony, 285–288
 maximum likelihood, parametric phylogenetics, 212–219
 parsimony analysis, 166–169
 character optimization, 176–179
Order category, phylogenetic classification, Linnean Hierarchy, 236–245
Organisms:
- attributes of, 13–16
- basic principles, 9–10

Outgroup comparisons:
- basic principles, 10
- parsimony analysis:
 - polarization by, 156–157
 - sister group, 158
- phylogenetics and, 2–3

Outgroup node, parsimony analysis, 159

Outgroup Rule, parsimony analysis, 157–158

Overlap, character states, 139

Paired appendages, nontransformational phylogenetics, 200–202

Paired homologs, nontransformational phylogenetics, 200–202

Paired-sites tests, parsimony analysis, statistical tree comparisons, 195

Paralogous gene sequences, conjunction, 132–136

Parametric phylogenetics:
- basic principles, 203–205
- Bayesian analysis, 219–226
- maximum likelihood techniques, 205–219
 - intuitive theory, 210–212
 - model selection, 218–219
 - simplicity, 209–210
 - tree topologies, 212–218
 - model interpretation, 226–227

Parapatric speciation, basic principles, 49

Paraphyletic group:
- character misrepresentation and, 80–81
- historical context, 72
- natural taxa and, 70–72
- nonmonophyletic forms, 81–83

Paraphyletic groups, basic principles, 9–10

Paraphyly, development of, 1–3

Parsimony and parsimony analysis:
- algorithmic vs. optimality approaches, 166–168
- basic hypotheses, 20–21
- biogeography, parsimony analysis of endemism (PAE), 297
- character weighting, 196–199
- character elimination, 199
- performance weighting, 198–199
- a priori weighting, 196–197
- classic Hennigian argumentation, 154–166
- Leysera phylogenetic relationship example, 162–166
- polarization, 156–162
- congruence and, 136–137
- definitions and basic principles, 152–154
- historical biogeography, Modified Brooks Parsimony Analysis (MBPA), 280–293
- homology discovery and testing and, 123
- Nelson cladograms, 94–99
- nontransformational phylogenetics, 199–202
- Olenelloid trilobite example, 184–188
- optimality-driven parsimony, 168–169
- parametric phylogenetics:
 - likelihood models and, 226–227
 - maximum likelihood and, 209–219
- phylogenetic systematics and, 7
- a posteriori character argumentation, 166
- speciation mode identification, fossil record, 50–54
- support evaluation, 188–193
 - bootstrap techniques, 191–192
 - Bremer support, 189–190
 - incongruence length difference, 193
 - jackknife techniques, 190–191
 - permutation tests, 192–193
 - skewness measurements, 193
 - synapomorphy comparisons, 188–189
- tree techniques, 169–179
 - character optimization, 176–179
 - consensus comparisons, 193–195
 - consistency indices, 180–184
 - length determination, 169–171, 179–180
 - parsimony ratchet, 175–176
 - random addition searches, 172–173
 - simulated annealing, 176
 - statistical comparisons, 195
 - topology rearrangement, 173–175
- Wagner tree, 104

Parsimony ratchet, basic principles, 175–176

Part-whole relationships:
- historical character states, 112
- phylogenetic classification, PhyloCode system, 253–255

Passive allopatric speciation, 41–49

Patristic distance, additive trees, 103–104

Patterson-Rosen “plesion” category, phylogenetic classification, Linnean Hierarchy, 239–245
INDEX

