Contents

Preface to the Third Edition xi

List of Abbreviations xiii

1 **Introduction** 1
 1.1 Automatic Identification Systems 2
 1.1.1 Barcode Systems 2
 1.1.2 Optical Character Recognition 3
 1.1.3 Biometric Procedures 4
 1.1.4 Smart Cards 4
 1.1.5 RFID Systems 6
 1.2 A Comparison of Different ID Systems 6
 1.3 Components of an RFID System 6

2 **Differentiation Features of RFID Systems** 11
 2.1 Fundamental Differentiation Features 11
 2.2 Transponder Construction Formats 13
 2.2.1 Disks and Coins 13
 2.2.2 Glass Housing 13
 2.2.3 Plastic Housing 13
 2.2.4 Tool and Gas Bottle Identification 15
 2.2.5 Keys and Key Fobs 15
 2.2.6 Clocks 17
 2.2.7 ID-1 Format, Contactless Smart Cards 18
 2.2.8 Smart Label 19
 2.2.9 Coil-on-Chip 20
 2.2.10 Other Formats 21
 2.3 Frequency, Range and Coupling 21
 2.4 Active and Passive Transponders 22
 2.5 Information Processing in the Transponder 24
 2.6 Selection Criteria for RFID Systems 25
 2.6.1 Operating Frequency 26
 2.6.2 Range 26
 2.6.3 Security Requirements 27
 2.6.4 Memory Capacity 28
3 Fundamental Operating Principles 29
3.1 1-Bit Transponder 29
 3.1.1 Radio Frequency 29
 3.1.2 Microwaves 33
 3.1.3 Frequency Divider 34
 3.1.4 Electromagnetic Types 35
 3.1.5 Acoustomagnetic 38
3.2 Full- and Half-Duplex Procedure 39
 3.2.1 Inductive Coupling 40
 3.2.2 Electromagnetic Backscatter Coupling 45
 3.2.3 Close-Coupling 48
 3.2.4 Data Transfer Reader \rightarrow Transponder 49
 3.2.5 Electrical Coupling 50
3.3 Sequential Procedures 52
 3.3.1 Inductive Coupling 52
 3.3.2 Surface Acoustic Wave Transponder 55
3.4 Near-Field Communication (NFC) 57
 3.4.1 Active Mode 57
 3.4.2 Passive Mode 59

4 Physical Principles of RFID Systems 61
4.1 Magnetic Field 61
 4.1.1 Magnetic Field Strength H 61
 4.1.2 Magnetic Flux and Magnetic Flux Density 66
 4.1.3 Inductance L 66
 4.1.4 Mutual Inductance M 67
 4.1.5 Coupling Coefficient k 68
 4.1.6 Faraday’s Law 70
 4.1.7 Resonance 72
 4.1.8 Practical Operation of the Transponder 76
 4.1.9 Interrogation Field Strength H_{min} 77
 4.1.10 Total Transponder–Reader System 84
 4.1.11 Measurement of System Parameters 100
 4.1.12 Magnetic Materials 106
4.2 Electromagnetic Waves 110
 4.2.1 The Generation of Electromagnetic Waves 110
 4.2.2 Radiation Density S 112
 4.2.3 Characteristic Wave Impedance and Field Strength E 112
 4.2.4 Polarisation of Electromagnetic Waves 114
 4.2.5 Antennas 116
 4.2.6 Practical Operation of Microwave Transponders 127
4.3 Surface Waves 144
 4.3.1 The Creation of a Surface Wave 144
 4.3.2 Reflection of a Surface Wave 146
 4.3.3 Functional Diagram of SAW Transponders 147
 4.3.4 The Sensor Effect 149
 4.3.5 Switched Sensors 154

