Contents

Preface xi
Acknowledgement xvii
About the Author xix
Abbreviations xxii

1 Global System for Mobile Communications 1
 1.1 GSM Bandwidth Allocation 1
 1.2 GSM System Architecture 2
 1.2.1 Mobile Station (SIM + ME) 2
 1.2.2 Base Station Subsystem (BSS) 3
 1.2.3 Network SubSystem (NSS) 3
 1.2.4 Operating SubSystem (OSS) 5
 1.3 GSM Transmission Network Architecture 5
 1.3.1 Message Management Layer (Layer 3) 5
 1.3.2 Data Link Layer (Layer 2) 7
 1.3.3 Physical Layer (Layer 1) 7
 1.4 Signaling Channels on the Air Interface 8
 1.4.1 Broadcast Channels (BCHs) 8
 1.4.2 Common Control Channels (CCCHs) 8
 1.4.3 Dedicated Control Channel (DCCH) 9
 1.5 GSM Security Architecture 10
 1.5.1 GSM Authentication 10
 1.5.2 GSM Confidentiality 16
 1.5.3 Multiple Encryption 20
 1.5.4 Encryption by AES Rijndael Algorithm 24

2 cdmaOne IS-95A Technology 27
 2.1 Reverse CDMA Channel 28
 2.1.1 Reverse Traffic Channel 28
 2.1.2 Access Channel 58
 2.1.3 Multiplex Option 1 Information 64
 2.1.4 Multiplex Option 2 Information 65
2.2 Forward CDMA Channel
 2.2.1 Pilot Channel
 2.2.2 Sync Channel
 2.2.3 Paging Channel
 2.2.4 Forward Traffic Channel

3 General Packet Radio Service (GPRS)
 3.1 GPRS System Architecture
 3.1.1 GPRS Network Support Nodes
 3.1.2 Reference Points and Data Transfer Interfaces
 3.1.3 Signaling Transfer Interfaces
 3.1.4 GPRS-PLMN Backbone Networks
 3.2 GPRS Logical Functions
 3.2.1 Network Access Control
 3.2.2 Packet Transfer and Routing
 3.2.3 Mobility Management
 3.2.4 State Models for Location Management
 3.2.5 State Transitions of a Mobile Station
 3.2.6 Packet Mobility Management (Iu Mode)
 3.3 Layered Protocol Architecture of Transmission Plane
 3.3.1 User Plane for A/Gb Mode
 3.3.2 Control Plane for A/Gb Mode
 3.3.3 Control Plane for Iu Mode
 3.4 GPRS Ciphering Algorithm
 3.4.1 Parameters for Algorithm Design
 3.4.2 GPRS Encryption Algorithm 3 (GEA3)
 3.4.3 Ciphering and Deciphering

4 Third-generation Partnership Projects (3GPP and 3GPP2)
 4.1 3G Partnership Projects
 4.2 Evolution of Mobile Radio Technologies
 4.2.1 2G Mobile Radio Technologies
 4.2.2 2.5G Mobile Radio Technologies
 4.2.3 3G Mobile Radio Technologies (Situation and Status of 3G)
 4.3 Cryptographic Protocols Applicable to Wireless Security Technologies

5 Universal Mobile Telecommunication System (UMTS)
 5.1 UMTS Standardization
 5.2 FDD/TDD Modes for UTRA Operation
 5.3 UMTS Architecture
 5.4 UTRAN Architecture
 5.5 UTRAN Terrestrial Interface
 5.5.1 Horizontal Layers
 5.5.2 Vertical Planes
 5.6 UTRAN-CN Interface via Iu
5.6.1 I_u CS Protocol Structure 139
5.6.2 I_u PS Protocol Structure 140
5.7 UMTS Security Related Features 142
 5.7.1 KASUMI Encryption Function 142
 5.7.2 User and Signaling Data Confidentiality 149
 5.7.3 KGCore (Core Keystream Generation Function) 152
 5.7.4 Summary of Four Confidentiality Functions 153
 5.7.5 Key Scheduling 153
5.8 UTRAN Overall Functions 162
5.9 UTRAN I_{ub} Interface Protocol Structure 163
5.10 UTRAN I_{ut} Interface Protocol Structure 165