Patterson’s tests:
 congruence with Hennig and, 136
 homology discovery and testing and, 124
Performance-based weighting, parsimony analysis, 198
Periodic Table:
 natural kind classification, 231
 natural taxa and, 69
Peripatric (peripheral isolate) speciation:
 basic principles, 44
 mode identification, fossil record, 52–54
Permutation tests, parsimony analysis, 192–193
Phenetics:
 defined, 3
 homology and, 117–118
Phenetic Species Concept (PSC), basic principles, 37
Phenotype, of organisms, 15–16
Philosophy, systematics and, 16–21
Phyletic gradualism, Nelson cladograms and, 94–99
PhyloCode system, phylogenetic classification, 248–255
 clade content and name stability, 253–255
 controversies, 250–253
Phylogenetic Analysis for Comparing Trees (PACT), biogeography and, 293–294
Phylogenetic biogeography:
 analytical methods in, 278–280
 areas and biotas, 274–278
 climate and geological change and, 264–265
 congruence and, 261–264
 dispersal and, 265–271
Phylogenetic classification:
 biological classifications, 233–234
 convenience classifications, 233
 historical classifications (systematizations), 231–233
 Linnean hierarchy, 234–245
 future trends, 257–258
 logical consistency, 258
 morphometrics and, 140–144
 natural kinds, 230–231
 Nelson cladograms, 92–99
 numerical prefix systems, 245–247
 overview, 229–230
 PhyloCode system, 248–255
 clade content and name stability, 253–255
 controversies, 250–253
 principles of, 16
 process-based concepts and, 29–30
 proper taxa names, 255–257
 qualitative data, 138–140
 quantitative data, 138–140
 speciation and, 39–41
 fossil record identification, 50–54
 speciation and ecology and, 54
 stem-based phylogenetic trees, 87–89
 subordination by indentation schemes, 247–248
Phylogenetic/composite tree-based (PCT) methods, species limit determination, 61–65
Phylogenetic homology, 117–119
 congruence and, 136
Phylogenetic homoplasy, monophyletic groups, 119–121
Phylogenetic hypotheses, form of, 19–21
Phylogenetic species concepts, basic principles, 36–37
Phylogenetic trees, 87–91
 Nelson cladograms, 92–99
 node-based trees, 89–91
 phylogenetic systematics and, 6–7
 speciation and, 4–6
 mode identification, fossil record, 51–54
 stem-based trees, 87–89
 unrooted trees, 101–102
Phylogeography, within-species biogeography, 307–308
Phylogram, defined, 104
Phylum/division category, phylogenetic classification, Linnean Hierarchy, 236–245
Plesiomorphy, of organisms, 14–15
Plesion concept, phylogenetic classification, Linnean Hierarchy, 239–245
Polarization, parsimony analysis, 156–162
Polyclave keys, nomenclature publication and rules, 343–345
Polyphyletic groups:
 basic principles, 9–10
 historical context, 72
 homology, 117
 natural taxa and, 70–72
 nonmonophyletic forms, 81–83
Popperian theory, systematics and, 19–21
Population aggregation analysis (PAA): morphological/genetic discontinuities and, 55–56
species limit determination, 56–57
cladistic haplotype aggregation, 64
Position, criterion of, similarity in:
molecular characters, 125–129
morphological and molecular data, 124–125
Posterior probability density, parametric phylogenetics, Bayesian analysis, 221–226
POY program, simultaneous alignment/tree finding, 129
Presence-absence coding, homology and, 149–150
Presence-only data, biodiversity and ecological data management, 327–329
Preservation techniques, specimen collection, 320
Principal components analysis, character state morphometrics, 143–144
Priority, nomenclature publication and rules, 346–347
Probability density, maximum likelihood, parametric phylogenetics, 206–209
Process theories:
natural kinds and, 25–26
phylogenetic biogeography and hierarchies of climate/geological change, 264–265
reproductive isolation and, 34–36
species characterization and, 29–30
Properties:
ahistorical kinds, 112–113
characters as, 109–110
historical character states as, 112–113
Proportional number, missing data and, 149
Punctuated equilibria:
allopatric speciation, 42–49
speciation mode identification, fossil record, 52–54
Q-matrix:
biogeography, statistical analysis, 301–305
maximum likelihood, parametric phylogenetics, 215–216
Qualitative identity:
phylogenetic analysis, 138–140
shared character states, 110–111
transformational homology and, 121–122
Quantitative data, phylogenetic analysis, 138–140
Quasi-independent parts, character and, 108
Random addition searches (RASs), parsimony analysis, 172–173
Range predictions, biodiversity and ecological data management, 328–329
Rankless indentation, phylogenetic classification, 245–248
Rare specimen conundrum, 317