5 Frequency Ranges and Radio Licensing Regulations 155
5.1 Frequency Ranges Used 155
5.1.1 Frequency Range 9–135 kHz 157
5.1.2 Frequency Range 6.78 MHz (ISM) 158
5.1.3 Frequency Range 13.56 MHz (ISM, SRD) 159
5.1.4 Frequency Range 27.125 MHz (ISM) 159
5.1.5 Frequency Range 40.680 MHz (ISM) 160
5.1.6 Frequency Range 433.920 MHz (ISM) 160
5.1.7 UHF Frequency Range 160
5.1.8 Frequency Range 2.45 GHz (ISM, SRD) 161
5.1.9 Frequency Range 5.8 GHz (ISM, SRD) 161
5.1.10 Frequency Range 24.125 GHz 161
5.1.11 Selection of a Suitable Frequency for Inductively Coupled RFID Systems 162

5.2 The International Telecommunication Union (ITU) 164
5.3 European Licensing Regulations 165
5.3.1 CEPT/ERC REC 70-03 166
5.3.2 Standardised Measuring Procedures 170
5.4 National Licensing Regulations in Europe 172
5.4.1 Germany 172
5.5 National Licensing Regulations 175
5.5.1 USA 175
5.6 Comparison of National Regulations 176
5.6.1 Conversion at 13.56 MHz 176
5.6.2 Conversion on UHF 178

6 Coding and Modulation 179
6.1 Coding in the Baseband 179
6.2 Digital Modulation Procedures 180
6.2.1 Amplitude Shift Keying (ASK) 182
6.2.2 2 FSK 185
6.2.3 2 PSK 185
6.2.4 Modulation Procedures with Subcarrier 187

7 Data Integrity 189
7.1 The Checksum Procedure 189
7.1.1 Parity Checking 189
7.1.2 LRC Procedure 190
7.1.3 CRC Procedure 191
7.2 Multi-Access Procedures – Anticollision 194
7.2.1 Space Division Multiple Access (SDMA) 196
7.2.2 Frequency Domain Multiple Access (FDMA) 197
7.2.3 Time Domain Multiple Access (TDMA) 197
7.2.4 Examples of Anticollision Procedures 199

8 Security of RFID Systems 213
8.1 Attacks on RFID Systems 214
8.1.1 Attacks on the Transponder 215
8.1.2 Attacks on the RF Interface 216
8.2 Protection by Cryptographic Measures 226
8.2.1 Mutual Symmetrical Authentication 227
8.2.2 Authentication using Derived Keys 228
8.2.3 Encrypted Data Transfer 228
9 **Standardisation**	233
9.1 Animal Identification | 233
 9.1.1 ISO/IEC 11784 – Code Structure | 233
 9.1.2 ISO/IEC 11785 – Technical Concept | 234
 9.1.3 ISO/IEC 14223 – Advanced Transponders | 236
9.2 Contactless Smart Cards | 240
 9.2.1 ISO/IEC 10536 – Close-Coupling Smart Cards | 241
 9.2.2 ISO/IEC 14443 – Proximity-Coupling Smart Cards | 243
 9.2.3 ISO/IEC 15693 – Vicinity-Coupling Smart Cards | 258
 9.2.4 ISO/IEC 10373 – Test Methods for Smart Cards | 263
9.3 ISO/IEC 69873 – Data Carriers for Tools and Clamping Devices | 267
9.4 ISO/IEC 10374 – Container Identification | 267
9.5 VDI 4470 – Anti-theft Systems for Goods | 267
 9.5.1 Part 1 – Detection Gates – Inspection Guidelines for Customers | 267
 9.5.2 Part 2 – Deactivation Devices – Inspection Guidelines for Customers | 270
9.6 Item Management | 270
 9.6.1 ISO/IEC 18000 Series | 270
 9.6.2 GTAG Initiative | 273
 9.6.3 EPCglobal Network | 274