6 High Speed Downlink Packet Access (HSDPA) 167
 6.1 Basic Structure of HS-DSCH 167
 6.1.1 Protocol Structure 167
 6.1.2 HS-DSCH Physical Layer Model 169
 6.2 Overview of HSDPA Enhancement Technologies 172
 6.2.1 CQI Enhancement (FDD Mode) 172
 6.2.2 Multiple Simultaneous Transmission to a UE Within Sub-Frame 173
 6.2.3 Code Reuse for Downlink HS-DSCH 173
 6.2.4 Fast Signalling Between Node B and UE 173
 6.2.5 Fast Adaptive Emphasis 174
 6.2.6 ACK/NACK Transmit Power Reduction for HS-DPCCH 174
 6.2.7 Fractional Dedicated Physical Channel (F-DPCH) 174
 6.3 HS-DSCH MAC Architecture—UE Side 175
 6.3.1 Overall Architecture 175
 6.3.2 MAC-d Entity 176
 6.3.3 MAC-c/sh Entity 177
 6.3.4 MAC-hs Entity 177
 6.3.5 MAC-ehs Entity 178
 6.4 HS-DSCH MAC Architecture—UTRAN Side 180
 6.4.1 Overall MAC Architecture 180
 6.4.2 MAC-c/sh Entity 180
 6.4.3 MAC-hs Entity 180
 6.4.4 MAC-ehs Entity 182
 6.5 Overview of HSDPA Techniques to Support UTRA 184
 6.5.1 Adaptive Modulation and Coding (AMC) 184
 6.5.2 Hybrid ARQ (HARQ) 185
 6.5.3 Fast Cell Selection 186
 6.5.4 Multiple Input Multiple Output Antenna Processing 187
 6.5.5 Handling for Error Cases 189
 6.6 Orthogonal Frequency Division Multiplexing (OFDM) 190
 6.6.1 OFDM Modulation Scheme 190
 6.6.2 Signal Processing Over OFDM Transceiver 194
 6.7 Prospect of OFDM-based Applications 195
8 CDMA2000 1x Evolution-Data and Voice (1xEV-DV) 287
 8.1 UMTS (WCDMA) Versus CDMA2000—Physical Layer Harmonization 288
 8.2 Reverse CDMA Channel 288
 8.2.1 Reverse Pilot Channel (R-PICH) 288
 8.2.2 Reverse Secondary Pilot Channel (R-SPICH) 290
 8.2.3 Access Channel 291
 8.2.4 Enhanced Access Channel (R-EACH) 291
 8.2.5 Reverse Common Control Channel (R-CCCH) 293
 8.2.6 Reserve Packet Data Control Channel (R-PDCCH) 294
 8.2.7 Reverse Request Channel (R-REQCH) 295
 8.2.8 Reverse Dedicated Control Channel (R-DCCH) 296
 8.2.9 Reverse Acknowledgment Channel (R-ACKCH) 298
 8.2.10 Reverse Channel Quality Indicator Channel (R-CQICH) 298
 8.2.11 Reverse Fundamental Channel (R-FCH) 299
 8.2.12 Reverse Supplemental Channel (R-SCH) 301
 8.2.13 Reverse Supplemental Code Channel (R-SCCH) 303
 8.2.14 Reverse Packet Data Channel (R-PDCH) 303
 8.3 Forward CDMA Channel 306
 8.3.1 Pilot Channels 309
 8.3.2 Sync Channel (F-SYNCH) 311
 8.3.3 Paging Channel (F-PCH) 312
 8.3.4 Quick Paging Channel (F-QPCH) 312
 8.3.5 Broadcast Control Channel (F-BCCH) 313
 8.3.6 Common Assignment Channel (F-CACH) 313
 8.3.7 Forward Common Control Channel (F-CCCH) 315
 8.3.8 Forward Indicator Control Channel (F-ICCH) 316
 8.3.9 Forward Grant Channel (F-GCH) 320
 8.3.10 Forward Acknowledgment Channel (F-ACKCH) 321
 8.3.11 Forward Packet Data Control Channel (F-PDCCH) 323
 8.3.12 Forward Dedicated Control Channel (F-DCCH) 325
 8.3.13 Forward Fundamental Channel (F-FCH) 326
 8.3.14 Forward Supplemental Channel (F-SCH) 329
 8.3.15 Forward Supplemental Code Channel (F-SCCH) 330
 8.3.16 Forward Packet Data Channel (F-PDCH) 332
 8.4 CDMA2000 Entities and Service Interfaces 332
 8.4.1 CDMA2000 1x EV-DV Service Interface Structure
 (Mobile Station) 332

9 Advanced Encryption Standard and Elliptic Curve Cryptosystems 341
 9.1 Advanced Encryption Standard (AES) 342
 9.1.1 Notational Conventions 342
 9.1.2 Mathematical Operations 344
 9.1.3 AES Algorithm Specification 347
 9.1.4 Key Expansion 347
 9.1.5 AES Cipher 349
 9.1.6 AES Inverse Cipher 354
9.2 Elliptic Curve Cryptosystem (ECC) 357
 9.2.1 Elliptic Curves 357
 9.2.2 Elliptic Curves Over Prime Field \(\mathbb{Z}_p\) 357
 9.2.3 Elliptic Curve Over Finite Galois Field \(\mathbb{GF}(2^m)\) 364
9.3 Elliptic Curve Cryptosystem versus Public-Key Cryptosystems 366
 9.3.1 Diffie–Hellman Key Exchange 366
 9.3.2 Elliptic Curve Diffie–Hellman Key Exchange 367
 9.3.3 RSA Signature Algorithm 371
 9.3.4 Elliptic Curve RSA Signature Algorithm 372
 9.3.5 ElGamal Public-Key Encryption 374
 9.3.6 Elliptic Curve ElGamal Encryption 375
 9.3.7 Schnorr’s Authentication Algorithm 379
 9.3.8 EC Schnorr’s Authentication Protocol 380
 9.3.9 Public-Key Digital Signature Algorithm 381
 9.3.10 Elliptic Curve Digital Signature Algorithm 382

10 Hash Function, Message Authentication Code, and Data Expansion Function 387
 10.1 MD5 Message-Digest Algorithm 387
 10.1.1 Append Padding Bits 387
 10.1.2 Append Length 388
 10.1.3 Initialize MD Buffer 388
 10.1.4 Define Four Auxiliary Functions (F, G, H, I) 388
 10.1.5 FF, GG, HH, and II Transformations for Rounds 1, 2, 3, and 4 389
 10.1.6 Computation of Four Rounds (64 Steps) 390
 10.2 Secure Hash Algorithm (SHA-1) 400
 10.2.1 Message Padding 400
 10.2.2 Initialize 160-Bit Buffer 400
 10.2.3 Functions Used 401
 10.2.4 Constants Used 401
 10.2.5 Computing the Message Digest 402
 10.3 Hashed Message Authentication Codes (HMAC) 406
 10.3.1 HMAC Structure 406
 10.3.2 HMAC Computation Using RFC Method 406
 10.3.3 HMAC Computation (Alternative Method) 409
 10.4 Data Expansion Function 412

Bibliography 417

Index 421