Ratcheting, parsimony analysis, tree topologies, 175–176
Recognition Species Concept (RSC), reproductive isolation and, 35–36
Recombinatorial speciation, sympatric speciation and, 49–50
Reductive coding, complex vs separate characters, 147
Refinement, similarity in position, molecular characters, 127–129
Regression techniques, maximum likelihood, parametric phylogenetics, 203–209
Regulatory issues, specimen collection, 320
Relationships:
natural taxa and, 70–72
phylogenetics and evolution and, 11
Relative qualitative identity, shared character states, 110–111
Relative relationships, natural taxa and, 70–72
Remane’s criteria, similarity, homology discovery and testing, 124–132
similarity in position, 124–125
Reproductive isolation:
process-based concepts and, 34–36
sympatric speciation and, 49–50
Rescaled consistency index (rc), parsimony analysis, 181–184
Retention index (ri), parsimony analysis, 181–184
Reticulate sympatric speciation, 49–50
Revisionary studies, nomenclature publication and rules, 332
Rigid designator, taxa proper names, 256–257
Rooted trees:
maximum likelihood, parametric phylogenetics, 212–219
parsimony analysis, a posteriori argumentation, 166
unrooted trees vs., 89–91, 101–102
Root node, parsimony analysis, 159
Russellian naming philosophy, taxa proper names, 255–257
Sankoff matrices, a priori weighting, parsimony analysis, 197
Scalar hierarchy, process-based concepts and, 30
Scatter plots, maximum likelihood, parametric phylogenetics, 205–206
Schuh's hypothesis, phylogenetic classification, Linnean Hierarchy, 237–245
Search strategies, parsimony analysis, tree search, 171–172
Secondary contact, parapatric speciation and, 49
Sectorial (window) searches, parsimony analysis, tree topologies, 175
Sedis mutabilis convention, phylogenetic classification, Linnean Hierarchy, 239–245
Self-weighted optimization, parsimony analysis, performance-based weighting, 198
Sequence alignment, similarity in position, molecular characters, 126–129
Sets:
 of individuals, tree graphs and, 99–100
 properties vs., 109–110
 species as, 26–27
Sexual reproduction, evolutionary species concept and, 31–34
Shared character states, defined, 110–111
Signal sources, biogeographic analysis, 279–280
Similarity, homology discovery and testing, 124–132
 molecular characters, 125–129
 in position, morphology, 124–125
 special/intrinsic similarity, 129–131
Simplicity, maximum likelihood, parametric phylogenetics, 209–210
Simpson’s criteria, logical consistency and, 75–79
Simulated annealing, parsimony analysis, tree topologies, 176
Simultaneous alignment/tree finding, similarity in position, molecular characters, 129
Single clade case:
 biogeography tracking, 305–307
 speciation mode identification, fossil record, 50–54
Single transformation series, parsimony analysis, consistency index, 180–181
Singular hypotheses, phylogenetic systematics, 17–18
Sister group:
 basic principles, 10
 parsimony analysis, outgroup and, 158
Site data, specimen collection, 321–326
Skewness measurements:
 maximum likelihood, parametric phylogenetics, 209–210
 model selection, 218–219
 parsimony analysis, 193
Sociopolitical issues, specimen collection, 320
 “Some A are B” hypothesis, phylogenetic systematics, 17
 “Some A are B in 1970” hypothesis, phylogenetic systematics, 17
Sorting procedures, specimen curation, 323–324
Special similarity, homology discovery and testing, 129–131
Speciation:
 biogeography, modified Brooks Parsimony Analysis, 292–293
 event, defined, 12
 evolutionary species concept, ecology and, 54
 fossil record identification, 50–54
 modes and patterns, 39–50
 allopartic speciation, 41–49
 parapatric speciation, 49
 sympatric speciation, 49–50
 monophyletic natural higher taxa and, 73–74
 natural kind theory and, 26
 phylogenetics and evolution and, 12
 systematics and, 4–6
 theories of, 18–21
Species:
 - basic concepts, 27–38
 - evolutionary species concept, 30–34
 - phylogenetic species concepts, 36–37
 - process-based concepts, 29–30, 34–35
 - reproductive isolation, process-based concepts, 34–36
 - sorting through, 38–39
 - defined, 23
 - empirically-based limitation methods, 54–65
 - nontree-based methods, 55–61
 - tree-based methods, 61–65
 - gene trees and, 99
 - as individuals, 27
 - invasion predictions, 329
 - as kinds, 24–26
 - as lineages, 29–30
 - new species descriptions, nomenclature publication and rules, 331–332
 - phylogenetic classifications, 233–234
 - Linnean Hierarchy, 234–245
 - proper names for, 256–257
 - as sets, 26–27
 - specimen assessment, species-level studies, 317
 - as taxa, 24–27