10 **The Architecture of Electronic Data Carriers** | 283
10.1 Transponder with Memory Function | 283
 10.1.1 RF Interface | 283
 10.1.2 Address and Security Logic | 286
 10.1.3 Memory Architecture | 289
10.2 Microprocessors | 300
 10.2.1 Dual Interface Card | 303
10.3 Memory Technology | 307
 10.3.1 RAM | 307
 10.3.2 EEPROM | 308
 10.3.3 FRAM | 309
 10.3.4 Performance Comparison FRAM – EEPROM | 310
10.4 Measuring Physical Variables | 311
 10.4.1 Transponder with Sensor Functions | 311
 10.4.2 Measurements Using Microwave Transponders | 312
 10.4.3 Sensor Effect in Surface Wave Transponders | 315

11 **Readers** | 317
11.1 Data Flow in an Application | 317
11.2 Components of a Reader | 317
 11.2.1 RF Interface | 318
 11.2.2 Control Unit | 323
11.3 Integrated Reader ICs | 324
 11.3.1 Integrated RF Interface | 325
 11.3.2 Single-Chip Reader IC | 327
11.4 Connection of Antennas for Inductive Systems | 331
 11.4.1 Connection Using Current Matching | 333
 11.4.2 Supply via Coaxial Cable | 333
 11.4.3 The Influence of the Q Factor | 338
11.5 Reader Designs | 338
11.5.1 OEM Readers 338
11.5.2 Readers for Industrial Use 338
11.5.3 Portable Readers 338
11.6 Near-Field Communication 339
11.6.1 Secure NFC 341

12 The Manufacture of Transponders and Contactless Smart Cards 347
12.1 Glass and Plastic Transponders 347
 12.1.1 Chip Manufacture 347
 12.1.2 Glass Transponders 348
 12.1.3 Plastic Transponders 351
12.2 Contactless Smart Cards 352
 12.2.1 Coil Manufacture 352
 12.2.2 Connection Technique 356
 12.2.3 Lamination 359

13 Example Applications 361
13.1 Contactless Smart Cards 361
13.2 Public Transport 362
 13.2.1 The Starting Point 362
 13.2.2 Requirements 363
 13.2.3 Benefits of RFID Systems 363
 13.2.4 Fare Systems using Electronic Payment 365
 13.2.5 Market Potential 366
 13.2.6 Example Projects 366
13.3 Contactless Payment Systems 372
 13.3.1 MasterCard® 374
 13.3.2 ExpressPay by American Express® 374
 13.3.3 Visa® Contactless 374
 13.3.4 ExxonMobil Speedpass 375
13.4 NFC Applications 375
13.5 Electronic Passport 380
13.6 Ski Tickets 383
13.7 Access Control 385
 13.7.1 Online Systems 385
 13.7.2 Offline Systems 385
 13.7.3 Transponders 387
13.8 Transport Systems 388
 13.8.1 Eurobalise S21 388
 13.8.2 International Container Transport 390
13.9 Animal Identification 391
 13.9.1 Stock Keeping 391
 13.9.2 Carrier Pigeon Races 395
13.10 Electronic Immobilisation 398
 13.10.1 The Functionality of an Immobilisation System 399
 13.10.2 Brief Success Story 401
 13.10.3 Predictions 402
13.11 Container Identification 403
 13.11.1 Gas Bottles and Chemical Containers 403
 13.11.2 Waste Disposal 404
13.12 Sporting Events 405
13.13 Industrial Automation 409
 13.13.1 Tool Identification 409
 13.13.2 Industrial Production 410
13.14 Medical Applications 417

14 Appendix 419
14.1 Contact Addresses, Associations and Technical Periodicals 419
 14.1.1 Industrial Associations 419
 14.1.2 Technical Journals 421
 14.1.3 RFID on the Internet 422
14.2 Relevant Standards and Regulations 423
 14.2.1 Standardisation Bodies 423
 14.2.2 List of Standards 423
 14.2.3 Sources for Standards and Regulations 428
14.3 Printed Circuit Board Layouts 429
 14.3.1 Test Card in Accordance with ISO 14443 429
 14.3.2 Field Generator Coil 435
 14.3.3 Reader for 13.56 MHz 435

References 441

Index 449