Specific mate-recognition system (SMRS), reproductive isolation and, 35–36

Specimens:
 - access to, 318–319
 - basic properties, 316–317
 - biodiversity and ecological data integration, 327–329
 - collections, 319–327
 - museum collections, 326–327
 - systematics collections, 322–326
 - literature sources, 318
 - systematic collections, 318
 - voucher specimens, 317–318

Speed rearrangements, parsimony analysis, tree topologies, 175

Stacking transformations, homology discovery and testing, intermediate forms, 131–132

Standard deviation, maximum likelihood, parametric phylogenetics, 206–209

Statistical analysis:
 - biogeography, 301–305
 - maximum likelihood, parametric phylogenetics, 208–209
 - parametric phylogenetics, likelihood models, consistency and, 226–227

Statistical tree comparisons, parsimony analysis, 195

Stem-based monophyletic groups, 83
 - phylogenetic classification, PhyloCode system, 253–255
 - tree graphs and, 104–106

Stem-based phylogenetic trees:
 - basic properties, 87–90
 - Nelson cladograms and, 96–99

Stem species, phylogenetic classification, Linnean Hierarchy, 242–245

Step matrices, parsimony analysis, 196–197

Storage procedures, specimen curation, 324

Strict consensus trees, parsimony analysis, 193–194

Structured keys, nomenclature publication and rules, 343–345

Substitution probability matrix, maximum likelihood, parametric phylogenetics, 217–218

Substitutions, similarity in position, molecular characters, 127–129

Subtree pruning and regrafting (SPR), parsimony analysis, tree topologies, 173–175

Successional species, basic principles, 39

Successive approximation, parsimony analysis, performance-based weighting, 198

Support evaluation, parsimony analysis, 188–193
 - bootstrap techniques, 191–192
 - Bremer support, 189–190
 - incongruence length difference, 193
 - jackknife techniques, 190–191
 - permutation tests, 192–193
 - skewness measurements, 193
 - synapomorphy comparisons, 188–189

Supraspecific taxa:
 - basic principles, 66
 - character evolution, paraphyletic group misrepresentation, 80–81
 - Henning’s theories, historical context, 72
 - homology, 117
 - logical consistency, 74–79
 - monophyletic groups, 70–74
 - node-based and stem-based groups, 83
 - naturalness concepts, 67–68
 - natural taxa, 68–69
nonmonophyly, paraphyletic/polyphyletic forms, 81–83
paraphyletic groups, 70–72
character misrepresentation, 80–81
nonmonophyletic form, 81–83
polyphyletic groups, 70–72
nonmonophyletic form, 81–83
Sympatric speciation, basic principles, 49–50
Synapomorphy:
 congruence and, 136–137
evolutionary species concept and, 32–34
monophyletic higher taxa, 74–75
Nelson cladograms, 93–99
of organisms, 14–15
paraphyletic misrepresentation of homologies, 80–81
parsimony analysis, 188–189
phylogenetic classification, Linnean Hierarchy, 243–245
Synonymies, nomenclature rules concerning, 339–340, 347
Systematics:
development of, 1–3
discipline and basic principles, 8–9
evolution and, 11–13
homology concepts, 117–118
nomenclature publication and rules, 331–334
studies publications, 337–345
philosophy and, 16–21
philosophy and techniques, 3–6, 17–21
phylagenetic hypotheses and, 19–21
specimen collections, 318, 322–326
Systematization:
historical classifications, 231–233
phylogenetic classification as, 229–230
Tail probability, parsimony analysis, 192–193
Taxa:
 biotic areas and geographic ranges, 277–278
Nelson cladograms, 96–99
phylogenetic classifications, 233–234
 proper names, 255–257
species as, 23–24
specimen assessment and, 317
Taxonomic character, 108
Taxonomic Species Concept (TSC), basic principles, 37
Taxonomy:
discipline and basic principles, 8
etymology in, 343
nomenclature rules, 334
formal works, 338–345
phylogenetic systematics and, 7
Taxon pulse, geodispersal and, 267–271
Thiele’s hypothesis, qualitative vs. quantitative characters, 139–140
Three-taxon analysis, nontransformational phylogenetics, 200–202
Time-reversible models, maximum likelihood, parametric phylogenetics, 215–216
Time scales, allopatric speciation, 42–49
Tokogenetic cohesion:
evolutionary species concept and, 31–34
phylogenetics and, 39
stem-based phylogenetic trees, 87–89
Topological rearrangement, parsimony analysis, tree topologies, 173–175
Topology-dependent permutation tail probability test (T-PTP), parsimony analysis, 193
Total evidence parsimony analysis, Nelson cladograms, 94–99
Traits, population aggregation analysis, 56–57
Transformational homology, 117
characters and coding, 144–146
intermediate stacking transformation, 131–132
monophyletic groups, 119
of organisms, 14
parsimony analysis:
 character optimization, 176–179
single transformation series, 180–181
qualitative identity and, 121–122
Transition probability matrix, maximum likelihood, parametric phylogenetics, 215–216
Tree-based techniques:
 logical consistency and evolution of, 75–79
parametric phylogenetics:
 basic principles, 203–205
Bayesian inference, 223–226
Tree-based techniques (cont’d)
 parsimony analysis, 169–179
 character optimization, 176–179
 consensus comparisons, 193–195
 consistency indices, 180–184
 length determination, 169–171, 179–180
 parsimony ratchet, 175–176
 random addition searches, 172–173
 simulated annealing, 176
 statistical comparisons, 195
 topology rearrangement, 173–175
 species limit determination, 61–65
Tree bisection and reconnection (TBR),
 parsimony analysis, tree topologies, 173–175
Tree-drifting, parsimony analysis, simulated
 annealing and, 176
Tree graphs:
 character evolution, 100–101
 cladograms, 92–99
 cyclic graphs, 91
 gene trees, 99
 individuals vs. sets of individuals, 99–100
 monophyly concepts, 104–106
 node rotation, 102–103
 phylogenetic trees, 87–91
 Nelson cladograms, 92–99
 node-based trees, 89–91
 stem-based trees, 87–89
 unrooted trees, 101–102
 terminology, 103–104
 theoretical background, 85–87
Tree hypotheses, phylogenetic systematics
 and, 6
TreeRot software, parsimony analysis,
 Bremer support, 189–190
Trichotomy, Nelson cladograms, 96–99
Type specimens:
 characteristics of, 324–325
 nomenclature rules concerning, 347–348
Universally unique identifier (UUID),
 specimen collections, 325
Unrooted trees:
 maximum likelihood, parametric
 phylogenetics, 212–219
 phylogenetic trees and, 101–102
 undirected acyclic graphs as, 89–91
Venn diagrams, parametric phylogenetics,
 Bayesian analysis, 219–226
Vicariance:
 allopatric speciation, 42–44
 biogeography and evolution and, 265,
 310–314
 areas of endemism and, 273–278
 geodispersal and, 266–271
 modified Brooks Parsimony Analysis,
 288–293
 phylogenetics and evolution and, 12–13
 speciation mode identification, fossil
 record, 52–54
Voucher specimens, research using,
 317–318
Vulnerability, creationism and, 21
Wagner parsimony:
 basic principles, 154
 ground plan divergence analysis,
 167–168
 tree length determination, 169–170
Wagner tree, defined, 104
Weighted characters, parsimony analysis,
 196–199
Wiens’ hypothesis, qualitative vs.
 quantitative characters, 139–140
Wiens-Penkrot (WP) method, species limit
 determination, 62–65
Wiley’s criteria, logical consistency and,
 75–79
Within-species biogeography, 307–308
“Zilla” data set, parsimony analysis, tree
 topologies, 173–175
Zoological literature, nomenclature
 publication and rules, 334–335